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Abstract
A feedback vertex set in a hypergraph H is a set of vertices S such that deleting S from H results
in an acyclic hypergraph. Here, deleting a vertex means removing the vertex and all incident
hyperedges, and a hypergraph is acyclic if its vertex-edge incidence graph is acyclic. We study the
(parameterized complexity of) the Hypergraph Feedback Vertex Set (HFVS) problem: given
as input a hypergraph H and an integer k, determine whether H has a feedback vertex set of size at
most k. It is easy to see that this problem generalizes the classic Feedback Vertex Set (FVS)
problem on graphs. Remarkably, despite the central role of FVS in parameterized algorithms and
complexity, the parameterized complexity of a generalization of FVS to hypergraphs has not been
studied previously. In this paper, we fill this void. Our main results are as follows

HFVS is W[2]-hard (as opposed to FVS, which is fixed parameter tractable).
If the input hypergraph is restricted to a linear hypergraph (no two hyperedges intersect in more
than one vertex), HFVS admits a randomized algorithm with running time 2O(k3 log k)nO(1).
If the input hypergraph is restricted to a d-hypergraph (hyperedges have cardinality at most d),
then HFVS admits a deterministic algorithm with running time dO(k)nO(1).

The algorithm for linear hypergraphs combines ideas from the randomized algorithm for FVS by
Becker et al. [J. Artif. Intell. Res., 2000] with the branching algorithm for Point Line Cover by
Langerman and Morin [Discrete & Computational Geometry, 2005].
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18:2 FVS in Hypergraphs

1 Introduction

It would be an understatement to say that Vertex Cover (VC) and Feedback Vertex
Set (FVS) have played a pivotal roles in the development of the field of Parameterized
Complexity. Vertex Cover asks if given an undirected graph G and a positive integer k,
there exists a set S of k vertices which intersects every edge in G. Feedback Vertex Set
asks if given an undirected graph G and a positive integer k, there exists a set S ( called
feedback vertex set or in short fvs) of k vertices which intersects every cycle in G. While there
has been no improvement in the parameterized algorithm for VC in the last 14 years [9] (the
conference version appeared in MFCS 2006), faster algorithms for FVS have been developed
over the last decade. The best known algorithm for VC runs in time O(1.2738k + kn) [9].
On the other hand, for FVS, the first deterministic O(cknO(1)) algorithm was designed only
in 2005; independently by Dehne et al. [13] and Guo et al. [20]. It is important to note here
that a randomized algorithm for FVS with running time O(4knO(1)) [5] was known in as
early as 1999. The deterministic algorithms led to the race of improving the base of the
exponent for FVS algorithms and several algorithms [6, 7, 8, 11, 21, 25, 27], both deterministic
and randomized, have been designed. Until few months ago the best known deterministic
algorithm for FVS ran in time 3.619knO(1) [25], while the Cut and Count technique by Cygan
et al. [11] gave the best known randomized algorithm running in time 3knO(1). However,
just in last few months both these algorithms have been improved; Iwata and Kobayashi [21,
IPEC 2019] designed the fastest known deterministic algorithm with running time O(3.460kn)
and Li and Nederlof [27, SODA 2020] designed the fastest known randomized algorithm
with running time 2.7knO(1). We would like to remark that many variants of FVS have
been studied in literature such as Connected FVS [11, 31], Independent FVS [2, 28, 30],
Simultaneous FVS [4, 34] and Subset FVS [12, 22, 23, 24, 29].

The main objective of this paper is a study of FVS on hypergraphs. A hypergraph is a
set family H with a universe V (H) and a family of hyperedges E(H), where each hyperedge
(or edge) is a subset of V (H). If every hyperedge in E(H) is of size at most d, it is known as
a d-hypergraph. Observe that if each hyperedge is of size exactly two, we get an undirected
graph. The natural question is, how does VC generalize to hypergraphs. If (G, k) is an
instance of VC, we can view VC as the following problem: Given a hypergraph with vertex
set V (G) and the set of hyperedges E(G), does there exist a set of k vertices that intersects
every hyperedge. Thus, VC is a special case of Hitting Set (HS): Given a hypergraph H
and a positive integer k, does there exist a set of k vertices that intersects every hyperedge. If
the size of each hyperedge is upper bounded by d, we refer to the problem as the d-Hitting
Set (d-HS) problem. Observe that VC is equivalent to the 2-HS problem. It is well known
that HS does not admit an algorithm with running time f(k)nO(1), where the function f
depends only on k due to Exponential Time Hypothesis (ETH). That is, the problem is
known to be W[2]-hard. On the other hand, d-HS is solvable in time dknO(1) and admits
a kernel of size O(kd) [1, 17]. It is worth noting that d-HS does not admit a kernel of size
O(kd−ε) under plausible complexity theory assumptions [14]. Thus, generalization of VC on
hypergraphs is well studied. However, there is very little study of FVS on hypergraphs. The
only known algorithmic result is a factor d approximation for FVS on d-hypergraphs [19].
Upper bounds on minimum fvs in 3-uniform linear hypergraphs are studied in [15].

The objective of this paper is to study the hypergraph variant of the Feedback
Vertex Set problem from the viewpoint of Parameterized Complexity.
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One of the main reasons for the lack of study of FVS on hypergraphs is that it is
not as natural to define the generalization of FVS in hypergraphs, as it is for the case
of VC (generalizing to HS and d-HS) in hypergraphs. To generalize the notion of fvs to
hypergraphs, we need to have notions of cycles and forests in hypergraphs. For cycles,
we use the same notion as that in graph theory [15]: a cycle in a hypergraph H is a
sequence (v0, e0, v1, . . . , v`, e`, v0) such that v0, . . . , v` are distinct vertices, e0, . . . , e` are
distinct hyperedges, ` ≥ 1 and vi, v(i+1) mod (`+1) ∈ ei for any i ∈ {0, . . . , `}. Given the
above definition of cycle, a subset S of vertices in a hypergraph H is called a feedback vertex
set, if there does not exist a cycle in the hypergraph obtained after deleting vertices in S.
The next natural question is what do we mean by deletion of a vertex in a hypergraph. There
are two ways to define the vertex deletion operation in hypergraphs:

1. Strong deletion or simply deletion of a vertex v implies deleting v along with all the
hyperedges containing the vertex v.

2. Weak deletion of a vertex v implies deleting v without deleting the hyperedges that
contain v. That is, the hypergraph H ′ obtained after weak deletion of a vertex v from H

has vertex set V (H) and edge set {e ∈ E(H) : v /∈ e}∪{e \ {v} : e ∈ E(H), v ∈ e, |e| > 2}.

For a hypergraph H we use the notation H − S to denote the graph obtained after
(weak/strong) deletion of the vertices in S. Consequently, there are two ways one may define
the Feedback Vertex Set problem – Weak FVS and Strong FVS.

Our Results and Methods. Given a hypergraph H, the incidence graph G corresponding
to H is the bipartite graph with bipartition V (G) = A]B where A = V (H) and B = E(H),
and for any v ∈ V (H) and e ∈ E(H), ve is an edge in G if and only if v ∈ e in H. Observe
that Weak FVS corresponds to finding a fvs S in G of size at most k, such that S ⊆ A

and G − S is a forest. Using the best known algorithm for Weighted FVS [3] running
in 3.618knO(1) time, we can solve Weak FVS in 3.618knO(1) time, by transforming the
problem to Weighted FVS. To transform Weak FVS to Weighted FVS we assign every
vertex in B a weight of k+ 1, every vertex in A a weight of 1. Now the problem of finding an
fvs of weight at most k will be equivalent to solving Weak FVS for the original hypergraph.
Thus Weak FVS is not challenging as a parameterized problem.

Hence, we only consider FVS on hypergraphs with respect to strong deletion. In partic-
ular, we study Hypergraph Feedback Vertex Set (HFVS). Here, given an n-vertex
hypergraph H and a positive integer k, the objective is to check whether there exists a set
S ⊆ V (H) of size at most k, such that H − S is acyclic. As in the case of HS, it is expected
that HFVS is W[2]-hard and this can be proven using a parameter preserving reduction
from Set Cover (which is “equivalent” to HS). We prove the following theorem in the full
version of the paper.

I Theorem 1 (♣1). HFVS is W[2]-hard when parameterized by k.

Theorem 1 is not surprising as a generalization of even VC to hypergraphs i.e. HS, is
W[2]-hard.

1 Proofs of results marked with ♣ can be found in the full version of the paper.
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18:4 FVS in Hypergraphs

FVS is a deeply studied problem in Parameterized Complexity, and thus, we tried
to generalize the existing algorithms as much as possible. However, considering the
problem on general hypergraphs is pushing it too far (Theorem 1). This motivated us
to look for families of hypergraphs, which are a strict generalization of graphs and
where FVS turns out to be tractable. Specifically, we study the problem for the cases
when the input is restricted to linear hypergraphs and d-hypergraphs.

A hypergraph H is linear if |e ∩ e′| ≤ 1 for any two distinct hyperedges e, e′ ∈ E(H). We
show that for both these families, HFVS admits fixed parameter tractable (FPT) algorithms.
Our main result is a randomized algorithm for the case when the input hypergraph is linear,
and the size of the hyperedges is not bounded. Thus our positive results are the following.

I Theorem 2 (♣). There exists a deterministic algorithm for HFVS on d-hypergraphs,
running in time dO(k)nO(1).

I Theorem 3. There exists an O?(2O(k3 log k)) time2 randomized algorithm for HFVS on
linear hypergraphs, which produces a false negative output with probability at most 1

nO(1) , and
no false positive output.

The restriction to linear hypergraphs corresponds to exclusion of C4 or K2,2 in the
corresponding incidence graph. Ki,j refers to the complete bipartite graph with partitions of
sizes i and j. There has been extensive work on Red-Blue Dominating Set for Ki,j free
graphs [10, 18, 32, 33]. Theorem 3 can be viewed as an analog of Red-Blue Dominating
Set results for K2,2 free graphs.

The starting point of both the above mentioned algorithms (Theorems 2 and 3) is recasting
HFVS as an appropriate problem on the incidence graph G of the given hypergraph H. Proof
of Theorem 3 starts with the observation that for any subset S ⊆ V (H), H − S is acyclic if
and only if G−NG[S] (notations defined in Section 2) is acyclic. Consequently, HFVS is
same as the following problem (proof to be given in the full version of the paper).

Dominating FVS on Bipartite Graphs (DFVSB) Parameter: k

Input: A bipartite graph G with bipartition V (G) = A ]B and k ∈ N.
Question: Is there a subset S ⊆ A of size at most k such that G−NG[S] is acyclic?

For a bipartite graph G = (A ]B,E), we say that a subset S ⊆ A is a dominating feedback
vertex set (dfvs) for G if G−N [S] is acyclic. Let G be the incidence graph of a hypergraph
H. Then, notice that H is a d-hypergraph if and only if maxe∈E(H) dG(e) ≤ d. Also, H is
linear if and only if G is C4-free. As a result HFVS on d-hypergraphs and linear hypergraphs
are equivalent to DFVSB on bipartite graphs G = (A ]B,E) with maxw∈B d(w) ≤ d and
on C4-free bipartite graphs, respectively.

Theorem 2 shows that for d-hypergraphs, HFVS is similar to d-HS. Proof of Theorem 2
utilizes iterative compression. The compression step involves a branching strategy that uses a
measure more generalized than the one used in known FVS algorithms for undirected graphs.

Our proof for Theorem 3 is inspired by the randomized algorithm of Becker et al. [5] that
runs in O(4knO(1)) time and the branching algorithm for Point Line Cover by Langerman

2 Polynomial dependency on n is hidden in O? notation.
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and Morin [26]. The algorithm of Becker et al. [5] first preprocesses the input graph and
transforms it into a graph with minimum degree at least 3 and then shows that for any fvs,
at least half the edges in a preprocessed graph are incident to the vertex set of the fvs. This
immediately gives the following algorithm: “pick an edge uniformly at random, then pick a
vertex that is an endpoint of this edge uniformly at random and add it to a solution, and
recurse”. Let G be the incidence graph of a hypergraph H. First we preprocess G and show
that in the preprocessed graph (say G) for any dfvs S of size at most k, at least 1/poly(k)
fraction of all the edges are incident to N [S]. Here, poly denotes a polynomial function. We
call this property α-covering, with α being poly(k). Let S be a fixed fvs of size at most k. We
now compute the probability of finding S. Note that if we randomly pick an edge f (that is,
pick an edge from graph G uniformly at random and then select f as the hyperedge incident
to the selected edge), then with probability 1/poly(k) there exists a vertex incident to f that
is contained in S. However, unlike the case of FVS in graphs, here we cannot randomly
select a vertex from f , as the size of f could be independent of k. However, for now let us
assume that we can preprocess G− f such that the α-covering property holds even after we
delete f from G. We assume that α-covering property holds recursively after each iteration
of preprocessing. Suppose we do this process k2 + 1 times. Then we have a collection of
hyperedges F = {f1, . . . , fk2+1} such that each of them has a non-trivial intersection with S.
Observe that the pairwise intersection of these hyperedges cannot be more than one, since G
excludes C4 as a subgraph (H being a linear hypergraph). However, S is a solution of size at
most k, and hence there exist k + 1 hyperedges f ′1, . . . , f ′k+1 in F such that |f ′i ∩ f ′j | = {v},
i 6= j for some v ∈ A = V (H). This implies that v must belong to S, as each of f ′1, . . . , f ′k+1
has a non-trivial intersection with S and if we don’t pick v, then every solution is of size at
least k + 1. Hence, we delete v along with all those edges in H that v participates in, and
recursively find a solution of size k − 1 in the reduced hypergraph.

However, unlike the case with FVS for graphs, in HFVS we cannot delete degree 1 vertices
or contract degree 2 vertices directly. When we delete a hyperedge, we need to remember
that we are seeking a solution that is a dfvs as well as a hitting set for the selected set. To
implement this idea in our algorithm, we maintain a family F such that our solution is a
dfvs for G as well as a hitting set for F . We exploit the fact that |F| ≤ k2 + 1 and design
reduction rules to get rid of certain degree 1 vertices and shorten degree 2 paths, as well as
caterpillars (defined later) like degree 2 paths. We can show that after these reduction rules
are performed, the α-covering property holds for the preprocessed graph, α being poly(k).

2 Preliminaries

For a positive integer ` ∈ N, we use [`] to denote the set {1, 2, . . . , `}. We use the term graph
to denote a simple graph without multiple edges, loops and labels. For the notations related
to graphs that are not explicitly stated here, we refer to the book [16]. For a graph G and a
subset of vertices U ⊆ V (G), NG(U) and NG[U ] denote the open neighborhood and closed
neighborhood of U , respectively. That is, NG(U) = {v ∈ V (G) : u ∈ U and uv ∈ E(G)} \ U
and NG[U ] = NG(U) ∪ U . If U = {u}, then we write NG(u) = NG(U) and NG[u] = NG[U ].
Also, we omit the subscript G, if the graph in consideration is clear from the context. For a
graph G, a vertex subset X ⊆ V (G), and an edge subset F ⊆ E(G), we use G[X], G−X,
and G − F to denote the graph induced by X, the graph induced by V (G) \ X, and the
graph with vertex set V (G) and edge set E(G) \ F , respectively. Moreover, if X = {v}, then
we write G− v = G−X. For a graph G, X,Y ⊆ V (G), and X ∩ Y = ∅, E(X,Y ) ⊆ E(G)
denotes the set of edges in G whose one endpoint is in X and the other one is in Y . For a

FSTTCS 2020



18:6 FVS in Hypergraphs

graph G and a non-edge uv in G, we use G+ uv to denote the graph with vertex set V (G)
and edge set E(G) ∪ {uv}. A path P in a graph G is a sequence of distinct vertices u1 . . . u`
such that for all i ∈ [`− 1], uiui+1 ∈ E(G). We say that a path P = u1 . . . u` in a graph G
is a degree two path in G, if for each i ∈ [`], the degree of ui in G, denoted by dG(ui), is
equal to 2. For a path/cycle P , we use V (P ) to denote the set of vertices present in P . A
triangle is a cycle consisting of exactly 3 edges. A bipartite graph G = (A ]B,E) is called
a d-bipartite graph if dG(b) ≤ d for all b ∈ B. For two hypergraphs H1 and H2, H1 ∪H2
denotes the hypergraph with the vertex set V (H1)∪ V (H2) and the edge set E(H1)∪E(H2).

3 Feedback Vertex Sets on Linear Hypergraphs

In this section we design an FPT algorithm for HFVS on linear hypergraphs. Towards this,
we prove the following result about DFVSB, from which Theorem 3 follows as a corollary.

I Theorem 4. There exists an O?(2O(k3 log k)) time randomized algorithm for DFVSB on
C4-free bipartite graphs, which produces a false negative output with probability at most 1

nO(1) ,
and no false positive output.

To prove Theorem 4, we first define a few generalizations of these problems that appear
naturally in the recursive steps. Let F be a family of sets over a universe A, then we
define a bipartite graph GF as follows. Let the bipartition of V (GF ) be AF ] BF , where
AF = A and BF = F . Edge set E(GF ) = {{u, Y } : u ∈ A, u ∈ Y ∈ F}. Let G be a C4 free
bipartite graph with bipartition V (G) = A ]B, and F be a family of sets over the universe
A. We define the graph G ∪GF = (A∗ ]B∗, E∗) as follows. Let A∗ = A,B∗ = B ]BF and
E∗ = E(G) ∪ E(GF ). The following problem generalizes HFVS on linear hypergraphs.

Hitting Hypergraph Feedback Vertex Set (HHFVS) Parameter: k + |E(H2)|
Input: Two linear hypergraphsH1,H2 such that V (H1) = V (H2), E(H1)∩E(H2) = ∅,
and H1 ∪H2 is a linear hypergraph, k ∈ N.
Question: Does there exist a set S ⊆ V (H1) of size at most k, such that H1 − S is
acyclic and S is a hitting set for E(H2)?

Observe that, if H2 = ∅, HHFVS is the same as HFVS (for linear hypergraphs). Next,
we define the “graph” version of HHFVS, which generalizes DFVSB on C4-free graphs.

Hitting Dominating Bipartite FVS (HDBFVS) Parameter: k + |F|
Input: A C4 free bipartite graph G with bipartition V (G) = A ]B, a family F of
subsets of A such that the graph G ∪GF is a C4 free bipartite graph, k ∈ N.
Question: Does there exist a set S ⊆ A of size at most k, such that G−N [S] is a
forest and S is a hitting set for F?

We say that an instance (G = (A]B,E),F , k) is a valid instance of HDBFVS, if F is a
family of subsets of A such that the graph G ∪GF is a C4-free bipartite graph.

In the rest of the section, whenever we say I = (G = (A ]B,E),F , k) is an instance
of HDBFVS, it implies that I is a valid instance of HDBFVS. Further, after each
application of a reduction rule, we ensure that the instance remains valid.

The proof of the following simple observation follows from the fact that G∪GF is C4-free.
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I Observation 3.1. If (G = (A]B,E),F , k) is an instance of HDBFVS, then (i) pairwise
intersection of sets in F is of size at most 1, and (ii) for every vertex b ∈ B and F ∈ F ,
|N(b) ∩ F | is at most one.

Given an instance (H1, H2, k) of HHFVS, we can obtain an instance, (G,F , k), of
HDBFVS in a canonical way. Next lemma shows their equivalence.

I Lemma 5 (♣). (H1, H2, k) is a YES-instance of HHFVS if and only if (G,F = E(H2), k)
is a YES-instance of HDBFVS, where G is the incidence graph of the hypergraph H1.

The rest of the section is devoted to designing an FPT algorithm for HDBFVS. Given
an instance (G = (A]B,E),F , k) of HDBFVS, we first define some notations. For a vertex
v ∈ A, Xv denotes the set {Y | Y ∈ F , v ∈ Y }. We distinguish the vertices in A as follows.

If |Xv| ≥ 2, i.e., v is in at least two sets in F , then we say that v is a special vertex.
If |Xv| = 1, i.e., v is in exactly one set in F , then we say that v is an easy vertex.
Otherwise, we say that v is a trivial vertex.

Let V (F) = {v ∈ A | v ∈ Y where Y ∈ F}. For a graph G?, the notations V0(G?), V=1(G?),
V=2(G?), and V≥3(G?) denote the set of isolated vertices, the set of vertices of degree 1, the
set of vertices of degree 2, and the set of vertices of degree at least 3 in G?, respectively.

I Lemma 6. Let (G = (A ]B,E),F , k) be an instance of HDBFVS. Then, the number of
special vertices in A is upper bounded by

(|F|
2
)
.

Proof. For contradiction, assume that the number of special vertices in A is more than
(|F|

2
)
.

By pigeonhole principle there exist two special vertices u, v ∈ A, such that |Xu ∩Xv| ≥ 2.
Let Y1, Y2 ∈ Xu ∩Xv. This implies that u, v ∈ Y1 ∩ Y2, contradicting Observation 3.1(i). J

Now we state some reduction rules that are applied exhaustively by the algorithm in the
order in which they appear. Let (G,F , k) be an instance of HDBFVS and (G′,F ′, k) be the
resultant instance after application of a reduction rule. To show that a reduction rule is safe,
we will prove that (G,F , k) is a YES-instance if and only if (G′,F ′, k) is a YES-instance.

I Reduction Rule 3.1. If one of the following holds, then return a trivial NO-instance: (i)
k < 0; (ii) k = 0 and G is not acyclic; and (ii) k = 0 and F is not empty.

I Reduction Rule 3.2. If k ≥ 0, G is acyclic and F is empty, then return a trivial YES-
instance.

I Reduction Rule 3.3. Let (G = (A ]B,E),F , k) be an instance of HDBFVS and b ∈ B
be a vertex that does not participate in any cycle in G. Then, output (G− b,F , k).

I Reduction Rule 3.4. Let (G = (A ]B,E),F , k) be an instance of HDBFVS and v ∈ A
be an isolated vertex in G. If v is a trivial vertex, then output (G− v,F , k).

It is easy to see that the above reduction rules are safe and can be applied in polynomial
time. Observe that, when Reduction Rules 3.3 and 3.4 are no longer applicable, then
V0(G) ⊆ A and each isolated vertex in G is either easy or special. Next, we state a reduction
rule that will help to bound the number of easy isolated vertices in G.

I Reduction Rule 3.5 (?3). Let (G = (A ] B,E),F , k) be an instance of HDBFVS and
v ∈ A be an isolated vertex in G. Suppose v is an easy vertex, Xv = {Y }, and |Y | > 1. Then
output (G′,F ′, k), where G′ = G− v and F ′ = (F \ {Y }) ∪ {(Y \ {v})}.

3 The safeness proofs of reduction rules marked with ? can be found in the full version of the paper.

FSTTCS 2020
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I Reduction Rule 3.6 (?). Let (G = (A ] B,E),F , k) be an instance of HDBFVS and
v ∈ A be a vertex of degree 1 in G. If v is a trivial vertex, then output (G′ = G− v,F , k).

Observe that when Reduction Rules 3.1 to 3.6 are no longer applicable, the following holds.

I Lemma 7. Let (G,F , k) be an instance reduced with respect to Reduction Rules 3.1 to 3.6.
Then, the following holds.
1. V0(G) ∪ V=1(G) ⊆ A, all vertices in V0(G) ∪ V=1(G) are either easy or special.
2. |V0(G)| ≤ |F|+

(|F|
2
)
.

I Lemma 8. For any vertex b ∈ B, |NG(b) ∩ V=1(G)| ≤ |F|.

Proof. If there exists a vertex v ∈ NG(b) ∩ V=1(G) which is a trivial vertex, then Reduction
Rule 3.6 is applicable. Thus, (i) for all v ∈ NG(b) ∩ V=1(G), v belongs to some set in F .
For contradiction, let b ∈ B be a vertex such that NG(b) contains at least |F|+ 1 vertices
of degree 1 in G. Then, by pigeonhole principle and statement (i), at least two degree 1
vertices say u, v ∈ NG(b) are contained in a set Y ∈ F , which is a contradiction to item (ii)
of Observation 3.1. This completes the proof of the lemma. J

Recall that, P is a degree two path in G if each vertex in P has degree exactly two in G.
Next we state the reduction rules that help us bound the length of long degree two paths
in G − V=1(G), i.e., to bound the length of degree two paths in the graph obtained after
deleting vertices of degree 1 from G. Towards this, we first define the notion of a nice path.

I Definition 9. We say that P is a nice path in G, if P does not have any special
vertex and the degree of each vertex in P in the graph G−V=1(G) is exactly 2. A nice
path P in G is a degree two nice path if each vertex in P has degree exactly 2 in G.

I Reduction Rule 3.7 (?). Let (G = (A ] B,E),F , k) be an instance of HDBFVS, P be
a nice path in G and b, b′ ∈ B be two vertices in P . If there exist two easy vertices u, u′
whose degree is 1 in G, adjacent to b, b′, respectively, such that Xu = Xu′ = {Y }, then return
(G′,F ′, k), where G′ = G− u, F ′ = (F \ {Y }) ∪ {Y \ {u}}.

I Lemma 10. Let (G = (A ]B,E),F , k) be an instance of HDBFVS reduced with respect
to Reduction Rules 3.1 to 3.7. Then, in any nice path P in G, the number of vertices that
are adjacent to a vertex of degree 1 in G is bounded by

(|F|
2
)

+ |F|.

Proof. From statement 1 in Lemma 7, we have that V=1(G)⊆A. This implies, NG(V=1(G))⊆
B. Also, each vertex in V=1(G) is either easy or special. By Lemma 6, the number of vertices
that are special is bounded by

(|F|
2
)
. Therefore, the number of vertices in P that are adjacent

to special degree 1 vertices is at most
(|F|

2
)
. Since Reduction Rule 3.7 is no longer applicable,

we have that corresponding to each set Y ∈ F , there exists at most 1 vertex in P that has a
degree 1 neighbor u such that Xu = {Y }. This implies that at most |F| vertices in P can be
adjacent to degree 1 easy vertices, resulting in the mentioned upper bound. J

The next reduction rule helps us in upper bounding the length of degree two paths in G.

I Reduction Rule 3.8 (?). Let (G = (A ] B,E),F , k) be an instance of HDBFVS and
P = v0b1v1 . . . v`−1b` be a degree two nice path in G, where {b1, . . . , b`} ⊆ B, {v0, . . . , v`−1} ⊆
A, and ` ≥ 5. Let vi, vj ∈ A ∩ (V (P ) \ {v0, v1}) be two distinct easy vertices such that
Xvi = Xvj = {Y } for some Y ∈ F and i < j. Then, return (G′,F ′, k), where G′ and F ′ are
defined as follows.
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b

u ∈ Y

b′

u′ ∈ Y

...

b

b′

u′ ∈ Y

...

(a)

v0 b1 v1

vi−2

bi−1

vi−1

bi

vi ∈ Y

bi+1 vj ∈ Y v`−1b`... ... ...

v0 b1 v1 vi−2 bi+1 vj ∈ Y v`−1b`... ... ...

(c)

v0 b1 v1

vi−1 bi

vi ∈ Y

bi+1

vj ∈ Y v`−1b`... ... ...

v0 b1 v1 vi−1 bi+1 vj ∈ Y v`−1b`... ... ...

(b)

b1 v1 b2 v2 b3 v3 b4

b1 v1 b3 v3 b4

(d)

Figure 1 (a) is an illustration of Reduction Rule 3.7, (b) and (c) are illustrations of two cases of
Reduction Rule 3.8, (d) is an illustration of Reduction Rule 3.9. In (a), (b) and (c) blue vertices
denote easy vertices, and in (d) green vertices denote trivial vertices.

If Xvi−1 6= Xvi+1 or Xvi−1 = Xvi+1 = ∅, then let G′ = (G− {bi, vi}) + vi−1bi+1 (i.e., G′
be the graph obtained by deleting the vertices bi, vi from G and by adding a new edge
vi−1bi+1) and F ′ = (F \ {Y }) ∪ {Y \ {vi}}.
Otherwise, Xvi−1 = Xvi+1 = {Y ?}, then let G′ = (G−{bi−1, vi−1, bi, vi}) + vi−2bi+1 (i.e.,
G′ be the graph obtained by deleting the vertices bi−1, vi−1, bi, vi from G and by adding a
new edge vi−1bi+1) and F ′ = (F \ {Y, Y ?}) ∪ {Y ? \ {vi−1}, Y \ {vi}}.

Let (G = (A]B,E),F , k) be an instance of HDBFVS reduced with respect to Reduction
Rules 3.1 to 3.8. Observe that, for each set Y ∈ F and a degree two nice path P in G, the
number of easy vertices among the last |V (P )| − 3 vertices in V (P ) that belong to Y , is
upper bounded by one. Reduction Rule 3.8 leads us to the following observation.

I Observation 3.2. Let (G = (A ] B,E),F , k) be a reduced instance of HDBFVS with
respect to Reduction Rules 3.1 to 3.8. Then, in any degree two nice path P of length at least
10 in G, the number of easy vertices is bounded by |F|+ 2.

I Reduction Rule 3.9 (?). Let (G = (A]B,E),F , k) be an instance of HDBFVS and P =
b1v1b2v2b3v3b4 be a degree two nice path in G, such that {b1, . . . , b4} ⊆ B, {v1, v2, v3} ⊆ A

and v1, v2, v3 are trivial vertices. Then, return (G′,F , k), where G′ is the graph obtained by
deleting the vertices b2, v2 from G and adding a new edge v1b3 (i.e., G′ = (G−{v2, b2})+v1b3).

I Observation 3.3. Let (G = (A ]B,E),F , k) be an instance of HDBFVS and let (G′ =
(A′]B′, E′),F ′, k′) be the reduced instance of HDBFVS obtained from (G = (A]B,E),F , k),
by exhaustive applications of Reduction Rules 3.1 to 3.9. Then, |F ′| = |F| and k′ ≤ k.

We now bound the size of degree 2 path, when there is no degree 1 vertex in the graph.

I Lemma 11 (♣). Let (G = (A ] B,E),F , k) be an instance of HDBFVS reduced with
respect to Reduction Rules 3.1 to 3.9. Then, the number of vertices in a degree two path P
in G− V=1(G) is bounded by 63|F|5 + 21.

From now on, we say that (G = (A ]B,E),F , k) is a reduced instance of HDBFVS if it
is reduced with respect to Reduction Rules 3.1 to 3.9. In the following lemma, we observe
that, if (G = (A ]B,E),F , k) is a YES-instance of HDBFVS, then a large number of edges
in G is incident to the neighborhood of the solution.

FSTTCS 2020
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I Lemma 12. Let (G = (A]B,E),F , k) be a reduced instance of HDBFVS where G is not
a forest. Then, for any solution S, at least 1/(445|F|6 + 68) fraction of the total edges in E
are incident to N [S].

Proof. Let ES be the set of edges incident to all the vertices of N [S] in G. Observe that,
E(G) = ES ] E(G − N [S]). Since G − N [S] is a forest, we have that |E(G − N [S])| <
|V (G−(N [S]∪V0(G)))|. We aim to show that |V (G−(N [S]∪V0(G)))| ≤ (445|F|6 +67) · |ES |.
Let V ? be the set of vertices of degree 1 in G−N [S]. Let V ?1 ⊆ V ? be the set of vertices that
have some neighbor in N [S] and V ?2 = V ? \ V ?1 . That is, V ?2 ⊆ V=1(G). Since the vertices in
V ?1 have neighbors in N [S], they contribute at least one edge to the set ES and these edges
are distinct. Hence, |V ?1 | ≤ |ES |.

Since V ?2 ⊆ V=1(G), by Lemma 7, we have that V ?2 ⊆ A. Thus, V ?2 have neighbors only
in the set B ∩ V (G − N [S]). Also, by Lemma 8, any vertex in B can be adjacent to at
most |F| vertices of degree 1 in G. Hence, each vertex in B ∩ V (G−N [S]) can be adjacent
to at most |F| vertices of V ?2 . Thus, we have that |V ?2 | ≤ |F| · |B ∩ V (G − N [S])|. Let
G′ be the graph G − (V0(G) ∪ V ?2 ). Since V0(G) ∪ V ?2 ⊆ A, we have that, B ⊆ V (G′) and
B ∩ V (G−N [S]) = B ∩ V (G′ −N [S]). Hence, we obtain the following.

|V ?2 | ≤ |F| · |B ∩ V (G′ −N [S])| ≤ |F| · |V (G′ −N [S])| (1)
|V ?| = |V ?1 |+ |V ?2 | ≤ |F| · |V (G′ −N [S])|+ |ES | (By (1) and |V ?1 | ≤ |ES |) (2)

Since the graph G′ is obtained from G by deleting a subset of vertices that are contained in
V0(G) ∪ V=1(G) ⊆ A, the vertices that are degree 1 in G′ −N [S] are either degree 1 vertices
in G − N [S] and are contained in A, in particular in V ?1 , or they are contained in B and
are neighbors of vertices in V ?2 in G. Let L be the set of leaves (vertices of degree 1) in
G′ −N [S]. We claim that L = V ?1 . For contradiction, assume that a vertex b ∈ B ∩L. Since
Reduction Rule 3.3 is no longer applicable, we have that each vertex in B participates in a
cycle in G and hence, participates in a cycle in G′. Therefore, degree of b is at least 2 in G′.
Observe that b cannot have a neighbor in S, otherwise b ∈ N [S]. This implies that b has 2
neighbors in G′ −N [S], which contradicts that b ∈ L. Observe that each vertex in V ?1 is a
leaf vertex in G′ −N [S]. Hence L = V ?1 . Therefore, we obtain the following.

|L| ≤ |ES |. (3)
V≥3(G′ −N [S]) ≤ |ES | (Since, G′ −N [S] is a forest, V≥3(G′ −N [S]) ≤ |L|) (4)

Next we bound |V0(G′−N [S])|. Since, for any vertex v in G′−N [S], dG(v) ≥ 1, we have
that any vertex w ∈ V0(G′ −N [S]) is adjacent to some vertex in N [S]. Then, each vertex in
V0(G′ −N [S]) contributes at least 1 edge to the set ES and these edges are distinct.

Therefore, |V0(G′ −N [S])| ≤ |ES |. (5)

Let V 1
=2(G′) be the set of vertices of degree 2 in G′ −N [S] that have a neighbor in N [S].

Then, each vertex in V 1
=2(G′) contributes at least 1 edge to the set ES . Therefore, we have

|V 1
=2(G′)| ≤ |ES |. (6)

Let V 2
=2(G′) be the set of vertices of degree 2 in G′ − N [S], that do not have a neighbor

in N [S]. Then, each vertex in V 2
=2(G′) is contained in some maximal degree two path not

containing any vertex of V 1
=2(G′) in G′ −N [S]. Observe that, since G′ −N [S] is a forest, (i)

the number of maximal degree two paths not containing any vertex of V 1
=2(G′) in G′ −N [S]

is bounded by |L ∪ V≥3(G′) ∪ V 1
=2(G′)| and hence bounded by 3|ES | (because of (3),(4), and

(6)). Observe that a degree two path not containing any vertex of V 1
=2(G′) in G′ −N [S] is
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also a degree two path in G− V=1(G). By Lemma 11, (ii) the number of vertices in a degree
two path in G− V=1(G) is bounded by 63|F|5 + 21. So, statements (i) and (ii) imply that

|V 2
=2(G′)| ≤ (189|F|5 + 63)|ES | (7)

Observe that V=2(G′ −N [S]) = V 1
=2(G′) ∪ V 2

=2(G′). By (6) and (7), we get the following.

|V=2(G′ −N [S])| = |V 1
=2(G′)|+ |V 2

=2(G′)| ≤ (189|F|5 + 64)|ES | (8)

Note that, V (G′−N [S]) = V0(G′−N [S])∪L∪V≥3(G′−N [S])∪V=2(G′−N [S]). Hence,
we obtain the following using (3), (5), (4), and (8).

|V (G′ −N [S])| = |V0(G′ −N [S])|+ |L|+ |V≥3(G′ −N [S])|+ |V=2(G′ −N [S])|
≤ |ES |+ |ES |+ |ES |+ (189|F|5 + 64)|ES |
≤ (189|F|5 + 67)|ES | (9)

Using (1) and (9), we obtain the following.

|V (G− (N [S] ∪ V0(G)))| ≤ |V (G′ −N [S])|+ |V ?2 |
≤ (|F|+ 1)|V (G′ −N [S])| (By (1))
≤ (|F|+ 1)((189|F|5 + 67)|ES |)
≤ (445|F|6 + 67)|ES |

Thus, |E(G)| = |ES |+ |E(G−N [S])|
≤ |ES |+ |V (G− (N [S] ∪ V0(G))| ≤ (445|F|6 + 68)|ES |.

This concludes the proof. J

I Lemma 13. Let (G = (A ]B,E),F , k) be an instance of HDBFVS, where G is a forest
and |F| ≤ k2. Then, there exists an algorithm which solves the instance in O?((2k4)k) time.

Proof. The Algorithm first applies Reduction Rules 3.1 to 3.9 exhaustively in the order in
which they are stated. If any reduction rule solves the instance, then output YES and NO
accordingly. All the reduction rules are safe, and can be applied in polynomial time, and
they can be applied only polynomial many times since each reduction rule decreases the
size of the graph. Let (G′ = (A′ ]B′, E′),F ′, k′) be the reduced instance. Since Reduction
Rule 3.3 is no longer applicable, B′ = ∅, and hence G′ is an edgeless graph with vertex
set A′. By Lemma 7, |V (G′)| = |A′| ≤ |F ′| +

(|F ′|
2
)
. By Observation 3.3, we have that

|F ′| = |F| ≤ k2 and hence, |V (G′)| ≤ 2k4. We enumerate all the subsets of V (G′) of size at
most k and check if they form a solution; else return a NO-instance. The algorithm runs in
time

(2k4

k

)
nO(1) = O?((2k4)k). This completes the proof. J

I Lemma 14. There is a randomized algorithm that takes an instance (G = (A]B,E),F , k)
of HDBFVS as input, runs in O∗((2k4)k) time, and outputs either YES, or NO, or an instance
(G? = (A? ]B?, E?),F?, k?) of HDBFVS where k? < k, with the following guarantee.

If (G,F , k) is a YES-instance, then the output is YES or an equivalent YES-instance
(G?,F?, k?) where k? < k, with probability at least (445k12 + 68)−(k2+1).
If (G,F , k) is a NO-instance, then the output is NO or an equivalent NO-instance
(G?,F?, k?) where k? < k, with probability 1.

Proof. Let (G = (A ]B,E),F , k) be an input instance of HDBFVS. Recall that, for any
v ∈ A, Xv = {F ∈ F : v ∈ F}. The algorithm applies the following iterative procedure.

FSTTCS 2020
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Step 1. If G is acyclic and |F| ≤ k2, then apply Lemma 13 and solve the instance.
Step 2. If |F| ≥ k2 + 1;

(i) If there exists a vertex v such that |Xv| ≥ k+1, return (G−N [v],F \Xv, k−1).
(ii) Otherwise, return that (G = (A ]B,E),F , k) is a NO-instance of HDBFVS.

Step 3. Apply Reduction Rules 3.1 to 3.9 exhaustively in the order in which they are stated.
If any reduction rule solves the instance, then output YES and NO accordingly. Let
(G′ = (A′ ]B′, E′),F ′, k′) be the reduced instance.

Step 4. Pick an edge e = ub in E(G′) uniformly at random, where u ∈ A′, b ∈ B′. Set
G := G′ − b,F := F ′ ∪ {NG′(b)}, and k := k′. Go to Step 1.

Now we prove the correctness of the algorithm. Correctness of Step 1 follows from
Lemma 13. Next assume that |F| ≥ k2 + 1. Let v be a vertex that is contained in at
least k + 1 sets in F . By Observation 3.1, pairwise intersection of two sets in F is at most
1. Thus, if we do not pick v in our solution, then we have to pick at least k + 1 vertices
to hit the sets in Xv. Thus v belongs to every solution of (G,F , k) of HDBFVS. Hence,
(G,F , k) is a YES-instance of HDBFVS if and only if (G−v,F \Xv, k−1) is a YES-instance
of HDBFVS, and correctness of Step 2i follows. Suppose each vertex in A is contained
in at most k sets of F . Thus no set of size at most k can hit k2 + 1 sets of F . Hence,
(G,F , k) is a NO-instance of HDBFVS, and correctness of Step 2ii follows. Correctness of
the Step 3 is implied by the safeness of reduction rules. Suppose the algorithm does not
stop in Step 3. Let (G′,F ′, k′) be the reduced instance, where k′ ≤ k. Now, let S be a
hypothetical solution to (G′,F ′, k′). By Lemma 12, the picked edge e = ub is incident to a
vertex in NG′ [S] with probability at least 1/(445|F|6 +68). This implies that with probability
at least 1/(445|F|6 + 68) a vertex in NG′(b) is contained in S. Hence, if (G′,F ′, k′) is a
YES-instance, then (G′ − b,F ′ ∪ {NG(b)}, k′) is a YES-instance, with probability at least
1/(445|F|6 + 68). Also, notice that any solution to (G′− b,F ′∪{NG(b)}, k′) is also a solution
to (G′,F ′, k′). Hence, if (G′,F ′, k′) is a NO-instance, then (G′ − b,F ′ ∪ {NG(b)}, k′) is a
NO-instance, with probability 1. Consequently, if (G,F , k) is a NO-instance, then the output
is NO or a NO-instance (G?,F?, k?) with probability 1.

Let (G,F , k) be a YES-instance. By Observation 3.3, after the application of Reduction
Rules 3.1 to 3.9, in the reduced instance, |F ′| = |F|. Thus, Step 4 is applied at most k2 + 1
times. Each execution of Step 4 is a success with probability at least 1/(445|F̂ |6 + 68),
where F̂ is the family in the instance considered in that step. In Step 4, the size of the
family of any instance is bounded by k2, due to Step 2. Hence each execution of Step 4 is
a success with probability at least 1/(445k12 + 68). This implies that either our algorithm
outputs YES or a YES-instance (G?,F?, k?) with probability at least (445k12 + 68)−(k2+1).
By Observation 3.3, we know that after the application of Reduction Rules 3.1 to 3.9, the
parameter k′ in the reduced instance is at most the parameter k in the original instance.
Moreover, if the algorithm outputs an instance, then that will happen in Step 2i and there k
decreases by 1. Thus k? < k. This proves the correctness of the algorithm.

By Lemma 13, Step 1 runs in O?((2k4)k) time. Observe that, Step 2 runs in polynomial
time. All the reduction rules run in polynomial time, and are applied only polynomially many
times. Step 4 runs in polynomial time, and we have at most k2 + 1 iterations. Therefore, the
total running time is O?((2k4)k). This completes the proof. J

By applying Lemma 14 at most k times, we can show the following.

I Lemma 15. There exists a randomized algorithm B that takes an instance (G = (A ]
B,E),F , k) of HDBFVS as input, runs in O?((2k4)k) time, and outputs either YES or NO
with the following guarantee. If (G,F , k) is a YES-instance, then the output is YES with
probability at least (445k12 + 68)−k(k2+1). If (G,F , k) is a NO-instance, then the output is
NO with probability 1.
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Let τ(k) = (445k12 +68)k(k2+1). To boost the success probability of algorithm B, we repeat it
O(τ(k) logn) times. After applying algorithm B O(τ(k) logn) times, the success probability

is at least 1−
(

1− 1
τ(k)

)O(τ(k) logn)
≥ 1− 1

2O(log n) ≥ 1− 1
nO(1) .

Thus, we have the following result.

I Theorem 16. There exists a randomized algorithm A that takes an instance (G = (A ]
B,E),F , k) of HDBFVS as input, runs in O?(2O(k3 log k)) time, and outputs either YES or
NO with the following guarantee.

If (G,F , k) is a YES-instance, then the output is YES with probability at least 1− 1
nO(1) .

If (G,F , k) is a NO-instance, then the output is NO with probability 1.

4 Conclusion and Open Problems

In this paper, we initiated the study of Feedback Vertex Set problem on hypergraphs.
We showed that the problem is W[2]-hard on general hypergraphs. However, when the input
is restricted to d-hypergraphs and linear hypergraphs, which are a strict generalization of
graphs, FVS turns out to be tractable (FPT). Derandomization of the randomized FVS
algorithm given in this paper is yet to be explored. We believe that this opens up a new
direction in the study of parameterized algorithms. That is, extending the study of other
graph problems, in the realm of Parameterized Complexity, to hypergraphs. Designing
substantially faster algorithms for HFVS on linear hypergraphs and designing polynomial
kernels remain interesting questions for the future.
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