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—— Abstract
We are studying a weighted version of a linear extension problem, given some finite partial order p,
called COMPLETION OF AN ORDERING. While this problem is NP-complete, we show that it lies
in FPT when parameterized by the interval width of p. This ordering problem can be used to
model several ordering problems stemming from diverse application areas, such as graph drawing,
computational social choice, or computer memory management. Each application yields a special p.
We also relate the interval width of p to parameterizations such as mazimum range that have been
introduced earlier in these applications, sometimes improving on parameterized algorithms that
have been developed for these parameterizations before. This approach also gives some practical
sub-exponential time algorithms for ordering problems.
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1 Introduction

Many computational problems can be phrased as the task of arranging a collection of
combinatorial objects into a minimum-cost linear order that satisfies certain constraints.
Examples of natural problems that fall in this category are ONE-SIDED CROSSING MINI-
MIZATION (OSCM), a prominent problem in the field of graph drawing and VLSI design
[4, 32, 45, 50, 52], GROUPING BY SWAPPING (GBS), a problem with applications in computer
memory management [15, 28, 55], and KEMENY RANK AGGREGATION (KRA), a prominent
problem in the field of computational social choice [19, 36]. A natural parameter that
arises when studying problems such as OSCM, GBS and KRA from the perspective of
parameterized complexity theory is the cost k of a solution. In particular, the best algorithm
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for OSCM, parameterized by the cost of a solution k, is the algorithm due to Kobayashi and
Tamaki [38] which runs in time! O*(2V2¥) and the best single-exponential algorithm for KRA
runs in time ©*(1.403%) [51], while sub-exponential algorithms of type O*(2°(V®)) have been
proposed in [35], with some unclear constant hidden in the O-notation of the exponent. Not
surprisingly, they have been devised with substantially distinct sets of techniques.

In this paper, significantly extending the ideas started out in [23, 25], we leverage the
COMPLETION OF AN ORDERING problem (CO) to provide a unified framework for the study
of several cost-parameterized ordering problems. In this problem, we are given a partial
order p on a set V, and a function ¢ : V' x V — N assigning costs to incomparable pairs,
and the goal is to compute a minimum-cost linear extension of p. Interestingly, a natural
structural parameter that arises in this context is the pathwidth of the cocomparability graph
of the input partial order p. This graph has V as vertex-set and there is an undirected edge
between vertices v and v’ if and only if v and v are not related in the partial order. Our main
result states that CO, parameterized by the interval width w of the input partial order, can
be solved in time O*(2%). Additionally, our algorithm is optimal under ETH. Using our main
result, together with reductions from OSCM, GBS and KRA to PCO, the natural restriction
of CO to positive costs, we obtain algorithms for these three problems (parameterized by
width, or by the standard parameter, or by other problem-specific structural parameters)
whose running times often match or improve on the best algorithms for the three problems.

When reducing OSCM or GBS to PCO, the partial order one obtains is an interval order,
meaning that the cocomparability graph of this order is an interval graph. Interval orders
play an important role in partial order theory due to the fact that their interval width can be
computed in linear time. Additionally, they find applications in many contexts of practical
relevance such as scheduling, online and packing algorithms, see [54]. Inspired by this, we
define the POSITIVE COMPLETION OF AN INTERVAL ORDERING (PCIO) problem, a version
of PCO where the input partial order is required to be an interval order. In this restricted
version, our main algorithm for CO parameterized by interval width can be converted into a
sub-exponential O* (2m)—time FPT algorithm for PCIO, parameterized by cost k.

Our width-based approach also allows us to improve on a parameterized algorithm for
KRA based on the parameter mazimum range (of a candidate) as introduced and discussed
in [5]. Further, it can be used to show that GBS is also fixed parameter tractable when
parameterized by a parameter called scope coincidence degree, a natural parameter in the
context of strings. This gives the first algorithmic use of this structural string parameter.

Our approach for CO is built on dynamic programming on a path decomposition of the
cocomparability graph of the partial order. Notice that this path decomposition structure
has been recently exploited for counting the number of linear extensions by Eiben et al. [22].
Here, we use this approach to find the cheapest linear extension.

2 Preliminaries

In this section, we collect the basic notions of this paper. N denotes the set of non-negative
integers and N+ denotes the set of positive integers. Given r € Nsg, we write [r] = {1,...,r}.

Notation on Partial Orders. Let V be a set. A partial order over V is a reflexive, anti-

symmetric and transitive binary relation p C V x V. We say that p is a linear order if
additionally, for each (z,y) € V x V, either (z,y) € p or (y,z) € p. A strict partial order

! Recall that the O*-notation suppresses polynomial factors.
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over V is an irreflexive and transitive binary relation o C V x V. By adding the identity
relation Iy, p = o U Iy becomes a partial order, and conversely from a partial order p
on V, we can define o = p\ Iy as a strict partial order. Hence, we will occasionally use the
term linear order also for the corresponding strict order, often denoted as <, for reasons of
clarity. Notice that for finite base sets V', we can specify a linear order <; by a bijection
f - [|V]] = V, with the understanding that f(:) <; f(j) if and only if ¢ < j, i.e., if the
number ¢ is smaller than the number j. Such a bijection f is also called a ranking in the
following. Conversely, any linear order 7 on ¥ defines a bijection f. : [|[V]] — V.

Given two partial orders p, 7 C V' x V, 7 is an extension of p if p C 7. If 7 is also a linear
order on V, then 7 is a linear extension of p. Given a linear order 7 on V, let min, (V) be
the minimum element in V' with respect to 7 and max, (V') be the maximum element in V'
with respect to 7. Given a subset 7' C V and a partial order p CV x V, let plr = pNT x T
be the restriction of p to T'. A linear order 7 C T x T is a linear extension of p on T if T is
a linear extension of p|7. We define Lin(p,T') to be the set of linear extensions of p on T.

Notation on Graphs. Given an undirected graph G = (V, E) and a vertex v € V, we let
N@w) ={u|u eV, (v,u) € E} be the neighborhood of v.

A path decomposition of a graph G = (V, E) is a sequence D = (By,Ba,...,B,) of
subsets of V', such that the following conditions are satisfied.

Uicic, Bi= V.

For each edge (u,v) € E, there is an ¢ € [r] such that u,v € B;.

For each 4,7,k € [r] with i < j < k, B; (B C B;.

The width of D is defined as w(D) = max;¢[,) |Bi| — 1. The pathwidth, pw(G), of G is
the minimum width of a path decomposition of G.

Partial Orders and Interval Width. Given a (strict) partial order p C V' x V, the undirected
graph G, = (V,E) with £ = {{u,v} € V.xV | u # v,(u,v) ¢ p,(v,u) ¢ p} is the
cocomparability graph of p. An interval order is a strict partial order ¢ C V x V whose
elements v € V are represented by half-open intervals I, = [l,,7,) on the real line with
(u,v) € v <= 1, < l,. {I, | v € V} is called an interval representation of t. The
cocomparability graph G, is the intersection graph of {I, | v € V'} and is hence an interval
graph. It is known [29] that interval graphs are exactly the cocomparability graphs that do
not contain an induced cycle of length four. The interval width of a partial order p CV x V
is defined as iw(p) = min{w(¢)|¢ interval order,t C p}, where w(¢) is the maximum size of
an antichain of .. By Theorem 2.1 from [31], pw(G,) = iw(p) — 1. Conversely, for any graph
G = (V,E), pw(G) = min{w(H) | H is an interval graph, V(H) =V, E(H) 2 E} — 1, where
w(H) is the size of the largest clique in H. For more information on interval orders, we refer
to textbooks and survey articles such as [26, 54].

3 Completion of an Ordering (CO)

Below, we formally define the COMPLETION OF AN ORDERING problem, generalizing POSITIVE
COMPLETION OF AN ORDERING (PCO) introduced in [16, Sec. 8] and [23, Sec. 6.4].

Problem name: COMPLETION OF AN ORDERING (CO)
Given: A partial order p CV x V, a cost function ¢: V x V — N, and k € N.
Output: Is there a linear order 7 2 p with ¢(7\ p) =32, e\, (@, y) < K7

9:3
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In the PCO problem, the cost function needs to satisfy the following condition: for all
pairs (z,y) € V x V such that 2 and y are incomparable in p, ¢(x,y) > 0.

Let us shortly discuss the cost parameter k: By the result of Dujmovic, Fernau and
Kaufmann [16] (for details, see [23]), PCO can be solved in time O*(1.52%) and admits a linear-
size kernel. The best known algorithm for PCO, whose running time is O*(20(VF1og(R))  wag
obtained in [25] by relating PCO to the FEEDBACK ARC SET PROBLEM IN TOURNAMENTS,
or FAST for short, that allows for subexponential algorithms due to [1]. Here, we are
presenting an algorithm for a variation of this problem that runs in time O*(2°(V®) and is
relatively straightforward to implement. We also present a branching algorithm that runs in
time O*(1.42%), improving on [23]. Our algorithms are based on the interval width of p.

3.1 CO, parameterized by pathwidth

Let G = (V, E) be a graph, p CV x V be a (strict) partial order on the vertices of G and
D = (By,...,B,) be a path decomposition of G. We call D consistent with p if there is no
pair of vertices (z,y) € p with max{i € [r] | y € B;} < min{i € [r] | z € B;}. Thus, if z
is smaller than y in p, then y cannot be forgotten in D before z is introduced in D. The
consistent pathwidth, cpw(G, p), of G is the minimum width of a path decomposition of G
consistent with p. We will be interested in particular in the consistent pathwidth cpw(G,,, p).

» Theorem 1. Given a partial order p over a set V', a cost function¢:V xV — N and a
width-w path decomposition D of the cocomparability graph G, that is consistent with p, one
can solve an instance (p,c, k) of the CO problem in time O(|V]-w 2% -log(k) + |V |? - log(k)).

The remainder of this subsection is dedicated to the proof of Theorem 1.

Let us explain why our pathwidth measure can be seen as a distance to triviality parame-
terization in the context of CO. A trivial instance of CO is a linear order, as it has cost zero.
Then, the cocomparability graph is an independent set and has consistent pathwidth 02. In
the opposite case, if the input partial order is empty, then the cocomparability graph is a
clique and has consistent pathwidth |V| — 1. Tt is also worth noticing that it is NP-hard
to determine the pathwidth of a cocomparability graph, together with an optimal path
decomposition, as observed in [31].

Notation on Path Decompositions. Let D = (By, Bs,..., B,) be a path decomposition of
a graph G. We say that [r] is the set of positions of D and that r is the length of D. For
each position i, we say that B; is the i-th bag of D. For each ¢ € [r], i > 1, we say that B;
is an introduce bag if B; = B;—1 U{v} and that B; is a forget bag if B; = B;_1 \ {v}. We
say that the path decomposition D = (B1, Ba,..., B,) is nice if for each i € [r], B; is either
an introduce bag or a forget bag and |B;| = 1 and B, = (). It can be shown that, given
any path decomposition D = (By, Bs, ..., B,) of width w of a graph G, one can construct
in time O(r - w(D)) a nice path decomposition of G of width at most w. In a nice path
decomposition, for every vertex of V', there is a bag that introduces it and a bag that forgets
it, so the length of a nice path decomposition is 2 - |V|. For each position i € [r], we let
L; = U <j<;—1 Bj\ Bi be the set of vertices that have been forgotten (lost) up to position .

» Lemma 2. Let . be an interval order over V and {I, | v € V'} be an interval representation
of . One can derive a minimum width path decomposition of G, consistent with ¢ from
{I, | v €V} of width w(t) — 1 in time O(w(¢) - |V]).

2 In Lemma 5, we show that consistent pathwidth is equal to pathwidth.
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Proof. For each element v in V', we let [,, and r, be the left and right endpoints of I,,. For
every point x on the real line R that corresponds to an endpoint of one or more intervals, we
associate a bag B, = {v | « € I,}. Then, we order the bags following the order of [, and r,
on the real line. For each element v € V, v € B;,. Given three bags B,, By, B, such that
x<y<z wehavethat B,NB, ={v |z e L}n{v]zel,}={v|l,<z<z<r,}C
{v|l, <y <ry,} = By. For each edge (u,v) € E(G,), I,, and I, intersect, therefore, we have
either I, € I, or l, € I,,. If |, € I,, then u,v € By, similarly if [, € I, then u,v € B;,. So
this construction builds a path decomposition. We call this path decomposition D. Now,
we will show that D is consistent with . More precisely, we will show that for each pair
(u,v) € v, max{xr € R | v € B} < min{z € R | v € B,}. For each (u,v) € ¢, we have
ly <ry <lp,max{r € R | u € By} <71y <1l, <min{x € R| v € B,}. Therefore, D is
consistent with ¢. Note that each bag is a clique, therefore, this is a path decomposition of
minimum width. A clique in G, is an antichain of ¢ and each antichain of ¢ forms a clique
in G,. Therefore, we have that D has width w(¢) — 1. <

We will refer to this decomposition as the path decomposition derived from the interval
order ¢.

» Lemma 3. Let G = (V, E) be a graph. Given a partial order p on V and a path decompo-
sition D of G of width w and length v that is consistent with p, one can construct in time
O(w-r) a nice path decomposition of width w that is consistent with p.

Given a path decomposition D, one can get a nice path decomposition by introducing before
each bag B several new bags that will forget one by one each vertex forgotten by B and
introduce each new vertex in B one by one. If D is consistent with p, then the new path
decomposition is also consistent with p. For the cocomparability graph, we can further show:

» Lemma 4. Let p be a partial order on a set V, G, be the cocomparability graph of p and
D be a path decomposition of G, consistent with p, then D is consistent with any extension

of p.

» Lemma 5. Let G, = (V, E) be the cocomparability graph of a partial order p CV x V.
Then pw(G,) = cpw(G,, p).

Proof. By definition we have pw(G,) < cpw(G), p). We will show that cpw(G,, p) < iw(p)—1
and use the fact that pw(G,) = iw(p) — 1 (Theorem 2.1 from [31]). By definition of iw(p),
we can find an interval order ¢ such that iw(p) = w(:) and ¢ C p. Let {I, | v € V} be an
interval representation of ¢. Then G, is the intersection graph of {I,, | v € V'}. Then by
Lemma 2, the path decomposition D of G, derived from {I, | v € V'} is consistent with ¢ and
has width w(¢) — 1. From Lemma 4, we know that D is also consistent with the extension p
of 1. We conclude cpw(G,, p) < cpw(G,, 1) = w(t) — 1 =iw(p) — 1 = pw(G)). <

Dynamic Programming Algorithm. Let p C V x V be a partial order over a set V,
¢: VxV — N be a cost function and S and T be two subsets of V' such that for each
pair (s,t) € S x T, (t,s) & p. We define ¢(S,T) = 35 ;) e(sxm)p €(8: 1), this is the cost of
having elements of S before elements of T'. For every linear extension 7 of p on T, we let

o(7) = D (ap)er\plz €(a,b) be the cost of 7. We define opt(7) = min{c(7) | 7 € Lin(p, T)}.

Our goal is to find opt(V).
Let D be a path decomposition of width w of the graph G, consistent with p. By
Lemma 3, we can assume without loss of generality that D is nice.

9:5
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For each position 1 < i < 2-|V| in the path decomposition, we compute and store
¢(L;,{v}) for every vertex v € B; such that for each u € L; (v,u) ¢ p in table T} and
opt(L; UT) for each T' C B; in table T;’pt. For every vertex v € B; such that for each u € L;
(v,u) & p, c(L;i, {v}) is the cost of having v after the vertices forgotten at position ¢ if this is
compatible with p and for each T' C B;, opt(L; UT) is the minimum cost of a linear extension
on L; UT. We have Ly |y U By, jy| = V. So, to find the solution, it is enough to inductively
construct these two tables. The induction basis is trivial: Ly = @ and |B;| = 1, so that
¢(L1,{v}) = 0 for every vertex v € B; in table Tf and opt(L; UT) = 0 for both T'= ) and
T = B in table T{P". The following two lemmas explain the induction step of the algorithm.

» Lemma 6. Letic€ [2,...,2-|V]|]. Given a table T | that lists the values of ¢(L;—1,{v})
for every v € B;_1, one can compute ¢(L;,{v}) for every v € B; in time w-log(k) in order
to build the table T} .

» Lemma 7. Leti € [2,...,2-|V|]. Given a table Tf that lists the values of ¢(L;, {v}) for
every v € B; such that for each u € L; (v,u) ¢ p and a table TY®; that lists the values of
opt(Li—1 UT) for every T C B;_1, one can compute in O(w-2% -log(k)) time the value of
opt(L; UT) for all T C B; in order to build the table T ™.

Proof. The cost can be arbitrarily large, therefore, the addition of two costs is done in time
O(log(k)). First, we compute ¢(T,{v'}) for v' € B; and for T' C B; \ {v'}, and store the
values in an auxiliary table 7%"*. This computation can be done in O(w -2% - log(k)) time.
Now there are two cases:
If B; forgets a vertex v, then L; = L;_1 U {v}; for each subset T C B;, opt(L;, UT) =
opt(L;_1 UT U {v}) and this value is in the table T/}, as T U {v} C B;_;.
If B; introduces a vertex v, then L; = L;_; and B; = B;_1 U{v}. Given a subset T of B;,
if v ¢ T, then opt(L; UT) is already in the table T ). Suppose v € T. For all u € L;,
there is no edge between u and v in G,, and as D is consistent with p, we have (u,v) € p.
So in any linear extension of p on L; U T, the maximum element is a maximal element
of T' (with respect to p). Then we have, by testing all possible maximum elements v’:

opt(L; UT) =  min (T){opt(Ll- UT\{v'}) +c(L; UT\ {v'},{v'})}

v’ €max,

= _min (T){Opt(Li UT\A{0'}) + e(Li, {v'}) + «(T\ {v'}, {o' D)}

v’ €max,

where max,(T) ={v e T |Vu € T, (v,u) ¢ p} is the set of maximal elements of T" with
respect to p. The second and third terms are in the tables T} and T®"*, respectively.
If ' = v, then the first term can be looked up in table T?}. By walking through all
T C B; with increasing cardinality (recall that always v € T'), we can inductively compute
opt(L; UT), as this provides the first term. As inductive basis, consider T' = {v}, in
which case opt(L; UT) = opt(L; U{v}) = opt(L;) + ¢(L;i, {v}). The first term is already
in the table T°}. The computation of T** can be done in time O(w -2" - log(k)).

This explains how to build the table T°P". <

Since Lo.jy| U By.y| =V, the dynamic programming algorithm can provide an optimal
solution and runs in time O(|V|]-w-2% - log(k)). The size of the cost function given as input
is |[V|? - log(k). Reading the cost function gives the second part of the running time. This
proves Theorem 1.
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3.2 Further Algorithmic Consequences

The relation between variants of FAST and CO range in both directions. One direction
(solving PCO with the help of FAST) was exploited in [25]. We are now explaining a reverse
reduction. The CONSTRAINED FAST problem [9, 57] is defined as follows: The arc set of a
given tournament graph is split into fixed arcs Agy and free arcs Agee. The task is to remove
at most k free arcs such that the resulting graph becomes acyclic. We know that every arc in
Afree that contradicts the transitivity of Agy, needs to be removed. Therefore, we assume that
Agx gives a transitive relation on the set of vertices and that it is acyclic, so that it defines a
partial order p on the vertex set V. By defining the following cost function, we can solve
CONSTRAINED FAST with any CO algorithm: For arcs (z,y) € Afree, we set ¢(z,y) = 0. For
arcs (z,y) such that (y,z) € Apee, we set ¢(z,y) = 1. By the tournament condition, for each
edge {z,y} of G, ¢(z,y) € {0,1} and ¢(y,z) € {0,1} are defined, with ¢(z,y) + ¢(y,z) = L.
As FAST is a well-known NP-complete problem, this also shows NP-completeness for CO
(even with costs 0,1 only) and similarly, we obtain NP-completeness for PCO, even with
costs from the set [2] = {1, 2}.

Completing an interval ordering is easier. Consider the following restriction of PCO:

Problem name: PoOSITIVE COMPLETION OF AN INTERVAL ORDERING (PCIO)
Given: An interval order t CV x V over a set V, a cost function ¢: V xV — N
satisfying Ve, y € V: ((x,y) ¢ 1A (y,z) ¢ t) = ¢(z,y) > 0, and an integer k € N.
Output: Is there a linear order 7 D ¢« with ¢(7\ ¢) < k7

This variation has two more restrictions compared to CO: the cost between two incom-
parable elements must not be zero and the partial order is an interval order. These two
restrictions allow us to get better bounds for our dynamic programming algorithm.

» Theorem 8. An instance (v, ¢, k) of PCIO is solvable in time O(k-2V2F-log(k)+|V [>-log(k)).

The following is an outline of our algorithm, called DP-PCIO.

1. Construct G,, if G, has more than k edges then stop with “NO”. This can be done in
time |V'|2. This is justified, because ¢(z,y) > 0 for each incomparable pair {z,y}.

2. Construct a nice path decomposition D consistent with ¢. If the width of D is more than
V/2E, then stop with “NO”, as a large clique was detected.

3. Compute opt(V) by a dynamic programming algorithm based on the path decomposi-
tion D. If the current optimum solution is bigger than k, then stop with “NO”. If the
computation is successful and opt(V) < k then answer “YES”. Otherwise answer “NO”.

We will prove several lemmas to show Theorem 8. To apply our dynamic programming
algorithm, we need consistency.

» Lemma 9. Given an interval order v, one can construct in linear time a path decomposition
of G, consistent with v of minimum width.

Let D = (By, ..., Byjy|) be the nice path decomposition consistent with + we got by applying
Lemma 3 on the path decomposition of Lemma 9. Clearly, each bag in D is a clique.

» Lemma 10. Assume that G, has at most k edges. Let H = [v/2k|+1 and, for2 < h < H,
let ¢, = |{i: |B;| = h}|. Then we have ¢, <k/(h—1)—h/2+1.

9:7
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Finally, we show how our considerations also help to improve the running time of a simple
branching algorithm. The algorithm works as follows: it picks an edge in the cocomparability
graph and considers orienting it both ways. As long as there are profitable edges that cause
at least a cost of two in each branch, we keep on branching. Costs can also be implicitly
caused, as we modify the partial order p and hence transitivity must be maintained. We can
use Theorem 8 when there are no more profitable edges because of the following lemma.

» Lemma 11. After ezhaustively branching at all profitable edges, G, is an interval graph.

This is the key to the following improvement on the branching algorithm described in [23].
Notice that in practice, branching algorithms tend to be faster at least for small parameter
values, due to the smaller constants in the basis of the (sub-)exponential functions that
upper-bound the running times.

» Theorem 12. PCO can be solved in time O*(ﬂk) by a branching algorithm.

4  One-Sided Crossing Minimization (OSCM)

Given a bipartite graph G with bipartition (Vi, V2), a two-layer drawing of G is a drawing
such that vertices of V; and V5 are placed on two parallel lines and edges are represented as
straight lines between the vertices. A two-layer drawing can be specified by two linear orders
71 of V1 and 1 of V5. A crossing in a two-layer drawing is a pair of edges that intersect
each other in a point that is not a vertex. The number of crossings is defined by the order
of V; and V5 on the lines. The ONE-SIDED CROSSING MINIMIZATION problem consists in
placing vertices of one part V5 of the bipartite graph, given an ordering of the other part V7,
that minimizes the number of crossings. This problem is a key sub-problem for drawing
hierarchical graphs [3, 4, 32, 45] or producing row-based VLSI layouts [50, 52].

Problem name: ONE-SIDED CROSSING MINIMIZATION (OSCM)

Given: A bipartite graph G = (V, V4, E), a linear order 71 on V; and k € N
Output: Is there a linear order 75 on V5 such that, in the two-layer drawing
specified by (71, 72), at most k edge crossings incur?

The problem is known to be NP-complete [21] even in sparse graphs [44] and FPT in the
number of edge crossings k [17, 18, 25], including sub-exponential algorithms. The two-sided
variant of the problem (where the permutation of both sides is variable) is also FPT in the
number of crossings [37]. OSCM is a cornerstone of algorithms dealing with the so-called
Sugiyama approach to hierarchical graph drawing, see [32, 53].

Now, we show that OSCM can be reduced into PCIO, starting with a simple remark.

» Remark 13. Isolated vertices in V5 can be placed anywhere in an optimal ordering of V5.
From here, we assume that V2 does not contain any isolated vertices. Similar to [23, 25, 38],

we can model OSCM instances as PCIO instances.

» Lemma 14. Given an instance (G, 71,k) of OSCM, one can construct in polynomial time
an equivalent instance (1, ¢, k) of PCIO.

As PCIO has not been formally studied in the literature, let us draw an important

consequence from the previous lemma (also see the discussion in the beginning of Section
3.2).

» Corollary 15. PosiTivE COMPLETION OF AN INTERVAL ORDERING is NP-complete, even
when restricted to instances (, ¢, k) where the arc weights are within the set {1,2,...,16}.
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» Remark 16. We can use Theorem 8 to immediately deduce an algorithm for OSCM
matching the running time O*(2V2¥) of the best published algorithm for OSCM [38]. We
could also use the PCO-kernelization as a kernelization procedure for OSCM.

» Remark 17. Cakiroglu et al. [11] studied the variation where edges (if existing) have positive
weights, and the cost of an edge crossing is obtained by the product of the weights of the
crossing edges. This modification (with applications in automatic graph drawing) can also be
modeled by PCIO, so that we inherit an (’)*(2@) algorithm for the standard parameter k.

5 The Kemeny Rank Aggregation Problem

Preference lists are extensively used in social science surveys and voting systems to capture
information about choice. Kemeny [36] discussed the problem to combine several preference
lists into one, called its aggregation. This approach aims at minimizing the total disagreement
(formalized below) between the several input rankings and their aggregation. The idea itself
has not only applications in (the theory of) elections in the context of social sciences, say, on
a committee, but has also been suggested as a means of designing meta-search engines [19].
It has been also shown by Young and Levenglick [56] that the aggregation method proposed
by Kemeny is the only one satisfying a number of natural requirements on such aggregations.

More formally, in KEMENY RANK AGGREGATION we are given a set IT of rankings (also
called votes) over a set of alternatives C' (also called candidates), and a positive integer k,
and are asked for a ranking 7 of C, such that the sum of the Kendall-Tau distances (or,

KT-distances for short) of 7 from all the votes, called its Kemeny score, is at most k.

The ranking 7 that gives the smallest Kemeny score is called a Kemeny consensus. The
KT-distance between two rankings m; and 7y is the number of pairs of candidates that
are ordered differently in the two rankings and is denoted by KT-dist(7y,72). Hence, if
71, m ¢ [|C]] = C, KT-dist(m,m2) = [{(¢,d) € C x C| ¢ <z, ¢ AN’ <x, c}|. Observe that
the Kendall-Tau distance can be seen as the “bubble sort” distance.

Problem name: KEMENY RANK AGGREGATION (KRA)

Given: A list of votes Il over a set of candidates C, a non-negative integer k
Output: Is there a ranking 7 on C such that the sum of the KT-distances of 7
from all the votes is at most k.

Hence, given rankings my,...,m, of C and a non-negative integer k, the question is
if there exists a ranking 7 : [|C|] — C such that Y.." KT-dist(r,m;) < k. The problem
KEMENY RANK AGGREGATION is known to be NP-complete [2], even if only four votes are

input [19].> Simjour [51] obtained an algorithm for the problem that runs in time O*(1.403%).

There are also sub-exponential algorithms for KEMENY RANK AGGREGATION under this
parameterization: Karpinski and Schudy [35] obtained an algorithm for KEMENY RANK
AGGREGATION that runs in O*(QO(‘/E)) time, while the algorithm of Fernau et al. [24, 25],
based on a different methodology, runs in O* (ko(‘/g)) time. Both algorithms hide some

constant factor in the O-notation in the exponent that is not that clear from the expositions.

Our considerations are also valid for weighted Kemeny score, a modification suggested in [5]
that assigns positive weights to the voters. We can add some comment on conditional lower
bounds of this problem by bringing together facts from different parts of the literature.

3 The proof of this fact is not contained in the conference paper [19] but only appears in Appendix B of
http://www.wisdom.weizmann.ac.il/~naor/PAPERS/rank_www10.html.
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» Theorem 18. KRA on instances with only m = 4 votes on some candidate set C and
some integer k bounding the sum of the Kendall-Tau distances to a solution cannot be solved

neither in time O* (20(‘C|)) nor in time O* (20(\/@), unless ETH fails.

5.1 Reduction from KRA to PCO

Now we will show that KRA can be encoded into PCO. Let (II, C) be an instance of KEMENY
RANK AGGREGATION with m votes IT = (mq, . .., 7, ) over n candidates C. From this instance,
we construct an equivalent instance of the PCO problem p C V x V, ¢ with base set V = C.
For every pair of candidates ¢; and ca, we define the cost of (c1,¢2), ¢(c1,cz), as the number
of votes that do not order ¢; before co. More formally, ¢(c1,c2) = |{i € [m] | ca <x, c1}|.

» Lemma 19. Given two candidates ¢c1 and ca, if for every vote m; € I, we have ¢1 <g, ca
then for every Kemeny consensus w, ¢ <g Ca.

Using different terminology, a proof of this lemma can be found in [43, Théoréme 3]. Now,
we define the partial order p as follows: (c1,¢2) € p if and only if ¢(c1,c2) = 0. Hence,
<p =%, <r, is the unanimity order [12]. By Lemma 19, a vote 7, which is a linear order
of the candidates, is a Kemeny consensus iff 7 is a linear extension of p of minimum cost
with Kemeny score*

m m n n n

n
ZKlebtﬂm ZZZ(/‘] < Ck A Ck <g ] :ZZC Ck, ¢j)]er <x ¢4 (1)

i=1 1=1 j=1 k=1 j=1k=1

is equal to the cost of the linear extension given by 7 according to its definition.
These considerations prove that we can translate our algorithmic results for PCO to KRA.

» Remark 20. Our reduction works even if votes are reflexive and antisymmetric relations
instead of linear orders. In this case, the cost between ¢; and cy is defined as follows:

c(cr,c2) = {i € [m] [ er #£r; ca}l-

5.2 Pathwidth in Kemeny Rank Aggregation

Now we will discuss the meaning of the pathwidth measure from the PCO problem applied
to KRA. For KRA, several measures have been studied in the context of parameterized
complexity, Betzler et al. [5] introduced the notion of mazimum range of candidate positions.
For an election (II, C), the range r(c) of a candidate c is defined as r(c) = max; je[m |7r_1 (c)—
7rj_1(c)| + 1. If (c) = {i € [|C]]: Im € 1 : w(i) = ¢} denotes the set of positions candidate ¢
received in election (IT, C), then r(¢) = maxII(¢) — minII(c) 4+ 1. The mazimum range rmax
of an election is given by rmax = max.ecc r(c). Betzler et al. [5] proved that KRA can be
solved in time O(32"=x . (r2 - |C| + rmax - |C|?1og |C| - m) +m? - |C|log |C]) = O* (257max),

max

» Lemma 21. Given an election (II,C), let w be the consistent pathwidth associated to the
election and rmax be the maximum range of the election. We have w < 2 - rpax — 2.

Proof. Let p be the partial order defined by the election. To prove this statement, we will
construct an interval order ¢ such that ¢ C p, and w(¢) < 2 - rpax. To each candidate ¢ € C,
we associate the interval I, = [minII(c) — 1, maxII(c)). (We subtract one from the left
border to avoid empty intervals.) We let ¢ be the interval order associated with the interval

4 Recall the bracket notation: if p is a logical proposition, then [p] yields 1 if p is true and else, [p] yields 0.
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representation {I. | ¢ € C'}. By Lemma 19, we have that p is an extension of the interval
order ¢. Each interval I. has length at most r,.x. Thus, there are at most 27, — 2 intervals
that intersect at one point in the interval representation. Hence, w(t) < 2 - rpax — 2. |

Hence, Theorem 1 yields the following noticeable improvement to the mentioned result of [5]:

» Corollary 22. KRA can be solved in time O(|C| - Fmax - 227 +m, - |C]?) = O*(22rmax).

6 Grouping by Swapping (GbS)

This problem asks whether a given string can be transformed by at most k interchanges of
neighboring letters into a block format where all occurrences of each letter are adjacent to
form one single block each. It is on the famous list of NP-complete problems in [28]. Further
algorithmic aspects are discussed in [15, 55]. We show that GBS can be reduced to OSCM
in a parameter-preserving way and hence inherits FPT-results shown above. We first discuss
the problem GBS itself and then continue with the reductions.

Problem name: GROUPING BY SWAPPING (GBS)

Given: A finite alphabet 3, a string w € ¥*, and k € N.

Output: Is there a sequence of at most & adjacent swaps such that w is transformed
into a string w’ where all occurrences of each symbol are in single blocks?

Let us formalize this problem a bit more. If w,w’ € ¥* both have length n, we call v’
a permutation of w if there exists a bijection 7 : [n] — [n] such that, for any ¢ € [n],
w'[i] = w[w(i)]. Slightly abusing notation, we will also write w’ = 7(w). Special bijections
are adjacent swaps o; : [n] — [n] (with ¢ € [n—1]) that act as the identity with two exceptions:
0i(i) =i+ 1 and 0;(i + 1) = i. Every bijection 7 : [n] — [n] can be written as a composition
of swaps (property (*)). Hence, given a permutation w’ of w, we can ask to compute the
swap distance, written sd(w,w’), which is the smallest number & of swaps o;,, 04y, ..., 0i,
such that w’ = (04, 004, 0 -+~ 00y, )(w). Observe that sd can be viewed, for each mapping
g : X — N, as a metric on the space of all words w € ¥* with g(a) occurrences of a for each
letter a € X. In particular, sd(w,w’) = sd(w’,w) for all permutations w’ of w. Notice that
the swap distance can be computed in quadratic time by dynamic programming, as shown
in [42] (property (4)).

This picture changes if we add one more degree of freedom. Let us call w’ € ¥* to be

in block format if there is a bijection f : [|X|] — ¥ such that w’ € f(1)"f(2)"--- f(|Z])".

Alternatively, we can view f as defining a linear order <; on ¥, and then the block format
of w corresponding to f is the <y-lexicographic smallest permutation of w. GBS now asks,
given w € ¥* and k > 0, if there is some permutation w’ of w that is in block format

and has swap distance at most k from w. As claimed in [28], this variant is NP-complete.

Unfortunately, the proof referenced by [28] is hidden in a private communication. We remedy
this below by proving that GBS is NP-complete even for strings w where each letter occurs
exactly four times. Let us start with two rather straightforward observations.

» Lemma 23. Any string w can be grouped into blocks using at most |w|> many swaps.

In fact, any permutation of w can be obtained by using at most |w|? many swaps, as
can be seen by bubble-sort. This reasoning also shows (*), a well as (+), with a little bit of
thinking. This can be used to obtain our first (easy) FPT-result, to be improved on later.

» Lemma 24. GBS on strings w € X" parameterized by |X| can be solved in time O*(|X|!).
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We are now going to show that computing the swap distance can be done by considering the
distance for pairs of letters, summing up the corresponding results. Notice that the formula
in Lemma 25 resembles earlier derived summation formulae, as the defining equation for
PCO. To make this more precise, let ¥’ C ¥ and consider the projection py s : ¥ — X/ that
maps a — a for a € ¥ and a + ¢, the empty word, if a ¢ ¥/, as a morphism ¥* — (X/)".
» Lemma 25. Let w,w’ € ¥* such that w' is a permutation of w. Let w’ be in block format
following the linear order T on 3. sd(w,w’) = Ea,b€E7a<7b 5d(ps {a.p} (W), Ps {a,p} (W)).
Moreover, ps, (.03 (w') = al®lapl®l if g < b.

6.1 Discussing NP-completeness

In this subsection, we will prove NP-completeness of GBS even for quite restricted instances
by making use of a somewhat similar result for OSCM, based on [44].

» Theorem 26. GBS is NP-complete, even if each letter has exactly 4 occurrences.

Proof. Membership in NP is clear. In order to show NP-hardness, we give a reduction
from OSCM which is also NP-complete if each node in V5 has degree four and each vertex
in V7 has degree one, i.e., if the graph is a forest of 4-stars [44], with all star’s centers
in V5. Let G = (V1, V4, E) be an instance of OSCM with order 7 on V; and integer k
such that all vertices in V; are of degree one and all vertices in V5 are of degree four. We
set ¥ = Vo = {v1,v2,...,v,}. Clearly, |[V;] = 4n. We construct w € £4" (starting from
the empty word) by going through the vertices in V4, following the order 71. If the current
vertex is adjacent to v;, we concatenate v; to w. As the vertices in V; are of degree one,
this assignment is unambiguous. Following [21], for vertices v;,v; € Va, let c,,0, be the
number of crossings between edges incident to v; and edges incident to v; when v; is placed
left of v;. Lemma 3 in [21] states, referring to [20], that for a linear order 7 on V3, the
number of crossings cross(G, 1, 72) of the edges between V; in order 7 and V5 in order 7
is cross(G, Ty, 12) = Zvi7vjev27vi<72vj
Cuv; 18 equal to sd(ps (v, 0, } (W); PS {v;,0,} (Wry)), Where wy, is the To-lexicographic smallest
permutation of w. Combining this observation with Lemma 25, we obtain that for every

Cy0;- Clearly, for v;,v; € V2 the number of crossings

linear order 7o, sd(w,w,,) = cross(G, Ty, T2). <

In the following subsection, we will show that, in a sense, the reduction presented in our
NP-hardness result for GBS can be reversed. This also shows the following:

» Remark 27. GBS is polynomial-time solvable when each letter occurs at most twice.

This also leaves the following case as an open question: Can GBS instances be solved
in polynomial time if each letter occurs at most thrice? Notice that it is also open whether
subcubic OSCM graph instances can be solved in polynomial time. Furthermore, within
KRA, it is open if instances with three voters can be solved in polynomial time. Also, Cor. 15
leaves some room for improvement.

6.2 Reduction from GbS to OSCM

With the same idea as in the proof of Theorem 26, we can also reduce GBS to OSCM by
representing the string w as the ordered vertex set Vi and ¥ as the vertex set V5. More
precisely, let n be the length of w and interpret w as a mapping from [n] into ¥. Moreover,
set V4 = [n] with the usual linear ordering <, = < on [n]. Let V5 = ¥ and connect a € V5
to ¢ € [n] iff w(i) = a. This defines the bipartite graph G = (V1, Vs, E) with linear ordering
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71 on Vi. Now, the GBS instance (w,k) is a YES-instance if and only if the constructed
OSCM instance (G, 11, k) is a YES-instance. As OSCM is solvable in polynomial time if the
vertices in V5 have degree at most two, this implies that GBS is solvable in polynomial time
if each letter has at most two appearances, see Remark 27 and the following comments.

Together with the reduction proving Theorem 26, we see that GBS can be viewed as
exactly the special case of OSCM where all vertices of V; are of degree one, so that the
instance becomes a forest of stars with centers in V5. We make the algorithmic consequences
of this connection explicit, each time giving references to the literature on OSCM.

» Corollary 28. GBS, parameterized by k, can be solved (in polynomial space) in time
O*(1.4656%) by [17] or (in exponential space) in time O*(2V2*) by [38] or Remark 16.

Fernau et al. [25] and Kobayashi and Tamaki [38] also obtained OSCM lower bound
results, based on [44], assuming ETH. By the proof of Theorem 26, we can strengthen them:

» Corollary 29. GBS on strings of length n over alphabet X, parameterized by the number k
of swaps, cannot be solved neither in time O*(2°(") nor in time O*(2°U=D) nor in time
O*(QO(‘/E)), unless ETH fails, even if each letter has exactly 4 occurrences.

6.3 Pathwidth in Grouping by Swapping

The concept of scope coincidence degree (SCD for short) was introduced in [49] for patterns,
which are strings over two disjoint alphabets, where only the alphabet of variables was used to
measure the SCD of patterns. We adapt it in the following to strings over a single alphabet.

Given a string w € ¥*, and a letter a € X, then the scope of a, denoted Scope(a) is the set of
positions in {1, ..., |w|} between the minimum position and the maximum position in which a
occurs. For each position ¢, we let the incidence set of i to be Inc(i) = {a € ¥ : i € Scope(a)}.
Now the scope coincidence degree is the number of overlapping scopes for all letters. In other
words, we have that SCD(w) = max; |Inc(i)|.

Our reduction from GBS to OSCM first turns w € ¥* into a bipartite graph G =
(V1, Vo, E) with V} = [|w|] and V2 = . Lemmas 14 then produce an equivalent PCIO-
instance with an associated partial order p,, on V5 that is an interval order. For two
letters a,b € X, (a,b) € p, means that the last occurrence of a in w comes before the first
occurrence of b in w. Obviously, SCD(w) is the maximum size of an anti-chain in p,,. Hence,
the previously mentioned results of Habib and Mohring imply, together with Lemma 5:

» Lemma 30. SCD(w) = pw(G,,) +1 = cpw(G,,, pw) + 1.

Theorem 1 has therefore the following consequences for the string parameter SCD. To
the best of our knowledge, this is the first algorithmic exploit of this string parameter.

» Corollary 31. GBS can be solved in O*(SCD(w)25¢Pw)),

As the scope coincidence degree of a word w € ¥* is upper-bounded by |X|, we also
obtain the following result for the parameter |X| that improves on Lemma 24.

» Corollary 32. GBS can be solved in O*(|S[2/>).

There is another graph-theoretic interpretation of the scope coincidence degree presented
by Reidenbach and Schmid [49] for patterns. It relates to our setting as follows. To a string
w € X", we associate its Gaifman graph T, with vertex set [n] and edges (i,7 + 1) for
i € [n— 1], as well as the edge sets E, = {(min Scope(a), j) | j € Scope(a)} (disregarding
loops) for each a € 3. According to [49, Lemma 15], pw(T',,) < SCD(w) + 1. It might be
interesting to further link the pathwidths of I'y, and of G,,. Do they differ by exactly two?
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Inspired by the considerations on the range of a candidate in KRA, the maximum scope
Smax = MaXgcy |Scope(a)| could be another parameterization for GBS. Similar to Lemma 21,
one can show that GBS, parameterized by spax, is in FPT. It would also be meaningful to
interpret this parameter in the context of OSCM for graph visualization reasons.

7 Conclusion

Finally, we explain some further connections and future lines of research. Recall that we did
list several concrete open problems throughout the paper that we are not going to repeat
here, but they are clearly also natural continuations of the present study.

Different types of partial orderings. It would be interesting to have a closer look to different
types of partial orderings in the context of PCO. For instance, the papers of Brandenburg
and Gleifler [8] or Hudry [34] list quite a lot of different types of partial orders (in the
context of rank aggregation problems). We can also view this research as a starting point
to systematically look at decision problems related to partial orders from the viewpoint of
parameterized complexity. Then, [7] might be a good starting point.

Related problems, popular with Operations Research. In the Operations Research Com-
munity, there has also been lots of studies of the linear ordering polytope. Regarding the
problems studied in this paper, [10] might be a good starting point. Likewise, the so-called
OPTIMAL LINEAR EXTENSION PROBLEM has been considered in the literature [41]. However,
only the costs of the immediate neighborhood in the target linear order are considered,
similar to the famous TRAVELLING SALESPERSON PROBLEM,® while we sum up all costs
associated to pairs (z,y) with < y in the final linear order <.

Putting additional constraints: a theme arising in Graph Drawing and in Order Theory.
Forster [27] argues that the CONSTRAINED OSCM problem, where a partial order on V5
is given in addition, that should be extended to a linear ordering (as before), has quite
some applications. This can be clearly modeled as an instance of CO, but some further
research is needed to conclude the same type of results as we did for OSCM with the interval
order approach. This might relate to earlier (systematic) research on the realizability of
constraints on interval orders, see [47, 48]. In particular the distance constraints might be
indeed interesting for graph drawing purposes, as the neighbor vertices should not stretch
out too much.

Remarks on approximation. For the minimization problem related to PCO, a PTAS is
known according to [25]. Our reasoning immediately implies the existence of PTAS for
OSCM, KRA and GBS. In view of the tedious factor-1.4664 approximation for OSCM
presented in [46], this shows again the strength of looking at these specific problems from a
wider perspective.

Comments on approximation and heuristics. We suggest that the tight connections that
we found between GBS and OSCM should also be interesting in the development and analysis
of (heuristic) algorithms for both problems. In this context, it is interesting to observe that

5 The difference between cycles (tours) and paths do not matter for the involved algorithms that much.
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Wong and Reingold [55] proposed a median heuristic for computing a solution to a given
GBS instance. They proved that on random instances, this heuristic is at most 10% off
from the optimum (in expectation). Moreover, the larger random instances are picked, the
smaller is the relative error of the median heuristic (in expectation). Incidentally, the same

(median) heuristic was suggested by Eades and Wormalds [21] some years later for OSCM.

They proved that this heuristic is a factor-3 approximation, but did not go into a randomized

analysis. Our translation of GBS into OSCM actually proves the following which is the last

result of this paper.

» Corollary 33. The median heuristic gives a factor-8 approximation for GBS.
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