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Abstract

The matching problem in the online setting models the following situation: we are given a set of
servers in advance, the clients arrive one at a time, and each client has edges to some of the servers.
Each client must be matched to some incident server upon arrival (or left unmatched) and the
algorithm is not allowed to reverse its decisions. Due to this no-reversal restriction, we are not able
to guarantee an exact maximum matching in this model, only an approximate one.

Therefore, it is natural to study a different setting, where the top priority is to match as many
clients as possible, and changes to the matching are possible but expensive. Formally, the goal is
to always maintain a maximum matching while minimizing the number of changes made to the
matching (denoted the recourse). This model is called the online model with recourse, and has been
studied extensively over the past few years. For the specific problem of matching, the focus has been
on vertex-arrival model, where clients arrive one at a time with all their edges. A recent result of
Bernstein et al. [1] gives an upper bound of O

(
n log2 n

)
recourse for the case of general bipartite

graphs. For trees the best known bound is O(n log n) recourse, due to Bosek et al. [4]. These are
nearly tight, as a lower bound of Ω(n log n) is known.

In this paper, we consider the more general model where all the vertices are known in advance,
but the edges of the graph are revealed one at a time. Even for the simple case where the graph is a
path, there is a lower bound of Ω(n2). Therefore, we instead consider the natural relaxation where
the graph is worst-case, but the edges are revealed in a random order. This relaxation is motivated
by the fact that in many related models, such as the streaming setting or the standard online setting
without recourse, faster algorithms have been obtained for the matching problem when the input
comes in a random order. Our results are as follows:

Our main result is that for the case of general (non-bipartite) graphs, the problem with random
edge arrivals is almost as hard as in the adversarial setting: we show a family of graphs for which
the expected recourse is Ω

(
n2

log n

)
.

We show that for some special cases of graphs, random arrival is significantly easier. For the
case of trees, we get an upper bound of O

(
n log2 n

)
on the expected recourse. For the case of

paths, this upper bound is O (n log n). We also show that the latter bound is tight, i.e. that the
expected recourse is at least Ω (n log n).
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1 Introduction

The online matching problem models a scenario in which a set of servers is given in advance,
and a set of clients arrive one at a time, with each client incident to some of the servers. In
the standard version of this model, the arriving client must be immediately matched to a
free server or be left unmatched, and this decision is irrevocable. Due to this constraint, it is
not possible to guarantee an exact matching, so the goal is to guarantee the best possible
approximation. (See the work of Karp et al. [14], which shows that we can’t get better than
1− 1

e approximation.)
But there are several applications where the top priority is to match all the clients (or at

least to have a maximum matching), and the irreversibility condition of the standard online
model is too restrictive; in applications such as streaming content delivery, web hosting, job
scheduling, or remote storage it is preferable to reallocate the clients provided the number of
reallocations is small (see [5] for more details). Therefore, over the past decade there have
been many papers on the so-called online model with recourse, where the goal is to maintain
an exact solution the problem, while making as few changes to this solution as possible.

In the case of matching in particular, existing results focus on the vertex-arrival model,
which is analogous to the similar model in online matching without recourse. In this model,
clients arrive one at a time and ask to be matched to a server. The algorithm is allowed
to change the matching over time and must always maintain a maximum matching: the
goal is then to minimize the total number of changes made to the matching, denoted the
recourse. Note that the trivial recourse bound is O(n2) (n changes per client), but one
can do significantly better. This model has been studied extensively (see for example,
[9, 5, 2, 3, 10, 4, 1]), and the state of the art is an upper bound of O(n log2 n) on the total
recourse [1]) in bipartite graphs. For the special case of trees, the best known upper bound
is O (n logn) due to [4]. These upper bounds nearly match the lower bound of Ω (n logn) for
trees due to [9].

In this paper, we consider a more general model where the graph can be non-bipartite
and, more importantly, the edges in the graph are revealed one at a time; the algorithm
must again maintain a maximum matching at all times. Unfortunately, we have very strong
lower bounds when the order in which the edges arrive is adversarial; even for the simplest
possible case of a path, Ω(n2) recourse is necessary. To overcome this lower bound, we
consider a natural relaxation of this model where the adversary can still choose the graph,
but edges arrive in a random order. One of the motivations behind this relaxation is that in
several related models, such as the online model without recourse or the streaming model,
we have been able to get faster algorithms when the input is assumed to arrive in a random
order rather than an adversarial order. (See [13, 16] for online model without recourse, and
[15, 12, 8, 7] for the streaming model).

Our results show that for the case of trees and paths, we can do significantly better in
the random edge-arrival model: in particular, we show an upper bound of O (n logn) on the
expected recourse in the case of paths (which we show is tight), and a bound of O

(
n log2 n

)
in the case of trees. But our main result is that in general graphs, the random arrival setting
is provably almost as hard as the adversarial setting. We state our main results formally:

I Theorem 1. For any n > 216, there is a (non-bipartite) graph Gn (described in Section 3.1)
with n vertices and Θ (n logn) edges, such that if edges of the graph arrive in a random order,
then the total expected recourse taken by any algorithm that maintains a maximum matching
in the graph is Ω

(
n2

logn

)
.



A. Bernstein and A. Dudeja 11:3

I Theorem 2. Let T be a tree on n vertices and let the edges of T arrive one at a time in
a random order. Then, the expected total recourse taken by an algorithm that maintains a
maximum matching in T is at most O(n log2 n).

I Theorem 3. Let P be a path on n vertices, and let the edges of P arrive in a random order.
The expected total recourse taken by an algorithm that maintains a maximum matching in P
is O(n logn). Moreover, this bound is tight: the expected recourse taken by any algorithm is
Ω (n logn).

I Remark 4. For the lower bounds of Theorems 1 and 3, when we say that any algorithm has
the given lower bound on expected recourse, this bound holds even if the algorithm knows
the random permutation in advance. That is, the lower bound holds even if the algorithm is
optimal for every possible ordering of the edges.
I Remark 5. For the upper bounds in Theorems 2 and 3, the algorithm we use simply changes
the matching along an augmenting path whenever such a path becomes available due to the
insertion of some edge. If there are multiple augmenting paths the algorithm can take, it
chooses between them arbitrarily; the upper bound holds regardless of the choice of path.

We prove our main result, Theorem 1 in Section 3. For proofs of Theorem 2 and 3 we
refer the reader to the full version of the paper. We leave as an intriguing open problem
whether our lower bound in Theorem 1 also holds for bipartite graphs, or whether these
graphs allow for expected o(n2−ε) recourse when edges arrive in a random order. See Section
4 for more details.

2 Preliminaries

Let G be an unweighted graph. A matching in G is a set of vertex-disjoint edges. Given
any matching M of G, we say that a vertex v is matched if it incident to an edge in M ,
and free otherwise. Given any two matchings M and M ′, we use M ⊕M ′ to denote the
symmetric difference. We study the model of online matching with recourse under random
edge arrivals. In this model, the adversary fixes any graph G = (V,E) with m edges and n
vertices. The vertex set is given in advance, but the edges arrive one at a time; the arrival
order e1, . . . , em is a random permutation of E. The goal of the algorithm is to maintain
a sequence of matchings M1, . . .Mm, such that Mi is a maximum matching in the graph
(V, {e1, . . . , ei}). The total recourse of the algorithm is

∑m−1
i=1 |Mi⊕Mi+1|, which is the total

number of changes made to the matching throughout the entire sequence of insertions.
Intuitively, an algorithm that minimizes recourse should only change the matching when

the maximum matching in the graph increases in size. We formalize this intuition in the
remainder of this section.

I Definition 6. Define a sequence M∗i0 ,M
∗
i1
, · · · ,M∗iη to be only-augmenting if M∗i0 = ∅, each

M∗ij is a maximum matching in Gij , and each symmetric difference M∗ij ⊕M
∗
ij+1

consists of a
single augmenting path; that is, M∗ij⊕M

∗
ij+1

consists of an odd-length path P in {e1, . . . , eij+1}
such that every second edge of P is in Mij , but the first and last edges of P are not in Mij .
We say that an algorithm is only augmenting if the sequence of distinct matchings produced
by the algorithm is only-augmenting; in other words, in the sequence of matchings produced
by an only-augmenting algorithm, for every 1 ≤ i ≤ m− 1, either Mi = Mi+1, or Mi ⊕Mi+1
consists of a single augmenting path.

FSTTCS 2020
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I Definition 7. Let r(σ) is the best recourse achievable on permutation σ by an algorithm
that knows σ in advance, and let r∗(σ) be the best recourse achievable by an only-augmenting
algorithm that knows σ in advance. (Knowing σ in advance allows the respective algorithms
to pick the best possible matching sequence for permutation σ.)

I Observation 8. Using the above notation, we note that Eσ[r(σ)] is a lower bound on the
expected recourse of any algorithm, while Eσ[r∗(σ)] is a lower bound on the expected recourse
of any only-augmenting algorithm. The lower bound applies even if the algorithm knows σ in
advance.

The following Lemma allows us to assume throughout the paper that we are working
with an only-augmenting algorithm. The proof of this lemma is relegated to the full version
of the paper.

I Lemma 9. Given any permutation σ, we have r(σ) = r∗(σ).

We now restate our main Theorem with the above lemma in mind.

I Theorem 10. Eσ[r∗(σ)] = Ω(n2/ log(n))

I Observation 11. Observation 8, Lemma 9 and Theorem 10 immediately imply Theorem 1.

The lower bound proof of Section 3 is devoted entirely to proving Theorem 10

3 Lower Bound on Expected Recourse in General Graphs

This section will be devoted to proving Theorem 10, the main result of our paper. Recall from
the preliminaries that we can assume that the algorithm is only-augmenting (See Definition
6) and that it knows the entire permutation σ in advance. In other words, to prove Theorem
1, it is sufficient to prove Theorem 10.

Our proof will proceed as follows. In Section 3.1 we define our candidate graph Gn (we
will refer to it as G from now). The main step will be to show that between the times when
half the edges of the graph have arrived and a three-quarters of the edges have arrived,
the graph induced by non-isolated vertices contains a perfect matching or a near perfect
matching throughout (see Definition 15 for a definition of near perfect matching). We will
then use this fact to prove Theorem 10.
I Remark 12. Before we describe our graph, we describe how we will go about proving the
lower bound. Suppose that our algorithm is given graph G = (V,E) as input, where |E| = m.
In our model this graph is revealed to our algorithm one edge at a time, with the edges
arriving in the order prescribed by a random permutation σ . Suppose we look at the graph
at time t < m, then Gt, the graph at time t has the same distribution as the subgraph of
G obtained by randomly sampling t out of m edges. We will show that between the times
when t = 0.5 ·m and t = 0.75 ·m, Gt will contain a perfect or a near-perfect matching. To
prove this, we will show (in Section 3.2) that the distribution of Gt can be approximated by
the following distribution: graph obtained by sampling each edge of G independently with
probability t

m . Finally, we will prove our aforementioned claims about this new distribution
(Section 3.3).

3.1 The Graph
We use n to denote the number of vertices in our graph. In this write-up, s = 400 logn
and t = n

500 logn . Let Ks denote the complete graph on s vertices. Our graph is called G
(see Figure 1) and it consists of t copies of Ks that we index as K(i)

s for 1 ≤ i ≤ t. The
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remaining n
5 vertices are partitioned into t sets

{
D(i)}

1≤i≤t of size 100 logn each. The graph
G contains the following edges.
1. For 1 ≤ i ≤ t− 1, we introduce edges between every vertex of K(i)

s and every vertex of
K

(i+1)
s . Additionally, edges are also introduced between every vertex of K(1)

s and every
vertex of K(t)

s .
2. For 1 ≤ i ≤ t, we fix an arbitrary set U (i) ⊂ K(i)

s of size 100 logn. Introduce an arbitrary
matching between U (i) and D(i). Call this matching M (i). Let M = ∪ti=1M

(i); we add
the edges of M to G. We also let U = ∪ti=1U

(i) and D = ∪ti=1D
(i). For any u ∈ D ∪ U ,

we define M(u) to be the vertex that u is matched to.
We denote the number of edges in G by m. Note that m = Θ (n logn).

Figure 1 Graph G.

3.2 Relating Gp and Gp·m

I Definition 13. Let p ∈ [0, 1]. We define Ep ⊂ E(G) to be the set of edges obtained by
sampling each e ∈ E(G) with independently probability p.
Let Vp = V (G) \ {v ∈ D such that (v,M(v)) /∈ Ep}; note that Vp excludes isolated vertices
in D. Let Gp be the graph with vertex set Vp and edge set Ep.

I Definition 14. Let Ep·m ⊂ E(G) be the set of edges obtained by sampling p ·m random
edges of E(G). Let V p·m = V (G) \ {v ∈ D such that (v,M(v)) /∈ Ep·m}; note that V p·m
excludes isolated vertices in D. Let Gp·m be the graph with vertex set V p·m and the edge
set Ep·m.

I Definition 15. Let H be a graph with an odd number of vertices. LetM be any matching
of H that leaves exactly one vertex unmatched. Then,M is called a near perfect matching
of H.

FSTTCS 2020
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We state the main theorem that we want to prove in this section:

I Theorem 16. Let p ∈ {0.5, 0.5·m+1
m , · · · , 0.75·m−1

m , 0.75}, then, the graph Gp·m contains a
perfect matching or a near perfect matching with probability at least 1−O

( 1
n3

)
.

To prove this theorem, we claim that it is sufficient to prove the following theorem:

I Theorem 17. Let p ∈ {0.5, 0.5·m+1
m , · · · , 0.75·m−1

m , 0.75}, then, graph Gp contains a match-
ing or a near perfect matching with probability at least 1−O

( 1
n4

)
.

To show that Theorem 17 implies Theorem 16, we prove the following lemma:

I Lemma 18. Let p ∈ {0.5, 0.5·m+1
m , · · · , 0.75·m−1

m , 0.75}, and let Gp·m and Gp be as described
above, and let G be the set of graphs that contain a perfect matching or a near perfect matching,
then,

Pr (Gp·m /∈ G) ≤ 10
√
m · Pr (Gp /∈ G) .

We refer the reader to the full version of this paper for a proof of Lemma 18. For now, we
prove Theorem 16 assuming Theorem 17 and Lemma 18:

Proof (Theorem 16). It follows from Lemma 18 that:
Pr
(
Gp·m does not contain a matching

)
≤ 10

√
m · Pr (Gp does not contains a perfect matching)

= 10
√

m ·O
( 1

n4

)
(Due to Theorem 17)

= O

( 1
n3

)
(Since m = Θ (n log n)). J

The following corollary follows from Theorem 16, via a union bound:

I Corollary 19. Let I = {0.5, 0.5·m+1
m , · · · , 0.75·m−1

m , 0.75}. Let G be the sequence of graphs
{Gp·m}p∈I . The probability that every G ∈ G contains a perfect matching or a near perfect
matching is at least 1−O

( 1
n

)
.

The bulk of our paper is proving Theorem 17. But first, we provide some intuition for
our choice of G by sketching how Corollary 19 implies our main result (Theorem 10).

Proof sketch of Theorem 10. Recall the edges M ⊂ E(G) which connect the vertices in
D, where |M | = Θ(n) (see 3.1). Consider how the graph Gp·m evolves from for p = 1

2 to
p = 3

4 . Let us assume without loss of generality that G 1
2 ·m contains an even number of

vertices. Whenever an edge (d, x) from M is inserted into the graph, d ∈ D is added to
V (Gp·m) (See Definition 13). Since we know from Corollary 19 that Gp·m contains a perfect
matching whenever V (Gp·m) is even, we know that after every two edges (d, x) and (d′, x′)
added to M , there is a perfect matching in the resulting graph; thus, the algorithm must
take some augmenting path from d to d′. Because G consists of Ω

(
n

log(n)

)
consecutive

layers, it is easy to see that with probability 1
2 , the shortest path from d to d′ has length

Ω
(

n
log(n)

)
. We expect to add |M |4 = Ω (n) edges to M between G 1

2 ·m and G 3
4 ·m, so we have

Ω (n) augmenting paths of expected length Ω
(

n
log(n)

)
, which implies total augmenting path

length Ω
(

n2

log(n)

)
. See Section 3.5 for full proof. J
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3.3 Proving Gp has a Near-Perfect Matching
We now turn to proving Theorem 17. To this end, we introduce some notation:

I Definition 20. Given Gp, we define the active subgraph A of Gp as follows: let V (A) =
V (Gp) \ {u ∈ D ∪ U : (u,M(u)) ∈ Gp}. The active subgraph A is the induced subgraph
Gp [V (A)].

I Definition 21. We define A(i) to be the following subgraph of Gp: let V
(
A(i)) = V (A) ∩

V
(
K

(i)
s

)
for 1 ≤ i ≤ t. Let A(i) = Gp

[
V
(
A(i))] For 1 ≤ i ≤ t, let |V

(
A(i)) | = ai. Then,

1. If ai is even, then let P (i) ∪Q(i) be an arbitrary ai
2 by ai

2 bipartition of V (A(i)).
2. If ai is odd, then let v(i) be an arbitrary vertex in V (A(i)) and let P (i) ∪ Q(i) be an

arbitrary bai2 c by b
ai
2 c bipartition of V (A(i)) \ v(i).

We denote G(P (i), Q(i)) to be the bipartite graph between P (i) and Q(i), with edge set
E
(
P (i), Q(i)) =

(
P (i) ×Q(i)) ∩ E (A(i))

B Claim 22. We observe that V (A) ∩D = ∅. This follows from the following two facts:
1. Consider any u ∈ D such that (u,M(u)) /∈ Gp. Then, u /∈ V (Gp). This follows

immediately from Definition 13.
2. By Definition 20, we know that any u such that (u,M(u)) ∈ Gp is not included in V (A).

B Claim 23. From Definition 20, we know that ai ≥ 400 logn−|U (i)|. Since |U (i)| = 100 logn
(see Section 3.1 2), it follows that ai ≥ 300 logn.

In order to prove Theorem 17, it is sufficient to prove the following theorem:

I Theorem 24. The active subgraph, A contains a perfect matching or a near perfect
matching with probability at least 1−O

( 1
n4

)
.

Proof (Theorem 17). Given a perfect (resp. near-perfect) matchingM (A) of A, we will
construct a perfect (resp. near perfect) matchingM (Gp) of Gp. Consider any u ∈ V (Gp) \
V (A). Note that M(u) ∈ V (Gp)\V (A) and (u,M(u)) ∈ Gp. So we may match u to M(u) in
Gp. In particular,M (Gp) =M (A) ∪ {(u,M(u)) where u ∈ V (Gp) \ V (A)}. Thus,M (Gp)
is a perfect (or a near perfect matching) of Gp if M (A) is a perfect (or a near perfect
matching) of A. J

3.4 Near Perfect Matching in Active Subgraph
To prove Theorem 24, we need Chernoff bound, and some existing results on matchings in
random bipartite graphs.

I Theorem 25. [11] Define B(n, n, p) to be the bipartite graph obtained by deleting edges
from Kn,n independently with probability 1− p. Then,

Pr (B(n, n, p) does not contain a perfect matching ) = O
(
ne−np

)
.

I Theorem 26 (Chernoff Bounds). Let X0, · · · , Xk be 0 − 1 random variables that are
independent. Let µ = E

[∑k
i=1 Xi

]
. Then, for any 0 ≤ δ ≤ 1,

Pr
(

k∑
i=1

Xi ≤ (1− δ)µ
)
≤ e−

δ2µ
2 and, (1)

Pr
(

k∑
i=1

Xi ≥ (1 + δ)µ
)
≤ e−

δ2µ
3 . (2)

FSTTCS 2020
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Consider the A(i)’s in Definition 21. We mentioned that for some of these A(i)’s the
corresponding ai’s might be odd. Let

{
A(i1), · · · , A(ik)} be this set, with i1 < · · · < ik. Let

v(ij) be the vertex left out of the bipartition P (ij)∪Q(ij) of A(ij) for 1 ≤ j ≤ k (see Definition
21.2). We define the following events:

I Definition 27. For 1 ≤ i ≤ t, let Ai be the event that G(P (i), Q(i)) contains a perfect
matching (or a near perfect matching). Let A = ∩ti=1Ai.

I Definition 28. Let M′i be a maximum matching of G
(
P (i), Q(i)) for 1 ≤ i ≤ t. Let

M′ = ∪ti=1M′i.

I Definition 29. For 1 ≤ m ≤
⌊
k
2
⌋
, let Bm be the event that there is an augmenting path

between v(i2m−1) and v(i2m) with respect toM′ in A. Let B =
⋂b k2 c
i=1 Bm.

In order to prove Theorem 24, we follow these steps:
1. We will prove that each Ai happens with high probability, and therefore by union bound,
A happens with high probability also.

2. We prove that each Bm, conditioned on A happens with high probability, and by union
bound, B conditioned on A also happens with high probability.

In order to prove 2, we will show that for each 1 ≤ m ≤
⌊
k
2
⌋
there is an augmenting path

between v(i2m−1) and v(i2m) which only consists of vertices between layers i2m−1 and i2m.
Therefore, these augmenting paths are vertex-disjoint from each other. These paths can be
augmented simultaneously since they don’t interfere with each other. So, 1 and 2 combined
with this fact imply that the active graph, A contains a perfect matching or a near perfect
matching with high probability.

Before we move on to proving 1 and 2, we note that G(P (i), Q(i)) and V (A(i)) are both
random variables. In particular, V (A(i)) =

(
V (K(i)

s ) \ U (i)
)
∪S, where S is a random subset

of U (i) obtained by excluding every vertex with probability p. However, if we fix the vertex
set V

(
A(i)), then the edges of G(P (i), Q(i)) have the same distribution as that of a random

bipartite graph; we remind the reader that P (i) ∪Q(i) is an arbitrary bipartition of A(i) (see
Definition 21). Formally:

I Observation 30. For 1 ≤ i ≤ t, G
(
P (i), Q(i)) conditioned on V

(
A(i)) = S, where |S| = ai,

has the same distribution as B
(⌊
ai
2
⌋
,
⌊
ai
2
⌋
, p
)
.

Now we prove the following lemma:

I Lemma 31. For 1 ≤ i ≤ t, Pr (¬Ai) = O
( 1
n5

)
. Moreover, Pr (¬A) = O

( 1
n4

)
.

Proof. We know that:

Pr (¬Ai) =
∑

T

Pr
(
¬Ai

∣∣ V
(
A(i)) = T

)
· Pr

(
V
(
A(i)) = T

)
=
∑

T

O
(
|T | · e−|T |·p

)
· Pr

(
V
(
A(i)) = T

)
(Due to Observation 30 and Lemma 25)

=
∑

T

O
( 1

n5

)
· Pr

(
V
(
A(i)) = T

)
(Due to Claim 23 that ai ≥ 300 log n and p ≥ 0.5)

= O
( 1

n5

)
(Since we are summing over disjoint events).

By union bound it follows that, Pr (¬A) = O
( 1
n4

)
. J
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Figure 2 Case 1: When unmatched vertices are in consecutive layers.

I Theorem 32. For 1 ≤ m ≤ bk2 c, Pr (¬Bm | A) = O
( 1
n8

)
. Therefore, by union bound it

follows that Pr (¬B | A) = O
( 1
n7

)
.

Proof. To bound Pr (¬Bm | A), we consider two cases:

1. Case 1: vi2m−1 and vi2m are in consecutive layers. That is, i2m = i2m−1 + 1. We
will give an overview of what we are about to do. We will use v to denote vi2m−1 , v′ to
denote vi2m , P and P ′ to denote P (i2m−1) and P (i2m), Q and Q′ to denote Q(i2m−1) and
Q(i2m) respectively.

I Definition 33. Let NP (v) (resp. NP ′(v′)) denote the set of vertices in P (resp. P ′)
adjacent to v (resp. v′). Let degP (v) (resp. degP ′(v′)) denote |NP (v)| (resp. |NP ′(v′)|).

For a set of vertices S, letM′(S) denote the set of vertices matched to S inM′ (refer
to Definition 28 for the definition of M′). We will prove that with high probability
|M′ (NP (v)) | and |M′ (NP ′(v′)) | are large. Conditioned on these sizes being large, we
will prove that there is an edge (x, x′) in A where x ∈M′ (NP (v)) and x′ ∈M′ (NP ′(v′)).
It follows there is an augmenting path P =(v,M′(x), x, x′,M′(x′), v′) in A (note that
M′ (x) ∈ NP (v) andM′ (x′) ∈ NP ′ (v′)). (See Figure 2)
To show this, we first show that |NP (v)| and |NP ′(v′)| are large with high probability.
We will condition on A, so |M′ (NP (v)) | and |M′ (NP ′(v′)) | will consequently be large
with high probability. It then follows that one of the edges between these two sets is in A
with high probability.
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Figure 3 Case 2: When v and v′ are not in consecutive layers.

We now turn to the formal proof of case 1. Let Xv and Xv′ be the random variables
denoting degP (v) and degP ′(v′) respectively (see Definition 33). Each edge incident on v
and v′ in A is sampled independently with probability p ∈ [0.5, 0.75]. This is true even
if we condition on the event A. Consequently, E [Xv | A] = E [Xv] ≥ 75 logn. Since Xv

is the sum of 0− 1 independent random variables, we may apply Chernoff bound (see
Theorem 26). It follows that:

Pr (Xv ≤ 25 logn | A) = O

(
1
n8

)
.

Similarly, we have:

Pr (Xv′ ≤ 25 logn | A) = O

(
1
n8

)
.

Define Y to be the event that |M′ (NP (v)) | ≥ 25 logn and |M′ (NP ′ (v′)) | ≥ 25 logn.
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Observe that,

Pr (¬Y | A) ≤ Pr (Xv ≤ 25 logn | A) + Pr (Xv′ ≤ 25 logn | A) = O

(
1
n8

)
.

Define Z to be the event that there is an edge betweenM′ (NP (v)) andM′ (NP ′ (v′)).
Observe that,

Pr (¬Z | A) ≤ Pr (¬Y | A) + Pr (¬Z | Y,A) = O

(
1
n8

)
+ 1
nO(logn) .

The second term follows from the fact that each edge appears independently with
probability p ∈ [0.5, 0.75], and there are Ω(log2 n) edges between M′ (NP (v)) and
M′ (NP ′ (v′)) conditioned on Y. It follows that Pr (¬Bm | A) ≤ Pr (¬Z | A) = O

( 1
n8

)
.

This proves our claim for this case.
2. Case 2: i2m > i2m−1 + 1. We denote vi2m−1 by v, P (i2m−1) by P and v(i2m) by v′. Let

f = i2m − i2m−1. For 1 ≤ j ≤ f , let P (i2m−1+j) be denoted by P + j. We similarly define
Q and Q+ j (see Figure 3). We also define the following sets:

S0 = NP (v)
Sj = NP+j(M′(Sj−1)) for 1 ≤ j ≤ f.

For 0 ≤ j ≤ f , let Xj be the event that |M′(Sj)| ≥ 25 logn. Let E be the event that
there is an edge between v′ and M′(Sf ). It is easy to check that the occurrence of
X0,X1 · · · ,Xf implies that there is an alternating path from v to a large set of vertices
(at least Ω (logn)) in Q+ j for all j ∈ [f ]. Note that E implies that there is an edge from
Q+ f to v′. Combined, X1 · · · ,Xf , E imply an augmenting path from v to v′. We thus
have:
I Observation 34. Let Bm and X1, · · · ,Xf , E be as defined above (refer to Definition 29
for a definition of Bm), then:

Pr (Bm | A) ≥ Pr
(
∩fk=0Xk ∩ E

∣∣∣ A) .
From the above observation, we deduce that in order to upper bound Pr (¬Bm | A), it is
sufficient to upper bound Pr

(
∪fk=0¬Xk ∪ ¬E

∣∣∣ A). We know that:

Pr
(
∪fk=0¬Xk ∪ ¬E

∣∣∣ A) ≤ f∑
k=0

Pr
(
¬Xk

∣∣ ∩i−1
k=0Xk ∩ A

)
+ Pr

(
¬E
∣∣∣ ∩fk=0Xk ∩ A

)
.

(Follows from the definition of conditional probability)

We computed Pr (¬X0 | A) in case 1. We remind the reader this is just the probability
that |M′ (S0) | ≤ 25 logn. We now show how to compute Pr (¬Xj | A,X0, · · · ,Xj−1).
Consider any w ∈ P + j. We want to compute the probability that w is in the set
NP+j(M′ (Sj−1)) = Sj conditioned on the events Xj−1 and A. Since every edge on w is
present in the active graph A independently with probability p:

Pr (w /∈ Sj | A,X0, · · · ,Xj−1) ≤ (1− p)25 logn (3)

≤
(

1
2

)25 logn
(Due to the fact that p ≥ 0.5). (4)
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This implies that:

E [|Sj | | A,X0, · · · ,Xj−1] ≥ 100 logn.

Since |Sj | is a sum of 0− 1 random variables (it is the sum of 1{v∈Sj}, that take value 0
with probability O

( 1
n25

)
(due to Equation (4)) and 1 otherwise), we can apply Chernoff

bounds (Theorem 26):

Pr (|Sj | ≤ 25 logn | A,X0, · · · ,Xj−1) = O

(
1
n9

)
.

Since we condition on A (that is a perfect or, a near perfect matching being present), we
know that:

|M′ (Sj) | = |Sj |

Consequently, we have:

Pr (|M′ (Sj) | ≤ 25 logn | A,X0, · · · ,Xj−1) = Pr (|Sj | ≤ 25 logn | A,X0, · · · ,Xj−1)

= O

(
1
n9

)
.

Finally, we want to bound Pr (¬E | A,X0, · · · ,Xf ). This can be upper bounded:

Pr (¬E | A,X0, · · · ,Xf ) ≤
(

1
2

)25 logn

(Edges on v′ appear independently with probability p ≥ 0.5)

= O

(
1
n25

)
.

It is immediate from Observation 34 that:

Pr (¬Bm | A) = O

(
1
n8

)
.

From case 1 and case 2, we know that by union bound, Pr (¬B | A) = O
( 1
n7

)
. J

Proof (Theorem 24). From Lemma 31 and Theorem 32 we have that:

Pr (A does not contain a perfect matching ) ≤ Pr (¬A) + Pr (¬B | A) = O

(
1
n4

)
. J

3.5 Lower Bound On Lengths of Augmenting Paths
We start with some definitions:

I Definition 35. For i ∈ {1, · · · ,m}, we denote by ei, the edges arriving at time i. Let
S = {e0.5m, · · · , e0.75m}.

This section will be devoted to proving that among the edges in S, Ω (n) edges will join
augmenting paths of expected length Ω

(
n

logn

)
, and the algorithm is forced to augment along

these. Formally,

I Theorem 36. With high probability, there exists S′ ⊂ S, |S′| ≥ n
100 such that each e ∈ S′

joins an augmenting path of expected length at least Ω
(

n
logn

)
.
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We first give a proof of Theorem 10 using Theorem 36:

Proof (Theorem 10). For i ∈ [m], let Zi be the random variable denoting the length of the
augmenting path that we augment along when the edge ei joins. Let Z =

∑m
i=1Zi, which

is the random variable denoting the total length of the augmenting paths taken during the
course of the algorithm. We want to compute the quantity E [Z]. We note that:

E [Z] =
m∑
i=1

E [Zi] ≥
∑
j∈S′

E [Zj ] = |S′| · Ω
(

n

logn

)

= Ω
(

n2

logn

)
.

(Due to Theorem 36) J

Before we prove Theorem 36, we need certain observations, and the following version of
Chernoff for negatively associated random variables:

I Theorem 37. [6] Let X0, · · · , Xk be 0− 1 random variables that are negatively associated.
Let µ = E

[∑k
i=1 Xi

]
. Then, for any 0 ≤ δ ≤ 1,

Pr
(

k∑
i=1

Xi ≤ (1− δ)µ
)
≤ e−

δ2µ
2 and, (5)

Pr
(

k∑
i=1

Xi ≥ (1 + δ)µ
)
≤ e−

δ2µ
3 . (6)

We remind the reader of the edges M in graph G between D and U (refer to Section
3.12). Note that |M | ≥ n

5 . Further, M = ∪ti=1M
(i), and |M (i)| ≥ 100 logn for all i ∈ [t].

We now prove the following claim about S:

B Claim 38. Let R be the event that for all i ∈ [t], |M (i) ∩ S| ≥ 10 logn. Then, Pr (R) ≥
1−O

( 1
n3

)
.

Proof. Consider any M (i), and let e ∈M (i). Let Ze be a 0− 1 random variable that takes
value 1 if e ∈ S, and 0 otherwise. Let Z =

∑
e∈M(i) Ze. This is the random variable that

denotes |M (i) ∩ S|. Further, Z is a sum of negatively associated random variables, and
therefore obeys the condition of Theorem 37. We note the following:

Pr (Ze = 1) = 1
4 and, E [Z] = 25 logn.

It follows that:

Pr (Z ≤ 10 logn) ≤ exp
(
− (0.6)2 (0.5) 25 logn

)
≤ exp (−4.5 logn) = O

(
1
n4

)
.

Due to union bound, we know that Pr (R) ≥ 1−O
( 1
n3

)
. C

We also have the following corollary due to Claim 38:

I Corollary 39. With probability at least 1−O
( 1
n3

)
, |M ∩ S| ≥ n

50 .

We are ready to define the candidate set S′ in Theorem 36, but before that we give a
final definition:
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I Definition 40. Consider edges e ∈M (i) and f ∈M (j) (see 3.12 for the definition of M (i)).
Then let d (e, f) = min {t− |i− j|, |i− j|}.

LetM∩S =
{
ei1 , · · · , eiq

}
. Let us assume without loss of generality that before the arrival

of ei1 , the set V (Gi1−1) is even, so by Theorem 16 the graph Gi1−1 has a perfect matching.

We define S′ to contain every second edge of M ∩S: that is, S′ =
{
ei2 , ei4 , · · · , ei2b q2c

}
. For

the rest of the proof we proceed as follows: we will show that with high probability, when
ei2s arrives, it will join an augmenting path ending at ei2s−1 where s ∈

{
1, · · · ,

⌊
q
2
⌋}

. Let
ei2s ∈M (j) and ei2s+1 ∈M (j′). Then, the length of the augmenting path that ei2s−1 joins is
at least d(ei2s−1 , ei2s) = min {t− |j′ − j|, |j′ − j|}. We prove that the expected value of this
quantity is at least Ω

(
n

logn

)
.

We prove the following observation:

I Lemma 41. Let e and f be two edges that are chosen uniformly at random from M . Then,
E [d (e, f)] ≥ n

2000 logn .

Proof. The total number of possible choices for (e, f) =
(
n
5
)
·
(
n
5 − 1

)
. The total number

choices for (e, f) such that d (e, f) = k, are
(

n
500 logn

)
· (100 logn) · (200 logn). To see this,

fix a layer for e, then the number of choices of f for which d (e, f) = k are exactly 200 logn.
Finally, the total number possible choices of layers for e is n

500 logn . This implies that:

Pr (d (e, f) = k) =

(
n

500 logn

)
· (100 logn) · (200 logn)(
n
5
)
·
(
n
5 − 1

)
≥

(
n

500 logn

)
· (100 logn) · (200 logn)(

n
5
)
·
(
n
5
)

≥ 1000 logn
n

.

Finally, we have that:

E [d (e, f)] =
t
2∑

k=0
k · Pr (d (e, f) = k) ≥ t

4 = n

2000 logn. J

We state an immediate corollary of Lemma 41:

I Corollary 42. For all s ∈
{

1, · · · ,
⌊
q
2
⌋}

, E
[
d
(
ei2s−1 , ei2s

)]
≥ n

2000 logn .

I Lemma 43. If Gp·m contains a perfect matching or a near perfect matching for all
p ∈

{
0.5, 0.5·m+1

m , · · · , 0.75·m−1
m , 0.75

}
, then for all s ∈

{
1, · · · ,

⌊
q
2
⌋}

, ei2s joins an augmenting
path that ends in ei2s−1 .

Proof. We remind the reader that |V (Gp·m) | is a random variable (check Definition 14)
and it’s value increases if and only if the edges in M arrive. Recall the assumption that
|V (Gi1−1) | is even. Upon the arrival of ei1 , we have a near perfect matching in the graph,
and this remains the case until ei2 arrives. At this point under our assumption, there must
be a perfect matching in the graph. However, the matching that is currently maintained
by the algorithm leaves the vertices are the end points of ei1 and ei2 in D unmatched.
(Here we use the simplifying assumption from the preliminaries that the algorithm is only-
augmenting, so since the arrival of ei1 does not increase the size of the maximum matching,
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and since the algorithm only changes the matching via augmenting paths, the endpoint of
ei1 in D remains free until the arrival of ei2 .) It follows that these endpoints are joined
together by an augmenting path. Continuing this way, we can prove the theorem for any
s ∈

{
1, · · · ,

⌊
q
2
⌋}

. J

Proof (Theorem 36). Let F be the event that there is an S′ ⊂ S, |S′| ≥ n
100 such that each

e ∈ S′ augments along a path of expected length at least Ω
(

n
logn

)
. Note that the event F

fails to happen if one of these go wrong:
1. |S′| ≤ n

100 . We call this event ¬U . We know from Corollary 39 that Pr (¬U) = O
( 1
n3

)
.

This is because S′ just takes alternate elements from S.
2. Let V be the event that for all p ∈

{
0.5, 0.5·m+1

m , · · · , 0.75·m−1
m , 0.75

}
, Gp·m contain a

perfect matching or a near perfect matching. Then, from Lemma 43 we know that V
implies that for all s ∈

{
1, · · · ,

⌊
q
2
⌋}

, ei2s−1 joins an augmenting path ending in ei2s .
From Corollary 42, we know all these paths have expected length at least n

2000 logn . We
know from Corollary 19, that Pr (¬V) = O

( 1
n

)
.

It follows that the occurrence of A and B implies the occurrence of F . Consequently,
Pr (F) ≥ 1− Pr (¬U)− Pr (¬V) ≥ 1−O

( 1
n

)
. J

4 Conclusion and Open Problems

We consider the problem of maximum matching with recourse in the random edge-arrival
setting. The goal is to compute the expected recourse. As mentioned in the introduction,
there are strong lower bounds of Ω

(
n2) in the adversarial edge-arrival model, even for the case

of simple paths. For random edge-arrivals, we can do significantly better for special classes
of graphs: we prove an upper bound of O (n logn) for the case of paths and O

(
n log2 n

)
for

the case of trees. This bound is tight up to logn factors, since we prove that for the case
of paths, any algorithm must take expected total recourse of Ω (n logn). But for general
graphs, we show that random arrival is basically as hard as adversarial arrival: we give a
family of graphs for which the expected recourse is at least Ω

(
n2

logn

)
.

An interesting open question is the case of bipartite graphs: if edge-arrivals are random,
can we prove a similar lower bound of Ω

(
n2

polylog(n)

)
on the expected recourse? Our current

lower-bound construction seems hard to extend to the bipartite case, as our proof crucially
relies on the fact that after a constant fraction of the edges have arrived, if we focus only on
the non-isolated vertices in the lower-bound graph G, then G contains a perfect matching
with high probability. This allowed us to force the adversary to take an augmenting path
between every new pair of non-isolated vertices. But in the case of bipartite graphs, it
seems difficult to guarantee a perfect matching between the non-isolated vertices because the
number of non-isolated vertices on the left might not be equal to the number on the right; in
fact, they are likely to differ by a Θ (

√
n) factor.
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