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Abstract

Serverless computing is a paradigm for programming cloud applications in terms of stateless functions,
executed and scaled in proportion to inbound requests. Here, we revisit SKC, a calculus capturing
the essential features of serverless programming. By exploring the design space of the language, we
refined the integration between the fundamental features of the two calculi that inspire SKC: the
λ- and the π-calculus. That investigation led us to a revised syntax and semantics, which support
an increase in the expressiveness of the language. In particular, now function names are first-class
citizens and can be passed around. To illustrate the new features, we present step-by-step examples
and two non-trivial use cases from artificial intelligence, which model, respectively, a perceptron
and an image tagging system into compositions of serverless functions. We also illustrate how SKC
supports reasoning on serverless implementations, i.e., the underlying network of communicating,
concurrent, and mobile processes which execute serverless functions in the cloud. To that aim, we
show an encoding from SKC to the asynchronous π-calculus and prove it correct in terms of an
operational correspondence.
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1 Introduction

Background

Serverless computing, or Functions as a Service (FaaS), is a recent paradigm for programming
cloud applications [2]. Programmers code applications in terms of functions. Function
definitions can be stored inside of dedicated repositories, and their execution can be triggered
by events. An underlying cloud framework is responsible for executing functions whenever
triggered, by utilising efficiently a pool of servers. Asynchronous interaction is prominent
in this setting, since a function might trigger the execution of another function on another
server, and then fetch the result later on to perform further computation.

A framework for serverless computing consists of two layers: a language layer, which
programmers use to code their applications in terms of (asynchronous) functions; and an
implementation layer, which executes applications written in the language layer by leveraging
a distributed system (the cloud). One can see the first layer as the frontend for developers,
and the second layer as the backend that makes serverless systems tick.

Both the language and implementation layers of serverless are complex. Different vendors
implement them in different ways with different limitations, in particular regarding how
programs can be composed and reasoned about [2, 21, 17]. This motivated recent studies on
formal “core” languages for serverless computing, which aim at providing solid foundations
for developing and reasoning on serverless systems [13, 20]. We call such core languages
serverless calculi.

Serverless calculi are based on the λ-calculus: the language layer of serverless frameworks
deals with functions, and the λ-calculus is the undisputed reference model for functional
programming. The Serverless Kernel Calculus (SKC, or “sketch”) is a concurrent λ-calculus
enriched with asynchronous function evaluation, futures, and a stateful function repository
[13]. SKC leverages the call-by-value evaluation strategy for the λ-calculus to provide
a uniform treatment of substitutions for both local and remote serverless computations:
evaluating a function synchronously or asynchronously leads to the same substitution carrying
the result to the caller.

Motivation

Our work originates from two main motivations.
The first motivation regards the design of the language layer. Both calculi from [13, 20]

enhance the λ-calculus with features from process calculi to represent concurrent execution
of functions. However, some of these features are slightly different and sometimes more
limited. For example, the calculus in [20] uses a “fresh name” condition to transfer the result
of function evaluations instead of an explicit operator for name scoping, like name restriction
in the π-calculus [27]. SKC adopts a restriction operator to create private names of futures,
which are used for the same purpose. Yet, it does not support the creation of new function
names that can be stored in the shared function repository, so it is not possible to create
private function definitions or private stored data. Furthermore, the expressiveness of SKC
is only briefly discussed in [13].

Our second motivation regards the implementation layer. Implementing a serverless
framework requires dealing with communication and mobility, in the sense that the connections
among the underlying cloud servers and the concurrent processes that run within them
change at runtime. The reference theory for mobile processes is the π-calculus, but to the
best of our knowledge there is still no exploration of how serverless calculi can be formally
linked to it.
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This article

In this article, we revisit the theory of SKC and provide a more extensive presentation of its
features.

Our new version of SKC (Section 2) provides a few improvements, which are given by a
better integration of the essential features of the λ-calculus and the π-calculus. Specifically,

functions can now be parametric on the names of other functions available in a serverless
system, whereas before all references to functions in the repository were statically fixed;
it is now possible to create new function names for the repository dynamically, so the
repository of available functions can now grow freely at runtime.

These new features enhance the expressiveness of the language, which we illustrate through
small examples (Section 2) and two use cases (Section 3) from artificial intelligence, one
implementing the perceptron algorithm and one for distributed tagging of large images.

We present two semantic interpretations for our version of SKC. The first (Section 2) is a
refinement of the original reduction semantics from [13], which supports the aforementioned
improvements. This high-level semantics is intended for developers to reason abstractly
about SKC programs. The second semantic interpretation is a formalisation of a possible
implementation layer for SKC, given in terms of an encoding (Section 5) from SKC to the
asynchronous π-calculus [41] (recalled in Section 4). The encoding is inspired by Milner’s
encoding of the call-by-value λ-calculus [26]. It shows how serverless functions can be
implemented by servers (replicated processes in the π-calculus) that can be triggered by
messages from clients, and how a serverless implementation layer can be modelled in terms
of communications among processes. We prove that the encoding is correct in terms of an
operational correspondence result.

Our results show that standard techniques from process calculi can be useful to under-
stand the two layers of serverless calculi. Hopefully, this understanding could also provide
foundations for tackling some outstanding questions in serverless computing. For example,
predicting resource usage and costs is challenging in general, since it requires knowing how
functions are executed by the implementation layer.

2 The Serverless Kernel Calculus, Revised

We now present our refined version of the Serverless Kernel Calculus (SKC).

Configurations C ::= 〈S,D〉 | νn C
Definition repository D ::= {(f1,M1), . . . , (fk,Mk)} (k ≥ 0)

Systems S, S′ ::= c JM | S | S′ | νn S | 0
Functions M,N ::= M N | V |

call h | store h N M | take h | νf M | async M | c
Values V, V ′ ::= x | λx.M | f

Restrictable names n ::= c | f
h ::= f | x

Function names f ∈ Fun
Future names c ∈ Fut

Variables x ∈ Var

Figure 1 Syntax of SKC.

Gabbrielli’s Festschrift
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2.1 Syntax
The syntax of SKC terms is given in Figure 1, and described in the following.

We assume three disjoint enumerable sets of names: function names, ranged over by f ;
future names, ranged over by c; and the usual variables of λ-calculus, ranged over by x.

Configurations and definition repositories

A configuration C represents a running serverless architecture. In a configuration of the form
〈S,D〉:

S is a system composed of functions that are currently being evaluated; and
D is a repository of function definitions that can be triggered (and updated) at runtime.

We treat definition repositories D as partial maps from function names (ranged over by
f) to function bodies (ranged over by M). Thus, for example, the writings D(f) = M and
(f,M) ∈ D are equivalent. Definition repositories are mutable: their content can change at
runtime, as we are going to see when we discuss the syntax of functions.

The configuration term νn C restricts the scope of a name n to C, binding n in C. A
restrictable name n can be either a function name f or a future name c.

Systems

A system S is a composition of functions that are being evaluated in parallel.
Term c JM represents a function under evaluation, whose result will be made available

under the future name c upon termination.
Systems of running functions can be composed in parallel, written S | S′. Term 0 is the

unit of parallel composition.
Names of futures and functions can be restricted in systems as well, using the term νn S.
The restriction operator ν binds stronger than the parallel operator |. Thus, for example,

νn S | S′ is interpreted as (νn S) | S′.

Functions

The language of functions includes the usual terms of λ-calculus: the variable term x, the
application termMN , and the abstraction term λx.M . We distinguish the syntactic category
of values (V ) to make the presentation of our call-by-value semantics easier later on.

We extend the usual syntax of functions with terms for using the definition repository
and futures.

A function f in the definition repository can be invoked by term call f , which abstractly
represents the “triggering” of a function in the definition repository by an event. The syntax
is actually more general: in term call h, h can be either a function name or a variable. This
enables abstracting over function names, as in λx. call x. Passing a function name as an
argument is enabled since term f is a value.

The primitives store and take manipulate the definition repository. Specifically, term
store h N M updates the definition repository with the mapping (h,N) – h is now mapped to
N – and then proceeds by evaluatingM . Dually, term take h removes the function with name
h from the definition repository and then proceeds as its body. For example, assuming that
the definition repository contains a mapping (f,M), then take f would erase that mapping
and proceed as M .

We allow for function names to be restricted, written νfM , which allows for the definition
of functions in the repository that have “private names”.
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Moving to futures, term async M starts the asynchronous execution of M . The idea
is that M is going to run in parallel, and that this execution is going to be connected
to the original term async M through a fresh future name that is created automatically.
For example, a system running c′ J async M would reduce to νc (c′ J c | c JM). Term c

represents a function waiting for a future to be resolved: it will be replaced with the result
of the parallel running function c JM once M produces a value that can be returned. Note
that futures c are not values, hence they cannot be, e.g., passed to functions. One may
increase flexibility e.g., by “thunking” futures such that async M becomes the value λx. c
instead of the non-value c. We leave the exploration of this direction for future work.

Equality and substitution

The ν and λ operators bind names, giving rise to the expected notions of free names (fn(−))
and bound names (bn(−)). Names (n(−)) are the union of free and bound names. Thus, we
obtain the usual notions of α-equivalence, written =α, and capture-avoiding substitution for
functions, written M{V/x} (read “V replaces x in M”).

In the remainder, we equate α-equivalent systems, and the same for functions. Consistently
with viewing definition repositories as maps, equality of definition repositories allows for swap
– the order in which definitions are given inside of D does not matter. This is equivalent to
extensional equality over finite maps: D = D′ if and only if D and D′ have the same domain
of definition F ⊂ Fun and D(f) = D′(f) for all f ∈ F .

2.2 Semantics
We present now the semantics of SKC, given in terms of structural equivalence of terms and
a reduction relation that captures term dynamics.

Both structural equivalence and the reduction relation make use of the auxiliary definition
of evaluation contexts, given in Figure 2. An evaluation context E is a running function with
a hole [·] that can be replaced with a function term M . We write E [M ] for the term obtained
by replacing the hole in E with M .

E ::= c J Eλ
Eλ ::= [·] | λx.M Eλ | Eλ M

Figure 2 SKC, evaluation contexts.

Structural equivalence

Terms in SKC give rise to the expected equivalences regarding name scoping and parallel
composition. This is formalised by the structural equivalence ≡ between terms, which is the
smallest congruence on SKC terms satisfying the rules in Figure 3.

These rules are straightforward adaptations of the typical rules for scoping and the
parallel operator found in process calculi. The first row of rules axiomatise that parallel
composition (|) behaves as a commutative monoid with 0 as identity element. The second
row deals with extrusion of function names in evaluation contexts. The third row contains
rules for garbage collection of restrictions, swapping of restrictions, and name extrusion in
systems and configurations.

Gabbrielli’s Festschrift
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S | S′ ≡ S′ | S S | (S′ | S′′) ≡ (S | S′) | S′′ S | 0 ≡ S

f /∈ fn(E)
νf E [M ] ≡ E [νf M ]

f /∈ fn(Eλ)
νf Eλ[M ] ≡ Eλ[νf M ]

νn 0 ≡ 0 νn νn′ S ≡ νn′ νn S

n /∈ fn(S′)
νn (S | S′) ≡ νn S | S′

n /∈ fn(D)
νn 〈S,D〉 ≡ 〈νn S,D〉

Figure 3 SKC, rules for structural congruence.

〈E [(λx.M) V ],D〉 −−→ 〈E [M{V/x}],D〉
β

c /∈ fn(M) c /∈ n(E)
〈E [async M ],D〉 −−→ 〈νc (E [c] | c JM),D〉 async

〈E [c] | c J V,D〉 −−→ 〈E [V ] | c J V,D〉
push

〈E [store f N M ],D〉 −−→ 〈E [M ],D[f 7→ N ]〉 store

〈E [call f ],D〉 −−→ 〈E [D(f)],D〉 call
〈E [take f ],D〉 −−→ 〈E [D(f)], undef(D, f)〉 take

〈S,D〉 −−→ 〈S′,D′〉
〈νn S,D〉 −−→ 〈νn S′,D′〉

res-s
〈S1,D〉 −−→ 〈S′1,D′〉

〈S1 | S2,D〉 −−→ 〈S′1 | S2,D′〉
par

C −−→ C ′

νn C −−→ νn C ′
res-c C1 ≡ C ′1 C ′1 −−→ C ′2 C ′2 ≡ C2

C1 −−→ C2
str

Figure 4 SKC, reduction rules.

Reductions

We can now define the reduction relation −−→, which formalises the execution of terms in
SKC. Relation −−→ is the smallest relation closed under the rules displayed in Figure 4.

The semantics of SKC is based on the call-by-value evaluation strategy for λ-calculus.
Specifically, rule β allows for an application to reduce only when its argument is a value (V ).

Rule async models the asynchronous execution of a function M : it creates a new future
c, a parallel running function to compute the result of M in c, and binds c to the parallel
composition of the caller (which is now waiting to receive the result) and the new running
function. When the created running function reduces to a result value, the caller can collect
this result by rule push.

In rule store, a term store f N M updates the definition repository D with the mapping
(f,N). The notation D[f 7→ N ] means that D is updated to contain the mapping (f,N): if
f was already mapped to something, the old mapping is discarded.

In rule call, a term call f retrieves the body of the function f from the definition
repository, if it is defined, and runs it. A term call f is stuck if the definition repository does
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not contain any mapping for f (but can become unstuck if a mapping appears later on).
Rule take is similar, but the mapping for the called function is removed from the definition
repository: we write undef(D, f) for the repository obtained by removing the mapping for f
from D.

The other rules are the expected ones for dealing with restriction (res-s and res-c),
parallel composition (par), and structural equivalence (str): reductions under restriction
and parallel composition can be lifted, and the reduction relation −−→ is closed under the
structural equivalence ≡.

I Example 1 (Local vs Async execution). As we are going to see in Section 3, the definition
repository is useful to store data and functions that are commonly reused. By itself, term
call f retrieves the body of function f from the repository and runs it locally. One can
combine call with async to execute the retrieved function asynchronously, which gives some
control on how functions from the repository should be executed.

The caller of a function does not need to worry about which strategy is used by the callee,
since the semantics of SKC makes both to eventually reduce to the same result. For example,
assume that D(f) = V . The following reduction chains show the respective behaviours of
the two strategies.

〈c J call f,D〉 −−→ 〈c J V,D〉 (1)

〈c J async call f,D〉
−−→ 〈νc′ (c J c′ | c′ J call f),D〉
−−→ 〈νc′ (c J c′ | c′ J V ),D〉
−−→ 〈νc′ (c J V | c′ J V ),D〉

(2)

The resulting term has the same behaviour of the one resulting from the local execution.
One could make the two terms syntactically equal by implementing garbage collection for
unused futures (and the related values).

I Example 2 (Shared state). The definition repository can be used to store and share state.
A simple example is keeping a counter of requests. We abuse notation and use arithmetic
operators and natural numbers in SKC – as presented in Section 3. The counter can be
initialised with

(store counter V0 M)

where V0 is the initial value, and incremented with

(λx. store counter (call sum 1 x) M) (take counter)

In both the cases M is a continuation.

I Example 3 (Libraries). Updating shared state as in the previous example happens often in
serverless computing. One could think of offering a replace primitive as syntactic sugar.

replace h N M , (λx. store h (N x) M) (take h)

We can then rewrite our previous counter example as follows.

replace counter (call sum 1) M

Gabbrielli’s Festschrift
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We can actually use the definition repository of SKC to offer these kinds of user-defined
functions as libraries. For example, the replace function above can be put in a repository
and then invoked by programs as follows.

〈
c J (call replace) counter (call sum 1) M,

{(replace, λname.λop.λcont. (λx. store name (op x) cont) (take name))}
〉

I Example 4 (Private state). By combining the restriction operator with the primitives for
manipulating the definition repository, we obtain private storage. This can be used, for
example, to implement a log in a composition of function calls.

The library function newLog below creates a private log and initialises it with an empty
list (nil, cf. Section 3).

(newLog,νlog (store log nil log))

A function can now create a log and pass it to other functions that it invokes, as follows
(we omit the concrete composed functions M and N). We assume the existence of a library
function pair that takes two arguments and returns a pair (we show the definition of pair in
Section 3).

(λx. (call pair ((M x)(N x)))x) (call newLog)

The functions M and N can internally use the library function replace to update the log
by appending messages to the list. The idea is that N x is evaluated first, the result of which
is then taken by M along with x (the name of the private log). The function pair retrieved
from the repository then takes the final result from M and the x as the elements of the pair.

Notice that if the programmer wishes to run M and/or N asynchronously, they can just
prepend the inner calls to these functions with the async keyword.

Using similar devices, one can implement stack traces and other tracing mechanisms with
different scoping rules (per session, per client, etc.).

3 Use Cases

In this section, we present a couple of non-trivial SKC programs as use cases to show and
comment how developers can use SKC to reason about their serverless implementations.

For the use cases, we take inspiration from the context of artificial intelligence (specifically,
machine learning), which can benefit considerably from the dynamic scalability of serverless
architectures [17, 21].

First, we present an implementation of the perceptron [34, 12], an algorithm for binary
classification which can decide to which of two classes an input, represented by a vector of
numbers, belongs. Then, we present a scatter-gather algorithm that uses a neural network
trained for image classification to infer the semantic content of an input image.

Before presenting the examples, we assume to extend SKC with the syntax for conditionals
if M then M ′ else M ′′, with the traditional semantics. Moreover, we assume that the
definition repository D executing our examples includes the definition of the Church encodings
for pairs and lists.
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D(pair) = λx.λy.λz. z x y D(isNil) = call first
D(first) = λp. p(λx.λy.x) D(cons) = λh.λt. call pair false (call pair h t)
D(second) = λp. p(λx.λy. y) D(head) = λz. call first (call second z)
D(nil) = call pair true true D(tail) = λz. call second (call second z)

Hence, for example, we can write the list 1, 2, 3 as (call cons 1 (call cons 2 (call cons 3 call nil))).
We also assume to extend SKC with the standard arithmetic (+,−, ∗) and relational

(>,=) operators, on which we build the following functions, also assumed present in the
definition repository D.

D(sum) = λx.λy.x+ y D(prod) = λx.λy.x ∗ y D(sub) = λx.λy.x− y
D(gt) = λx.λy.x > y D(eq) = λx.λy.x = y

Finally, we extend SKC with let expressions: let x←M ′in M , (λx.M) M ′.

3.1 A Serverless Perceptron Algorithm
The perceptron, first introduced by Rosenblatt [34], is an algorithm for binary classification
that, given an input and a set of weights, produces an output representing the predicted class.
A simple application of Rosenblatt’s perceptron is the prediction of the logical conjunction.
Given the list of inputs (0, 0), (0, 1), (0, 1), and (1, 1), we aim at predicting the target values
0, 0, 0, and 1 respectively.

To obtain a trained model, i.e., a list of weights enabling the perceptron to find the targets
corresponding to some given inputs, we start from a zero-initialised vector of weights (a list
with the same cardinality of the inputs whose elements are all 0). The training algorithm
consists of an iteration over a set of inputs labelled with the correct classification to return
a new list of updated weights, aligned with the new provided “knowledge”. Concretely, a
training set for the logical conjunction contains pairs like ((0, 1), 0) and ((1, 1), 1), where the
left element is the list of input’s features and the right one is the classifying label – in this
case, the binary representation of the truth value of the conjunction of the two elements in
the list. Once trained, the weights can be used to predict the classification of further inputs.
To complete the scenario, both the predict and training functions take a bias parameter that,
in the perceptron algorithm, acts as the y-intercept of the line that separates the feature
space. Without this added parameter it would not be possible to find a solution for the
classification problem.

We start by describing the predict function, defined in Figure 5, which the training
function uses to calculate an adjustment gradient and update the weights. Mathematically,
the classification is based on the formula comp(f, w, bias) = bias+

∑|f |
i=0 wi ∗ fi: the item is

classified with label “1” if the result is positive, “0” otherwise.

D(predict) = λ ft.λws.λ bias.
let comp ← (λ f .λw.λ ρ.

call sum (call prod (call head f)(call head w))
if (call isNil (call tail f)) then 0 else async ρ (call tail f) (call tail w) ρ

) in if (call gt (call sum bias (async comp ft ws comp)) 0) then 1 else 0

Figure 5 Function predict.

Gabbrielli’s Festschrift
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D(train) = λ features.λweights.λ label.λ bias.
if call eq (async call predict features weights bias) label
then call pair weights bias
else

let routine ← (
λ f .λw.λ grad.λ ρ.

call cons
call sum (call head w) (call prod grad (call head f ))
if call isNil (call tail f )

then call nil
else async ρ (call tail f ) (call tail w) grad ρ

) in
let gradient ← (call sub label (async call predict features weights bias))
in call pair

async routine features weights gradient routine
gradient

)

Figure 6 Function train.

Given a list of features f , a list of weights w and a bias parameter, the predict function
calculates the classification of the individual, represented by the list of features, by summing
the bias with the recursive sum of the pair-wise products of the elements in the two lists. To
perform the recursive call, we use the let-bound function comp. All executions of the comp
function are asynchronous – called using the async primitive, both inside the definition of
comp (async ρ . . .) and at the initial invocation (async comp . . .).

The training function, defined in Figure 6, takes a list of features, a list of weights, a
label classifying the individual represented by the features and the bias parameter. First,
the function (asynchronously) tests whether the weights are already trained to correctly
recognise the individual (i.e., the prediction equates the label) and, in that case, it returns a
pair containing the current weights and the bias. Otherwise, we define a let-bound routine
function that performs the training by recursively adjusting the weights (w) with respect to
the features (f ) and a gradient parameter.

The training corresponds to the application of the following mathematical formula, which
returns a list of adjusted weights: routine(f, w, grad) = [w0 +grad∗f0, . . . , w|w|+grad∗f|f |].

Similarly to the predict function described above, we use the async primitive to parallelise
the execution of the adjustment of the weights. This is done with the initial asynchronous
invocation of the routine function (async routine . . .) and the asynchronous recursive call
within the definition routine (async ρ . . .).

Finally, we first define (through the let construct) the gradient parameter, which cor-
responds to the distance (i.e., the subtraction) between the label and the prediction (also
executed asynchronously) and then we return a new pair containing the result of the execution
of the routine function – which returns the adjusted weights – and the calculated gradient –
representing the new bias of the adjusted weights.

I Example 5 (Training and Prediction). Now that we have defined both the predict and train
functions, we can use them to “emulate” the logical conjunction (where the weights 0 and 1
represent false and true values). First, we introduce in the definition repository the utility
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function trainAndStore which, given the weights and bias of the model – stored as a pair by
a function wsName in the definition repository –, some features, and a label, performs the
training of the model and replaces the “old” weights and bias with the new, trained ones.

D(trainAndStore) = λwsName.λ fs.λ label. (
λws. (store wsName (call train fs (call first ws) label (call second ws)) ()) take wsName)

To ensure atomicity, trainAndStore uses the take primitive to remove the “weights” from
the definition environment while it is computing the new ones. In this way, if other clients are
trying to access the same weights (name-wise), they are blocked until it finishes computing
and it executes the store instruction to “release” them in the definition repository.

We can now train our model to emulate the logical conjunction (wa represents the weights
and bias of the model) – below we omit D for compactness.

c0 J store wa (call pair (call cons 0 call cons 0 call nil) 1) ()
| c1 J call trainAndStore wa (call pair (call cons 0 call cons 0 call nil) 0)
| c2 J call trainAndStore wa (call pair (call cons 0 call cons 1 call nil) 0)
| c3 J call trainAndStore wa (call pair (call cons 1 call cons 0 call nil) 0)
| c4 J call trainAndStore wa (call pair (call cons 1 call cons 1 call nil) 1)
| c5 J λw. (call predict (call cons 0 call cons 1 call nil) (call first w) (call second w)) call wa

Above, the running function at the bottom (with future c5) uses the trained weights – at
any possible stage of the training, due to the interleaving of the execution – to predict the
result of the conjunction of the Boolean values 0 and 1.

In the example above, we showed an initial configuration already featuring some running
functions. Indeed, since we consider a reduction semantics, we do not model the invocation
of functions from outside the system. To consider also the point of view of the user of
the serverless system, one could equip SKC with a labelled semantics supporting both the
invocation of functions and the retrieval of the results of the evaluation from outside the
system. We leave this direction for future work.

3.2 A Serverless Large Image Tagger
In the following, we illustrate the use of the proposed language abstractions in order to
model a simple system for tagging large images. The example takes advantage of an Artificial
Intelligence (AI) algorithm to extract semantic content from an image. In computer vision it
is common practice to segment the content of a photo to assign a label indicating the nature
of the object(s) represented in each segment, for example a person, an animal, or a thing.
Although modern AI techniques and in particular deep convolutional neural networks are able
to predict the semantic content of an image with extreme accuracy, these algorithms normally
take small inputs and are not adequate to classify images at ultra-high resolutions, e.g., the
recent 4K format corresponding to 3840 × 2160 pixels. As a reference, MobileNetV2 [35]
is a well-known neural network architecture able to achieve fast object classification with
accuracy of around 90% over 3-channel colour image inputs of 224× 224 pixels.

With the purpose to build a system for annotating ultra-high resolution images, we want
to exploit the parallel execution of inference processes to find the labels associated with each
image portion and aggregate them at the end of the single computations. The scenario lends
itself well to a serverless deployment strategy and can benefit from the language constructs
provided by the SKC language. Summarising, our strategy is to split the image into portions
that can be quickly annotated by the AI and to aggregate the results computed for each of
these parts. This can be simply rendered in SKC by the tag function below:
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D(tag) = λ image. (call aggregate (call split image))

where function split splits the image and function aggregate classifies each portion and
aggregates the results.

We discuss below in detail function aggregate, defined in Figure 7, which scatters the
asynchronous computations over the fixed-side portions of the original image (as obtained
from the split function, omitted here) and assembles their results.

D(aggregate) =
λ splits. (call cons

call pair
call first (call head splits)
async (call infer (call second (call head splits)))

if (call isNil (call tail splits))
then nil
else (async (call aggregate (call tail splits)))

)

Figure 7 Function aggregate.

In the snippet in Figure 7, we use the functions to manage pairs and lists already existing
in the D repository, defined at the beginning of this section. A function infer is also left
undefined in the example. In principle, the infer function could be any machine learning
algorithm that performs the actual recognition task for the image content given its feature
set. Notably, we use function isNil from the previous section to calculate the condition of
the block if and check whether the result list contains further elements. If not, the algorithm
terminates and returns the generated list.

The aggregation function takes a vector of splits, parts of the image, and returns a list
containing for each portion its identifier and the list of associated labels. An example of the
output for an image representing a seascape in the vicinity of a harbour will take the form
((((0, 0), (223, 223)), (house, sea)), (((0, 224), (224, 447)), (house, boat, sea)), . . . ). Each
identifier contains the coordinates of the portion of the image, represented as two pairs of
pixel coordinates. For simplicity, we assume that the result of the split function is a list of
pairs, the first element of each pair contains the coordinates of the portion while the second
element contains the actual portion features.

The infer function, that computes the single-portion prediction, retrieves a list of strings,
which represents the image tags. The aggregate function concatenates the result of the
prediction of the first portion of the image with the result of the recursive call on the rest of
the split list. Note that both the calls of infer and of aggregate are made using the async
construct. This allows for parallel execution. The result is nevertheless deterministic since
the asynchronous functions are independent.

The example presented is intuitive but complex enough to show a highly distributed
behaviour. The serverless deployment scenario takes advantage of the constructs for asyn-
chronous execution and helps the programmer to think about the system in a compositional
and holistic way.
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4 Background: the π-calculus

In this section we introduce the syntax and semantics of π-calculus, and some elements of
its theory, to be used in Section 5 to define and prove the correctness of the encoding of
SKC into the π-calculus itself. In the encoding, we actually use the asynchronous π-calculus,
as normal when encoding functional languages, though we usually still call it π-calculus.
The asynchronous π-calculus has some striking algebraic properties that fail in the ordinary
π-calculus [3], and that will be important in our study. The encoding of a λ-term will
be parametric on a name. Such parametric processes are called abstractions. The actual
instantiation of the parameters of an abstraction F is done via the application construct
F 〈ã〉. Processes and abstractions form the set of π-agents (or simply agents). Small letters
a, b, . . . , x, y, . . . range over the infinite set of names and ã denotes a tuple of such names.
The grammar of the π-calculus is thus:

Agents A := P | F

Processes P := 0 | a(b̃).P | a〈b̃〉.P | νa P

| P1 | P2 | !a(b̃).P | F 〈ã〉

Abstractions F := (ã) P

In the grammar for processes, 0 is the inactive process. An input-prefixed process a(b̃).P ,
where b̃ has pairwise distinct components, waits for a tuple of names c̃ to be sent along a
and then behaves like P{c̃/̃b}, where {c̃/̃b} is the simultaneous substitution of names b̃ with
names c̃. An output particle a〈b̃〉 emits names b̃ at a. Parallel composition allows one to
run two processes in parallel. The restriction νa P makes name a local, or private, to P . A
replication !a(x̃).P stands for a countable infinite amount of copies of a(x̃).P in parallel.

When the tuple b̃ is empty, the surrounding brackets in prefixes will be omitted. We
abbreviate νaνbP as (νa, b)P . An input prefix a(b̃).P , a restriction νbP , and an abstraction
(b̃) P are binders for names b̃ and b, respectively, and give rise in the expected way to the
definition of free names (fn(-)) and bound names (bn(-)) of a term or a prefix, and α-
conversion.

Since the calculus is polyadic, a type system is needed to avoid disagreements in the
arities of the tuples of names carried by a given name and in applications of abstractions. We
will not present the typing system, however, because not really essential. A context E of π is
a π-agent in which some subterms have been replaced by the hole [·]; then E[A] is the agent
resulting from replacing the hole with the term A. Of course it is assumed that, under a type
system, we only relate (e.g., using barbed congruence, described later on) agents obeying the
same typing, and then we insert them only in contexts that respect such a typing. We assign
parallel composition the lowest precedence among the operators.

The operational semantics of the π-calculus is standard [41] and given in Figure 8.

Transitions are of the form P
a(b̃)−−→ P (an input, b̃ are the bound names of the input prefix

that has been fired), P νd̃ a〈b̃〉−−−−→ P ′ (an output, where d̃ ⊆ b̃ are private names extruded in
the output), and P τ−→ P ′ (an internal action). As usual, =⇒ is the reflexive and transitive
closure of τ−→, and µ=⇒ is =⇒ µ−→=⇒.

The reference behavioural equivalence for π-calculus will be the usual barbed congru-
ence [28]. We recall its definition. We write P ⇓a if P µ=⇒ P ′, for some P ′ and µ is an output
action at a. (We make only output observable because this is standard in asynchronous
calculi.)
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a(b̃).P a(b̃)−−→ P !a(b̃).P a(b̃)−−→ !a(b̃).P | P a〈b̃〉.P a〈b̃〉−−→ P

P
νd̃ a〈b̃〉−−−−→ P ′ n ∈ b̃− d̃

νn P
(νn,d̃)a〈b̃〉−−−−−−−→ P

P
µ−→ P ′ n /∈ µ

νn P
µ−→ νn P ′

P
a(b̃)−−→ P ′ Q

νd̃ a〈b̃′〉−−−−−→ Q′

P | Q τ−→ νd̃ (P ′{b̃′/̃b} | Q′)

P
µ−→ P ′ bn(µ) ∩ fn(Q) = ∅

P | Q µ−→ P ′ | Q
P{b̃/̃a} µ−→ P ′

((ã) P )〈b̃〉 µ−→ P ′

Figure 8 Labelled Transition Semantics for the π-calculus.

I Definition 6 (Barbed congruence). Barbed bisimilarity is the largest symmetric relation
'· on π-calculus processes such that P '· Q implies:
1. If P =⇒ P ′ then there is Q′ such that Q =⇒ Q′ and P ′ '· Q′.
2. P ⇓a iff Q ⇓a.
Processes P and Q are barbed congruent, written P ≈ Q, if for each context E, it holds that
E[P ] '· E[Q].

As explained in the description of the encoding, we will need capability types [33] for the
π-calculus (or their ω-receptive refinement [38]), so to allow us to use the following replication
theorem in the correctness proof of the encoding.

I Theorem 7 (Replication theorem). Suppose only the output capability of x can be commu-
nicated (or that x is ω-receptive); then we have:

νx (P1 | P2 | !x(ũ).R) ≈ νx (P1 | !x(ũ).R) | νx (P2 | !x(ũ).R);
νx (!P | !x(ũ).R) ≈ !νx (P | !x(ũ).R).

5 Encoding SKC into π-calculus

In this section, based on Milner’s encoding of call-by-value λ-calculus [26], we study an
encoding of SKC into π-calculus. We follow the investigation of the correctness of the
representation of pure functions in π-calculus, in particular [26, 37].

We assume a base type system in SKC that at least distinguishes function values such as
λx.M from nominal values such as f (of course, depending on how the type system for SKC
is defined, function values and nominal values could be collections of types; we do not go
into the details of the types as they would obscure the readability of the encoding and its
correctness proofs). Moreover, the type system ensures us that whenever a nominal value f
is used with the store construct then the repository is not defined on f (thus the replacement
of an element of the repository needs a take and then a store).

The encoding is presented in Figure 9. We have to distinguish the encoding of functions
and values, that returns an abstraction, from the encoding of the other syntactic categories,
that returns a process. We use [[−]] for the former, and [[−]]∗ for the latter.

In the encoding of functions and values, the parameter may be thought of as the location
of that term. A term that becomes a value signals so at its location name and provides access
to the body of the value. Such body is replicated and thus may be copied several times.
When the value is a λ-function, it receives two names: (the access to) its value-argument,
and the location for the resulting term.
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A repository of terms is modelled as the parallel composition (
∏

denotes indeed n-ary
parallel composition) of the encodings of the individual terms, in which a function name f is
used to obtain access to the location of the λ-term referred to by f . The imperative nature
of the repository is reflected in the reference-like usage of function names. A repository in
which f is assigned to M becomes, in the π-calculus, an output f〈a〉 where a is a fresh name
that gives access to (the location of) M . This also explains the encoding of the constructs
take f and call f , in which the current content of f is read (as an input). Only in call f such
content is then re-emitted; take f does not, as it is supposed to remove f from the repository.
Construct store f N M introduces the appropriate output at f , so to add f to the repository.

The encodings use different kinds of names: location names, ranged over by p, q; value
names, ranged over by x, y, for accessing the body of a value; function names, ranged over by
f , for accessing functions in the repository; future names, ranged over by c; support names,
ranged over by a, b, used to access terms in the repository. In the encoding, as well as in the
syntax of SKC, h ranges over value and function names. We assume a type system in the
π-calculus in which these kinds of names are separated. Depending on the types of SKC,
these kinds may correspond to collections of π-calculus types (we recall that the encoding of
pure untyped λ-calculus can be refined to an encoding of typed λ-calculus [41]). A sorting
system, à la Milner [25], may be used to keep track of the arities of the names. However we
need at least to impose I/O capabilities [33] to make sure that only the output capability of
the value and support names is communicated. This is essential for the correctness results
below. The typing could however be more precise, by stipulating that function names should
follow the discipline of reference names of the π-calculus [18] (precisely, a destructive variant
in which at any time at most one output at one of these names is available). Similarly,
a more precise typing would set value and support names as ω-receptive names [38]. For
proving more refined correctness properties on the encoding, or using the encoding to validate
program transformations or optimisations (e.g., [39, 40, 9]), such refined types would have to
be taken into account.

In the encodings of store and async, a τ prefix is added so to make sure that a reduction
in SKC corresponds to at least one reduction in π-calculus. This is also needed for Lemma 8.
The encodings are extended to contexts and evaluation contexts, in the expected manner,
exploiting the compositionality of the encoding.

Lemma 8 shows that only the translation of evaluation contexts yields evaluation contexts
in the π-calculus. An occurrence of a term in a π-calculus expression is unguarded if that
occurrence is not underneath a prefix.

I Lemma 8. For any function context E, the hole of the π-calculus context [[E]] is unguarded
iff E is an evaluation context.

I Lemma 9. For all M,V , we have: [[(λx.M)V ]] ≈ [[M{V/x}]].

Proof. We follow a case analysis on V . The case when V = x or V = f is easy. When V is
an abstraction, we proceed by induction on M , exploiting the Replication Theorem 7 (here,
the output capability on names x, y is essential).

The induction is similar to that in the proof of validity of β-reduction for the pure
call-by-value λ-calculus [36], the main difference is that there are more cases to consider,
however the reasoning is analogous. J

I Theorem 10 (Operational correspondence, from SKC to π). If C −→ C ′ then [[C]]∗ −→≈
[[C ′]]∗.
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Encoding of definition repositories

[[D]]∗ def= Π(f,M)∈Dνa (f〈a〉 | !a(q). [[M ]]〈q〉)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Encoding of configurations

[[〈S,D〉]]∗ def= [[S]]∗ | [[D]]∗

[[νn C]]∗ def= νn [[C]]∗
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Encoding of systems

[[c JM ]]∗ def= νp ([[M ]]〈p〉 | p(y). !c(z). z〈y〉)
[[S | S′]]∗ def= [[S]]∗ | [[S′]]∗

[[νc S]]∗ def= νc [[S]]∗

[[0]]∗ def= 0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Encoding of functions

[[MN ]] def= (p) νq
(
[[M ]]〈q〉 | q(y). νr ([[N ]]〈r〉 | r(w). y〈w, p〉)

)
[[call h]] def= (p) (h(a). (h〈a〉 | a〈p〉)

[[async M ]] def= (p) τ . νc ([[c]]〈p〉 | [[c JM ]]∗)

[[store h N M ]] def= (p) τ . ([[M ]]〈p〉 | νa (h〈a〉 | !a(q). [[N ]]〈q〉))

[[take h]] def= (p) h(y). y〈p〉

[[νf M ]] def= (p) νf [[M ]]〈p〉

[[c]] def= (p) c〈p〉
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Encoding of values

[[λx.M ]] def= (p) νy p〈y〉. !y(x, q). [[M ]]〈q〉
[[h]] def= (p) p〈h〉

Figure 9 The encoding of SKC into the π-calculus.

Proof. We proceed by rule induction. The inductive part follows from the compositionality
of the encoding. For the base case, we make a case analysis on the rule applied.

Rule β. We use Lemma 9.
Rule async. We use the definition of the encoding and Lemma 8.
Rule push. We have (omitting the store, which does not contribute)

E [c] | c J V −→ E [V ] | c J V
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We assume V is an abstraction (the case when it is a function name is simpler); we then
abbreviate the encoding of an abstraction λx.M as

[[λx.M ]]〈p〉 = νy (p〈y〉 | [[M ]]yV)

In the encoding, we have, for some p::

[[E [c] | c J V ]]∗ = [[E ]][c〈p〉] | (νq, y )(q〈y〉 | [[V ]]yV | q(y). !c(z). z〈y〉)
−→≡ [[E ]][c〈p〉] | νy ([[V ]]yV | !c(z). z〈y〉)
≈ νy ([[E ]][p〈y〉] | [[V ]]yV | !c(z). z〈y〉)
≈ [[E ]][νy (p〈y〉 | [[V ]]yV)] | νy ([[V ]]yV | !c(z). z〈y〉)
≈ [[E [V ]]]∗ | [[c J V ]]∗

where in the second use of ≈ we exploit the Replication Theorem 7 (i.e., the output
capability constraint on y).
Rule store. The rule is

〈E [store f N M ],D〉 −−→ 〈E [M ],D[f 7→ N ]〉

We have, for some Q that does not contain f , and some p:

[[〈E [store f N M ],D〉]]∗ = [[E ]]∗[τ . ([[M ]]〈p〉 | νa (f〈a〉 | !a(q). [[N ]]〈q〉))] |Q
−→ [[E ]]∗[([[M ]]〈p〉 | νa (f〈a〉 | !a(q). [[N ]]〈q〉))] |Q
≈ [[E ]]∗[([[M ]]〈p〉] | νa (f〈a〉 | !a(q). [[N ]]〈q〉)) |Q
= [[〈E [M ],D[f 7→ N ]〉]]∗

Rule call. The rule is

〈E [call f ],D〉 −−→ 〈E [M ],D〉

for M = D(f). We have, for some Q that does not contain f , and some p:

[[〈E [call f ],D〉]] = [[E ]]∗[f(a′). (f〈a′〉 | a′〈p〉)] | νa (f〈a〉 | !a(q). [[M ]]〈q〉 |Q
−→ νa ([[E ]]∗[f〈a〉 | a〈p〉] | !a(q). [[M ]]〈q〉 |Q)
≈ νa ([[E ]]∗[f〈a〉] | [[M ]]〈p〉 | !a(q). [[M ]]〈q〉 |Q)
≈ [[E ]]∗[[[M ]]〈p〉] | νa (f〈a〉 | !a(q). [[M ]]〈q〉 |Q)
= [[〈E [M ],D〉]]∗

where in the first application of ≈ we exploit the τ -insensitiveness property of the name
a (equivalently, the Replication Theorem 7 on a).
The case of rule take is easy. J

The converse direction is more delicate because the π-calculus encoding presents a number
of administrative reductions, which do not correspond to actual reductions in the source
calculus. We overcome the problem following [11], which presents an optimisation of Milner’s
encoding of application (and hence of the encoding of SKC). The optimised encoding,
indicated as {[−]} below, is obtained from the initial one by performing a few (deterministic)
reductions, at the price of a more complex definition. These reductions are performed in the
clause for application, when at least one of the two involved terms is a value. We only show
the definition for the different clauses. In the last clause below it is intended that N is not a
value. The three clauses are applied only on applications MN in which both M and N are
closed (i.e., they have no free λ-variables); if they are applicable they have priority over the
clauses of the initial encoding [[−]]. Moreover the first clause has priority over the last one.

{[(λx.M)(λz.N)]} def= (p) νy (!y(x, q). {[M ]}〈q〉 | !y′(z, r). {[N ]}〈r〉 | y〈y′, p〉)
{[(λx.M)h]} def= (p) νy (!y(x, q). {[M ]}〈q〉 | y〈h, p〉)
{[(λx.M)N ]} def= (p) νy (!y(x, q). {[M ]}〈q〉 | {[N ]}〈r〉 | r(w). y〈w, p〉)

The following lemma establishes the correctness of the optimised encoding.
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I Lemma 11. For any C, we have [[C]]∗ ≈ {[C]}∗.

We state the converse of Theorem 10 on the optimised encoding {[−]}.

I Theorem 12 (Operational correspondence, from π to SKC). If {[C]}∗ −→ P then there is
C ′ with C −→ C ′ and P ≈ [[C ′]]∗.

Proof. Using a case analysis similar to that in the proof of Theorem 10, taking on applications,
when applicable, the clauses of the optimised encoding. J

Both Theorems 10 and 12 can be extended to multi-step reductions (i.e., relation =⇒ in
place of the one-step reduction −→).

6 Discussion and Conclusion

In this work, we explore the SKC serverless calculus under two aspects: its design space
(the language layer) and its usefulness in reasoning on serverless implementations (the
implementation layer).

Towards the first aim, we consider features from process calculi to represent the concurrent
execution of functions and to better integrate the essential features of the two calculi that
inspire SKC: the λ- and the π-calculus. Part of that redesign consists in having functions
parametric on the names of other functions. That inclusion allows us to create new function
names for the function-definition repository dynamically, so the repository of available
functions can grow freely at runtime, as well as holding private function definitions and
private stored data. As part of that exploration, we present a refined syntax and semantics
for SKC, supporting the aforementioned improvements, and we illustrate how those new
features enhance the expressiveness of the language through small examples and two use
cases from artificial intelligence.

Then, to illustrate how SKC supports reasoning on the implementation layer, we focus on
how to translate SKC-defined architectures (of functions) into a network of communicating,
concurrent, and mobile processes, representing the actual network of concurrent processes
that run those serverless functions in the cloud. We tackle this second task by presenting an
encoding from SKC to the asynchronous π-calculus and proving it correct in terms of an
operational correspondence result, using standard techniques – whose side-effect is to cast a
good outlook on the affordability of extending results from the literature to SKC.

We remark that the choice of using futures as one of the main building blocks of SKC
comes from a careful consideration on the minimality of the language. Indeed, if one might
consider named channels (as in CCS/π-calculus [24, 41]) a standard choice of communicating
systems, in the case of SKC they would increase the distance between the language and
concrete serverless implementations. For example, with channels one could have re-usable, bi-
directional communication between functions, which is a feature no serverless implementation
currently provides. Moreover, our encoding shows a way to define futures using channels
while the opposite is also possible [31].

Regarding related work, the proposal closest to SKC is [20], where a calculus more involved
than SKC is presented. It captures the low-level details of current serverless implementations
(e.g., cold/warm components, storage, and transactions are primitive features of their
model), essentially mixing the language and implementation layers. Contrarily, SKC strives
to be a kernel model of serverless computing, with the suggested strategy to reason on
implementations via encodings. Another work close to SKC is [31], where the authors
introduce a λ-calculus with futures. Since the aim of [31] is to formalise and reason on
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a concurrent extension of Standard ML, their calculus is more involved than SKC, as it
contains primitive operators (handlers and cells) to capture safe non-deterministic concurrent
operations, which we can encode as macros in SKC. An interesting future work is to investigate
which results from [20, 31] we can adapt to SKC.

Other future directions of research on SKC include the exploration of guarantees on
sequential execution across functions, which compels the investigation of new tools to enforce
sequential consistency [23] or serialisability [32] of the transformations of the global state [17].
That challenge can be tackled developing static analysis techniques and type disciplines [19, 1]
for SKC. Another direction concerns programming models, which should give to programmers
an overview of the overall logic of the distributed functions and capture the loosely-consistent
execution model of serverless [17]. Choreographic Programming [29, 7] is a promising
candidate for that task, as choreographies are designed to capture the global interactions
in distributed systems [22], and recent results [6, 8, 15, 16] confirmed their applicability
to microservices [10], a neighbouring domain to that of serverless architectures. Such an
approach can also cover Edge and Internet-of-Things scenarios (as targeted by projects like
AWS Greengrass1), using language abstractions borrowed from the world of microservice
systems [14]. The language extensions and results on the encoding presented in this paper
are stepping stones for a transformation framework between serverless and microservice
architectures. There, the final goal would be to provide an infrastructure where, depending on
the application context (e.g., the amount of stateful interactions) and inbound load (steadier
traffic benefit the always-on microservices deployment, while serverless is more efficient when
considering traffic bursts), users (or automatic optimisation systems) can decide whether to
deploy a given architecture (or part of it) as a network of serverless functions or microservices.
Indeed, if SKC is the model for serverless and π-calculus-inspired process calculi [30] represent
microservices, our encoding is a first result towards a framework for the semantic-preserving
transition between the two implementation/deployment paradigms.

A clearer understanding of the implementation layer also provides foundations for tackling
some outstanding questions in serverless computing. For example, predicting resource usage
and costs is challenging in general, since it requires knowing how functions are executed by
the implementation layer. This last one is particularly relevant in the per-usage model of
serverless architectures, yet it requires to extend SKC with an explicit notion of time to
support quantitative behavioural reasoning for timed systems [5, 4]. A starting point could
be to use the encoding into π-calculus to prove termination properties of the source SKC
language, combining type techniques from functional and concurrent languages [9].
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