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Abstract
Static and dynamic program analyses attempt to extract useful information on program’s behaviours.
Static analysis uses an abstract model of programs to reason on their runtime behaviour without
actually running them, while dynamic analysis reasons on a test set of real program executions. For
this reason, the precision of static analysis is limited by the presence of false positives (executions
allowed by the abstract model that cannot happen at runtime), while the precision of dynamic
analysis is limited by the presence of false negatives (real executions that are not in the test set).
Researchers have developed many analysis techniques and tools in the attempt to increase the
precision of program verification. Software protection is an interesting scenario where programs
need to be protected from adversaries that use program analysis to understand their inner working
and then exploit this knowledge to perform some illicit actions. Program analysis plays a dual role
in program verification and software protection: in program verification we want the analysis to be
as precise as possible, while in software protection we want to degrade the results of the analysis
as much as possible. Indeed, in software protection researchers usually recur to a special class of
program transformations, called code obfuscation, to modify a program in order to make it more
difficult to analyse while preserving its intended functionality. In this setting, it is interesting to
study how program transformations that preserve the intended behaviour of programs can affect the
precision of both static and dynamic analysis. While some works have been done in order to formalise
the efficiency of code obfuscation in degrading static analysis and in the possibility of transforming
programs in order to avoid or increase false positives, less attention has been posed to formalise the
relation between program transformations and false negatives in dynamic analysis. In this work
we are setting the scene for a formal investigation of the syntactic and semantic program features
that affect the presence of false negatives in dynamic analysis. We believe that this understanding
would be useful for improving the precision of the existing dynamic analysis tools and in the design
of program transformations that complicate the dynamic analysis.
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1 Introduction

Program analysis refers, in general, to any examination of programs that attempts to extract
useful information on program’s behaviours (semantics). As known from the Rice theorem,
all nontrivial extensional properties of program’s semantics are undecidable in the general
case. This means that any automated reasoning on software has to involve some kind of
approximation. Programs can be analysed either statically or dynamically. Static program
analysis reasons about the behaviour of programs without actually running them. Typically,
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4:2 Tuning Analysis Precision by Program Transformation

static analysis builds an abstract model that over-approximates the possible program’s
behaviours to examine program properties. This guarantees soundness: what can be derived
from the analysis of the abstract model holds also on the concrete execution of the program.
The converse does not hold in general due to the presence of false positives: spurious
behaviours allowed by the abstract model that do not correspond to any real program
execution. Static analysis has proved its usefulness in many fields of computer science like
in optimising compilers for producing efficient code, for automatic error detection and for
the automatic verification of desired program properties (e.g., functional properties and
security properties) [21]. Many different static analysis approaches exists, as for example
model checking [7], deductive verification [33] and abstract interpretation [12]. In particular,
abstract interpretation provides a formal framework for reasoning on behavioural program
properties where many static analysis techniques can be formalised. In the rest of this
paper we focus on those static analyses that can be formalised in the abstract interpretation
framework. Dynamic program analyses, such as program testing [1], runtime monitoring
and verification [4], consider an under-approximation of program behaviour as they focus
their analysis on a specific subset of possible program executions. In this paper when we
speak of dynamic analysis we mainly refer to program testing. Testing techniques start
by concretely executing programs on an input set and the so obtained test set of concrete
executions is inspected in order to reason on program’s behaviour (e.g., reveal failures or
vulnerabilities). It is well known that dynamic analysis can precisely detect the presence of
failures but cannot guarantee their absence, due to the presence of false negatives: concrete
program behaviours that do not belong to the test set. There is a famous quote by Dijksta
that states that “Program testing can be used to show the presence of bugs, but never to
show their absence!”. Since it is not possible to guarantee the absence of failures we have
to accept the fact that whenever we use software we incur in some risk. Software testing
is widely used to reveal possible software failures, to reduce the risk related to the use of
software and to increase the quality of software by deciding if the behaviour of software is
acceptable in terms of reliability, safety, maintainability, security, and efficiency [1].

Static analysis computes an over-approximation of the program semantics, while dynamic
analysis under-approximates program semantics. In both cases, we have a decidable evaluation
of the semantic property of interest on an approximation of the program semantics. For this
reason what we can automatically conclude regarding the behavioural properties of programs
has to take into account false positives for static analysis and false negatives for dynamic
analysis. Static analysis is precise when it is complete (no false positives) and this relates to
the well studied notion of completeness in abstract interpretation [12, 14, 23]. The intuition
is that static analysis is complete when the details lost by the abstract model are not relevant
for reasoning on the semantic property of interest. Dynamic analysis is precise when it is
sound (no false negatives) and this happens when the executions in the test set exhibit all
the behaviours of the program that are relevant with respect to the semantic property of
interest. This means that the under-approximation of the program semantics considered by
the dynamic analysis allows us to precisely observe the behavioural property of interest. The
essential problem with dynamic analysis is that it is impossible to test with all inputs since
the input space is generally infinite. In this context, coverage criteria provide structured,
practical ways to search the input space and to decide which input set to use. The rationale
behind coverage criteria is to partition the input space in order to maximise the executions
present in the tests set that are relevant for the analysis of the semantic property of interest.
Coverage criteria are useful in supporting the automatic generation of input sets and in
providing useful rules for deciding when to terminate the generation of the test set [1].
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Program analysis has been originally developed for verifying the correctness of programs
and researchers have put a great deal of effort in developing efficient and precise analysis
techniques and tools that try to reduce false positives and false negatives as much as possible.
Indeed, analysis precision relates to the ability of identifying failures and vulnerabilities that
may lead to unexpected behaviours, or that may be exploited by an adversary for malicious
purposes. For this reason the main goal of researchers has been to improve the precision and
efficiency of both static and dynamic analysis tools.

Software protection is another interesting scenario where program analysis plays a central
role but in a dual way. Today, software and the assets embedded in it are constantly under
attack. This is particularly critical for those software applications that run in an untrusted
environment in a scenario known as MATE (Man-At-The-End) attacks. In this setting,
attackers have full control over, and white-box access to, the software and the systems on
which the software is running. Attackers can use a wide range of analysis tools such as
disassemblers, code browsers, debuggers, emulators, instrumentation tools, fuzzers, symbolic
execution engines, customised OS features, pattern matchers, etc. to inspect, analyse and
alter software and its assets. In such scenarios, software protection becomes increasingly
important to protect the assets, even against MATE attacks. For industry, in many cases the
deployment of software-based defense techniques is crucial for the survival of their businesses
and eco-systems. In the software protection scenario, program analysis can be used by
adversaries to reverse engineer proprietary code and then illicitly reuse portions of the code
or tamper with the code in some unauthorised way. Here, in order to protect the intellectual
property and integrity of programs we have to force the analysis to be imprecise or so
expensive to make it impractical for the adversary to mount an attack.

To address this problem, researchers have developed software-based defense techniques,
called code obfuscations, that transform programs with the explicit intent of complicating
and degrading program analysis [9]. The idea of code obfuscation techniques is to transform
a program into a functionally equivalent one that is more difficult (ideally impossible) for
an analyst to understand. As well as for program analysis also for code obfuscation we
have an important negative result from Barak et al. [3] that proves the impossibility of
code obfuscation. Note that, this result states the impossibility of an ideal obfuscator that
obfuscates every program by revealing only the properties that can be derived from its I/O
semantics. Besides the negative result of Barak et al., in recent decades, we have seen a
big effort in developing and implementing new and efficient obfuscation strategies [8]. Of
course, these obfuscating techniques introduce a kind of practical obfuscators weakening the
ideal obfuscator of Barak et al. in different ways, and which can be effectively used in real
application protection in the market. For example, these obfuscators may work only for a
certain class of programs, or may be able to hide only certain properties of programs (e.g.,
control flow). Indeed, the attention on code obfuscation poses the need to deeply understand
what we can obfuscate, namely which kind of program properties we can hide by inducing
imprecision in their automatic analysis.

A recent survey on the existing code obfuscation techniques shows the efficiency of
code obfuscation in degrading the results of static analysis, while existing code obfuscation
techniques turn out to be less effective against dynamic analysis [31]. Consider, for example,
the well known control flow obfuscation based on the insertion of opaque predicates. An
opaque predicate is a predicate whose constant value is known to the obfuscation, while it is
difficult for the analyst to recognise such constant value [9]. Consider the program whose
control flow graph is depicted on the left of Figure 1 where we have three blocks of sequential
instructions A,B and C executed in the order specified by the arrows A → B → C. Let
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4:4 Tuning Analysis Precision by Program Transformation
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Figure 1 Code obfuscation.

OPT denote a true opaque predicate, namely a predicate that always evaluates to true. In
the middle of Figure 1 we can see what happens to the control flow graph when we insert
a true opaque predicate: block D has to be considered in the static analysis of the control
flow even if it is never executed at runtime. Thus, A→ OPT → D → C is a false positive
path added by the obfuscating transformation to the static analysis, while no imprecision is
added to dynamic analysis since all real executions follow the path A → OPT → B → C.
On the right of Figure 1 we have the control flow graph of the program obtained inserting
an unknown opaque predicate. An unknown opaque predicate OP? is a predicate that
sometimes evaluates to true and sometimes evaluates to false. These predicates are used
to diversify program execution by inserting in the true and false branches sequences of
instructions that are syntactically different but functionally equivalent (e.g. blocks B and
B1) [9]. Observe that this transformation adds confusion to dynamic analysis: a dynamic
analyser has now to consider more execution traces in order to cover all the paths of the
control flow graph. Indeed, if the dynamic analysis observes only traces that follow the
original path A→ OP? → B → C it may not be sound as it misses the traces that follow
A→ OP? → B1 → C (false negative).

The abstract interpretation framework has been used to formalise, prove and compare
the efficiency of code obfuscation techniques in confusing static analysis [17, 25] and to
derive strategies for the design of obfuscating techniques that hamper a specific analysis
[19]. The general idea is that code obfuscation confuses static analysis by exploiting its
conservative nature, and by modifying programs in order to increase its imprecision (adding
false positives) while preserving the program intended behaviour. Observe that, in general,
the imprecision added by these obfuscating transformations to confuse a static analyser is
not able to confuse a dynamic attacker that cannot be deceived by false positives. This is
the reason why common deobfuscation approaches often recur to dynamic analysis to reverse
engineer obfuscated code [5, 10, 32, 34].

It is clear that to complicate dynamic analysis we need to develop obfuscation techniques
that exploit the Achilles heel of dynamic analysis, namely false negatives. In the literature,
there are some defense techniques that focus on hampering dynamic analysis [2, 27, 28, 30].
What is still missing is a general framework where it is possible to formalise, prove and discuss
the efficiency of these transformations in complicating dynamic analysis in terms of the
imprecision (false negatives) that they introduce. As discussed above the main challenge for
dynamic analysis is the identification of a suitable input set for testing program’s behaviour.
In order to automatically build a suitable input set, the analysts either design an input
generation tool or an input recogniser tool. In both cases, they need a coverage criterion
that defines the inputs to be considered and when to terminate the definition of the input
set. Ideally, the coverage criterion is chosen in order to guarantee that the test set precisely
reveals the semantic property under analysis (no false negatives). However, to the best of
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our knowledge, there is no formal guarantee that a coverage criterion ensures the absence
of false negatives with respect to a certain analysis. If hampering static analysis means to
increase the presence of false positives, hampering dynamic analysis means to complicate
the automatic construction of a suitable input set for a given coverage criterion. In order to
formally reason on the effects that code obfuscation has on the precision of dynamic analysis
it is important to develop a general framework, analogous to the one based on program
semantics and abstract interpretation that formalises the relation between dynamic analysis
and code obfuscation. Thus, we need to develop a framework where we can (1) formally
specify the relation between the coverage criterion used and the semantic property that we
are testing, (2) define when a program transformation complicates the construction of an
input set that has to satisfy a given coverage criterion, (3) derive guidelines for the design of
obfuscating transformations that hamper the dynamic analysis of a given program property.
This formal investigation will allow us to better understand the potential and limits of code
obfuscation against dynamic program analysis.

In the following we provide a unifying view of static and dynamic program analysis and of
the approaches that researchers use to tune the precision of these analysis. From this unifying
overview it turns out that while the relation between the precision of static program analysis
and program transformations has been widely studied, both in the software verification and
in the software protection scenario, less attention has been posed to the formal investigation
of the effects that code transformations have on the precision of program testing. We start
to face this problem by showing how it is possible to formally compare and relate coverage
criterion, semantic property under testing and false negatives for a specific class of program
properties. This discussion leads us to the identification of important and interesting new
research directions that would lead to the development of the above mentioned formal
framework for reasoning about the effects of program transformations on the precision of
dynamic analysis. We believe that this formal reasoning would find interesting applications
both in the software verification and in the software protection scenario.

Structure of the paper: In Section 2 we provide some basic notions. In Section 3 we
discuss possible techniques for improving the precision of the analysis: Section 3.1 revise the
existing and ongoing work in transforming properties and programs toward completeness of
static analysis, while Section 3.2 provides the basis for a formal framework for reasoning on
possible property and program transformations to achieve soundness in dynamic analysis,
these are preliminary results some of which have been recently published in [18]. Section 4
shows how the techniques used to improve analysis precision could be used in the software
protection scenario to prove the efficiency of software protection techniques. The use of this
formal reasoning for proving the efficiency of software protection techniques against static
analysis is known, while it is novel for dynamic analysis. The paper ends with a discussion
on the open research challenges that follow from this work.

2 Preliminaries

Given two sets S and T , we denote with ℘(S) the powerset of S, with S × T the Cartesian
product of S and T , with S ⊂ T strict inclusion, with S ⊆ T inclusion, with S ⊆F T the
fact that S is a finite subset of T . 〈C,≤C ,∨C ,∧C ,>C ,⊥C〉 denotes a complete lattice on
the set C, with ordering ≤C , least upper bound (lub) ∨C , greatest lower bound (glb) ∧C ,
greatest element (top) >C , and least element (bottom) ⊥C (the subscript C is omitted when
the domain is clear from the context). Let C and D be complete lattices. Then, C m−→D and
C c−→D denote, respectively, the set and the type of all monotone and (Scott-)continuous
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4:6 Tuning Analysis Precision by Program Transformation

functions from C to D. Recall that f ∈ C c−→D if and only if f preserves lub’s of (nonempty)
chains if and only if f preserves lub’s of directed subsets. Let f : C → C be a function on a
complete lattice C, we denote with lfp(f) the least fix-point, when it exists, of function f on
C. The well-known Knaster-Tarski’s theorem states that any monotone operator f : C m−→C

on a complete lattice C admits a least fix point. It is known that if f : C c−→C is continuous
then lfp(f) = ∨i∈Nf i(⊥C), where, for any i ∈ N and x ∈ C, the i-th power of f in x is
inductively defined as follows: f0(x) = x; f i+1(x) = f(f i(x)).

Program Semantics: Let us consider the set Prog of possible programs and the set Σ of
possible program states. A program state s ∈ Σ provides a snapshot of the program and
memory content during the execution of the program. Given a program P we denote InitP
the set of its initial states. We use Σ∗ to denote the set of all finite and infinite sequences
or traces of states ranged over by σ. Given a trace σ ∈ Σ∗ we denote with σ0 ∈ Σ the first
element of sequence σ and with σf the final state of σ if σ is finite. Let τ ⊆ Σ× Σ denote
the transition relation between program states, thus (s, s′) ∈ τ means that state s′ can be
obtained from state s in one computational step. The trace semantics of a program P is
defined, as usual, as the least fix-point computation of function FP : ℘(Σ∗)→ ℘(Σ∗) [11]:

FP (X) def= InitP ∪
{
σsisi+1

∣∣ (si, si+1) ∈ τ, σsi ∈ X
}

The trace semantics of P is [[P ]] def= lfp(FP ) =
⋃
i∈N F iP (⊥C). Den[[P ]] denotes the denotational

(finite) semantics of program P which abstracts away the history of the computation by
observing only the input-output relation of finite traces: Den[[P ]] def= {σ ∈ Σ+ | ∃η ∈ [[P ]] :
η0 = σ0, ηf = σf}.

Concrete domains are collections of computational objects where the concrete semantics
is computed, while abstract domains are collections of approximate objects, representing
properties of concrete objects in a domain-like structure. It is possible to interpret the
semantics of programs on abstract domains thus approximating the computation with respect
to the property expressed by the abstract domain. The relation between concrete and
abstract domains can be equivalently specified in terms of Galois connections (GC) or upper
closure operators in the abstract interpretation framework [12, 13]. The two approaches
are equivalent, modulo isomorphic representations of the domain object. A GC is a tuple
(C,α, γ,A) where C is the concrete domain, A is the abstract domain and α : C → A

and γ : A → C are respectively the abstraction and concretisation maps that give rise
to an adjunction: ∀a ∈ A, c ∈ C : α(c) ≤A a ⇔ c ≤C γ(a). Abstract domains can be
compared with respect to their relative degree of precision: if A1 and A2 are abstractions
of a common concrete domain C, A1 is more precise than A2, denoted A1 v A2 when
∀a2 ∈ A2,∃a1 ∈ A1 : γ1(a1) = γ2(a2), namely if γ2(A) ⊆ γ1(A). An upper closure operator
on a complete lattice C is an operator ρ : C → C that is monotone, idempotent, and
extensive (∀x ∈ C : x ≤C ρ(x)). Closures are uniquely determined by their fix-points ρ(C).
If (C,α, γ,A) is a GC then ρ = γ ◦ α is the closure associated to A, such that ρ(C) is a
complete lattice isomorphic to A. The closure γ ◦ α associated to the abstract domain A can
be thought of as the logical meaning of A in C, since this is shared by any other abstract
representation for the objects of A. Thus, the closure operator approach is convenient when
reasoning about properties of abstract domains independently from the representation of
their objects. We denote with uco(C) the set of upper closure operators over C. If C is a
complete lattice then uco(C) is a complete lattice where closure are ordered with respect
to their relative precision ρ1 v ρ2 ⇔ ρ2(C) ⊆ ρ1(C) which corresponds to the ordering of
abstract domains.

The abstract semantics of a program P on the abstract domain ρ ∈ uco(℘(Σ∗)), denoted
as [[P ]]ρ, is defined as the fix-point computation of function FρP : ρ(℘(Σ∗))→ ρ(℘(Σ∗)) where
FρP

def= ρ ◦ FP ◦ ρ is the best correct approximation of function FP on the abstract domain
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ρ(℘(Σ∗)), namely [[P ]]ρ def= lfp(FρP ) =
⋃
i∈N F

ρ
P (⊥ρ(C)). Given the equivalence between GC

and closures, the abstract semantics can be equivalently specified in terms of abstract traces
in the corresponding abstract domain and in the following we denote the abstract semantics
either with [[P ]]ρ or with [[P ]]A where (C,α, γ,A) is a GC and ρ = γ ◦ α.

Equivalence Relations: Let R be a binary relation R ⊆ C ×C on a set C, given x, y ∈ C
we denote with (x, y) ∈ R the fact that x is in relation R with y. R ⊆ C×C, is an equivalence
relation if R is reflexive ∀x ∈ C : (x, x) ∈ R, symmetric ∀x, y ∈ C : (x, y) ∈ R ⇒ (y, x) ∈ R
and transitive ∀x, y, z ∈ C : (x, y) ∈ R∧(y, z) ∈ R ⇒ (x, z) ∈ R. Given a set C equipped with
an equivalence relation R, we consider for each element x ∈ C the subset [x]R of C containing
all the elements of C in equivalence relation with x, i.e., [x]R = {y ∈ C | (x, y) ∈ R}. The sets
[x]R are called equivalence classes of C wrt relation R and they induce a partition of the set C,
namely ∀x, y ∈ C : [x]R = [y]R ∨ [x]R ∩ [y]R = ∅ and ∪{[x]R | x ∈ C} = C. The partition of
C induced by the relation R is denoted by C/R. Let Eq(C) be the set of equivalence relations
on the set C. The set of equivalence relations on C form a lattice 〈Eq(C),�,uEq,tEq, id, top〉
where id is the relation that distinguishes all the elements in C, top is the relation that cannot
distinguish any element in C, and: R1 � R2 iff R1 ⊆ R2 iff (x, y) ∈ R1 ⇒ (x, y) ∈ R2,
R1 uEq R2 = R1 ∩R2, namely (x, y) ∈ R1 uEq R2 iff (x, y) ∈ R1 ∧ (x, y) ∈ R2; R1 tEq R2
it is such that (x, y) ∈ R1 tEq R2 iff (x, y) ∈ R1 ∨ (x, y) ∈ R2. When R1 � R2 we say that
R1 is a refinement of R2. Given a subset S ⊆ C, we denote with R|S ∈ Eq(S) the restriction
of relation R to the domain S.

The relation between closure operators and equivalence relations has been studied in
[29]. Each closure operator ρ ∈ uco(℘(C)) induces an equivalence relation Rρ ∈ Eq(C)
where (x, y) ∈ Rρy iff ρ({x}) = ρ({y}) and viceversa, each equivalence relation R ∈ Eq(C)
induces a closure operator ρR ∈ uco(℘(C)) where ρR({x}) = [x]R and ρR(X) =

⋃
x∈X [x]R.

Of course, there are many closures that induce the same partition on traces and these
closures carry additional information other than the underlying state partition, and this
additional information that allows us to distinguish them is lost when looking at the induced
partition. Indeed, it holds that given R ∈ Eq(C) the corresponding closure is such that
ρR = u{ρ | Rρ = R}. The closures in uco(℘(C)) defined form a partition R ∈ Eq(C)
are called partitioning and they identify a subset of uco(℘(C)): {ρR ∈ uco(℘(C)) | R ∈
Eq(C)} ⊆ uco(℘(C)) [29].

3 On the precision of program analysis

As argued above program analysis has been originally developed for program verification,
namely to ensure that programs will actually behave as expected. Besides the impossibility
result of the Rice theorem, a multitude of analysis strategies have been proposed [21]. Indeed,
by tuning the precision of the behavioural feature that we want to analyse it is possible
to derive an analysable semantic property that, while loosing some details of program’s
behaviour, may still be of practical interest [12, 14]. We are interested in semantic program
properties, namely in properties that deal with the behaviour of programs, but the possibility
of precisely analysing such properties depends also on the way in which programs are written.
This means that there are programs that are easier to analyse than others with respect to a
certain property [6]. Thus, program transformations that preserve the program’s intended
functionality can affect the precision of the results of the same analysis on the original and
transformed program.

Gabbrielli’s Festschrift
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Sign Sign u Parity
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Figure 2 Abstract domain of Sign and Sign u Parity.

3.1 Static Analysis
Precision in static program analysis means completeness, namely absence of false positives.
This means that the noise introduced by the abstract model used for static program analysis
does not introduce imprecision with respect to the property under analysis. Consider for
example program P on the left of Figure 3 that, given an integer value a, returns its absolute
value and it does it by adding some extra controls on the parity of variable a that have no
effect on the result of computation1. The semantics of program P is:

[[P ]] = {〈B1 : ⊥〉〈B2 : v1〉〈B4 : 2 ∗ v1 + 1〉〈B6 : 2 ∗ v1 + 1〉〈B7 : v1〉 | v1 ≥ 0} ∪
{〈B1 : ⊥〉〈B3 : v1〉〈B4 : 2 ∗ v1〉〈B5 : 2 ∗ v1〉〈B7 : −v1〉 | v1 < 0}

where 〈Bi, val〉 denotes the program state specifying the value val of variable a when entering
block Bi and ⊥ denotes the undefined value. Assume that we are interested in the analysis on
the abstract domain Sign depicted on the left of Figure 2. The Sign = {⊥,+0,−,>} abstract
domain observes the sign of integer values and it is possible to define a GC between ℘(Z)
and Sign where the abstract element +0 represents all positive values plus 0, the abstract
element − represents all negative values, while > represents all integer values and ⊥ the
emptyset. We denote with [[P ]]Sign ∈ ℘(Σ∗) the abstract interpretation of program P on the
domain of Sign, where the values of variable a are interpreted on Sign.

[[P ]]Sign = {〈B1 : ⊥〉〈B2 : +0〉〈B4 : +0〉〈B6 : +0〉〈B7 : +0〉,
〈B1 : ⊥〉〈B2 : +0〉〈B4 : +0〉〈B5 : +0〉〈B7,−〉[false positive]
〈B1 : ⊥〉〈B3 : −〉〈B4 : −〉〈B5 : −〉, 〈B7,+0〉
〈B1 : ⊥〉〈B3 : −〉〈B4 : −〉〈B6 : −〉〈B7,−〉[false positive]}

Each abstract trace corresponds to infinitely many concrete traces. So for example the
abstract trace 〈B1 : ⊥〉〈B2 : +0〉〈B4 : +0〉〈B6 : +0〉〈B7 : +0〉 corresponds to the infinte
set of concrete traces: {〈B1 : ⊥〉〈B2 : v1〉〈B4 : v2〉〈B6 : v3〉〈B7 : v4〉 | v1, v2, v3, v4 ≥ 0}.
Observe that the second and fourth abstract traces are false positives that the abstract
analysis has to consider but that cannot happen during computation. This is because the
guard at B4 cannot be precisely evaluated on Sign and therefore both branches are seen
as possible. This happens because the abstract domain of Sign is not complete for the

1 The notation ba/2c refers to the integer division that rounds the non-integer results towards the lower
integer value.
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B1:
input a
if a ≥ 0:

B2:
then
a = 2a + 1

B3:
else
a = 2a

B4:
if a is even

B5:
then
a = -a/2

B6:
else
a = ba/2c

B7:
return a

B1:
input a
if a ≥ 0:

B2:
then
a = a

B3:
else
a = - a

B4:
return a

B1:
input a
if a ≥ 0:

B2:
then
if a ≥ 100

B3:
else
a = -a

B4:
then
a=a

B5:
else
a = -a
b = -2a
a = a +b

B6:
end

P Q R

Figure 3 P , Q and R are functionally equivalent programs.

analysis of the program P and we have [[P ]] ⊂ [[P ]]Sign. This imprecision in the analysis of
program P on the abstract domain of Sign leads to the approximate conclusion that the
value of variable a at the end of execution can be either positive or negative. Let us denote
with [[P ]](Bi) and with [[P ]]Sign(Bi) the possible values that can be assumed by variable a
at block Bi when reasoning on the concrete and abstract semantics respectively. In this
case we have that Sign([[P ]](B7)) = Sign({v | v ≥ 0}) = +0 and this is more precise than
[[P ]]Sign(B7) = tSign{+0,−} = >.

Transforming properties towards completeness

It is well known that completeness is a domain property and that abstract domains can be
refined in order to become complete for the analysis of a given program [23]. The idea is that
in order to make the analysis complete we need to add to the abstract domain those elements
that are necessary to reach completeness. In this case, if we consider the abstract domain that
observes the sign and parity of integer values we reach completeness. Thus, let us consider
the domain Sign u Parity depicted on the right of Figure 2, where even represents all the
even integer values and odd represents all the odd integer values. The abstract interpretation
of program P on the domain of Sign u Parity is given by:

[[P ]]SignuParity = {〈B1 : (+0,⊥)〉〈B2 : (+0, even)〉〈B4 : (+0, odd)〉〈B6 : (+0, odd)〉〈B7 : +0〉
〈B1 : (+0,⊥)〉〈B2 : (+0, odd)〉〈B4 : (+0, odd)〉〈B6 : (+0, odd)〉〈B7 : +0〉
〈B1 : (−,⊥)〉〈B3 : (−, even)〉〈B4 : (−, even)〉〈B5 : (−, even)〉〈B7 : +0〉
〈B1 : (−,⊥)〉〈B3 : (−, odd)〉〈B4 : (−, even)〉〈B5 : (−, even)〉〈B7 : +0〉}

As we can see all the abstract traces are able to precisely observe that variable a is positive at
the end of the execution and that it can be either even or odd. Indeed, we have completeness
with respect to the SignuParity property SignuParity([[P ]](B7)) = [[P ]]SignuParity(B7) = +0.

Thus, a possible way for tuning the precision of static analysis is to transform the property
that we want to analyse in order to reach completeness, there exists a systematic methodology
that allows us to add the minimal amount of elements to the abstract domain in order to
make the analysis complete for a given program [23].
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Transforming programs towards completeness

The way in which programs are written affects the precision of the analysis. For example we
can easily write a program functionally equivalent to P but for which the analysis on Sign is
complete. Consider, for example, program Q as the one in the middle of Figure 3, we have
that:

[[Q]] = {〈B1 : ⊥〉〈B2 : v〉〈B4 : v〉 | v ≥ 0} ∪ {〈B1 : ⊥〉〈B3 : v〉〈B4 : −v〉 | v < 0}

[[Q]]Sign = {〈B1 : ⊥〉〈B2 : +0〉〈B4 : +0〉, 〈B1 : ⊥〉〈B3 : −〉〈B4 : +0〉}

This makes it clear how the abstract computation loses information regarding the modulo of
the value of variable a, while it precisely observes the positive value of a at the end of execution.
Indeed, in this case we have that: Sign([[Q]](B7)) = Sign({v | v ≥ 0}) = +0 = [[Q]]Sign(B7).
It is worth studying the possibility of transforming programs in order to make a certain
analysis complete. In a recent work [6] the authors introduced the notions of complete
clique C(P,A) and incomplete clique C̄(P,A) that represent the set of all programs that
are functionally equivalent to P and for which the analysis on the abstract domain A is
respectively complete and incomplete. They prove that there are infinitely many abstractions
for which the systematic removal of false positives for all programs is impossible. Moreover,
they observe that false positives are related to the evaluation of boolean predicates that the
abstract domain is not able to evaluate precisely (as we have seen in our earlier example). The
authors claim that their investigation together with the poof system in [24] should be used
as a starting point to reason on a code refactoring strategy that aims at modifying a given
program in order to gain precision with respect to a predefined analysis. Given an abstract
domain A, the final goal would be to derive a program transformation TA : Prog → Prog that
given a program P ∈ C̄(P,A) for which the analysis A is incomplete, namely A([[P ]]) 6= [[P ]]A,
transforms it into a program T (P ) ∈ C(P,A) for which the analysis is complete, namely
A([[P ]]) = [[P ]]A.

These recent promising works suggest how to proceed in the investigation of program
transformations as a mean for gaining precision in static program analysis.

3.2 Dynamic Analysis
Testing is typically used to discover failures (or bugs), namely an incorrect program behaviour
with respect to the requirements or the description of the expected program behaviour.
Precision in program testing is expressed in terms of soundness: the ideal situation where no
false negatives are present. When speaking of failures, this happens when the executions
considered in the test set exhibit at least one behaviour for each one of the failures present
in the program. Indeed, when this happens, testing allows us to detect all the failures in the
program. It is clear that the choice of the input set to use for testing is fundamental in order
to minimise the number of false negatives. What we have just said holds when testing aims
at detecting failures as well as for the analysis of any property of traces (as for example the
order in which memory cells are accessed, the target of jumps, etc.). Let us denote with IP
the input space of the possible input values needed to complete an execution of program
P under testing2. Dynamic analysis considers a finite subset of the input space, called the
input set InSet ⊆F IP , that identifies the input values that are used for execution. The

2 In this work, for simplicity but with no loss of generality, we speak of input values while in the general
case we may need collections of values in order to complete an execution of the software under test.
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execution traces generated by the input set define the test set, which is the finite set of traces
used by dynamic analysis to reason on program behaviour. Given an input value x ∈ IP we
denote with P (x) ∈ [[P ]] the execution of program P when fed with input x.

As argued above, the main source of imprecision in testing is that the number of potential
inputs for most programs is so large as to be effectively infinite. Since we cannot test with
all inputs, researchers typically recur to the use of coverage criteria in order to decide which
test inputs to use. A coverage criterion C induces a partition on the input space and in order
to minimise the false negatives the input set should contain at least one element for each
class of the partition. In the left part of Figure 4 we consider a typical coverage criterion,
called path coverage, for the testing of program Q in Figure 3. Path coverage criterion is
satisfied when for each path in the control flow graph of the program there exists at least one
execution in the test set that follows that path. When considering program Q it is immediate
to derive from the coverage criterion the partition of the input space: the class of positive
integer values (that follow the path B1 → B2 → B4) and the class of negatives integer values
(that follow the path B1 → B3 → B4). In this case the coverage criterion is satisfied by every
input set that contains at least one positive integer value and one negative integer value.

Since it is the coverage criterion that determines the input set and therefore the executions
that are considered by the dynamic analysis, it is very important to select a good coverage
criterion. However, it is not clearly stated or formally defined what makes a coverage criterion
good [1], and this may be one of the reasons why many coverage criteria have been developed
by researchers. Generally speaking, there are some features that it is important to consider
when speaking of coverage criterion such as:

the difficulty of deriving the rules to partition the input space with respect to the coverage
criterion;
the difficulty of generating an input set that satisfies the coverage criterion, namely that
contains at least one input for each one of the classes in which the input space has been
partitioned;
how well a test set that satisfies the coverage criterion guarantees the absence of false
negatives.

To the best of our knowledge there is no general framework that formalises the relation
between coverage criterion, partition of the input space and false negatives in the dynamic
analysis of a semantic program property. Indeed, while the soundness of dynamic analysis
may not be possible in general, we think that it would be interesting to study the soundness
of dynamic analysis of a program with respect to a specific semantic property (as usually
done when reasoning about completeness in static analysis). We believe that this formal
investigation would help in better understanding the cause of false negatives and would be
useful in reducing them.

3.2.1 Towards a formal framework for dynamic analysis
We formalise the splitting of the input space induced by a coverage criterion C in terms of
an equivalence relation RCI ∈ Eq(IP ), and this allows us to formally define when an input
set satisfies a coverage criterion.

I Definition 1. Given a program P , an input set InSet ⊆F IP and a coverage criterion
C, we say that InSet satisfies C, denoted InSet |= C, iff: ∀[x]RC ∈ IP /RCI we have that
InSet ∩ [x]RC

I
6= ∅.

We have seen this in Figure 4 when considering the partition induced in the input space
of program Q and observing that an input set satisfies the path coverage criterion when it
contains at least one positive and one negative integer value. When considering coverage
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IQ [[Q]]
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[[P ]]RC

Figure 4 Path coverage criterion on program Q of Figure 3, and soundness conditions.

criteria we need to take into account infeasible requirements: for example when considering
coverage criteria related to the paths of the control flow graph we have to handle infeasible
paths as it is not possible to define input values that follow these paths (as for example
paths B1 → B2 → B4 → B5 → B7 and B1 → B3 → B4 → B5 → B7 of program P ).
This is a known challenging problem in dynamic analysis and testing as the detection of
infeasible test requirements is undecidable for most coverage criteria [1]. This means that
some preliminary analysis is needed in order to ensure the feasibility of the coverage criteria,
namely to ensure that it is possible to generate an input set that satisfies a given coverage
criterion. Otherwise, we need to somehow quantify how much the input set satisfies the
coverage criterion, for example considering the percentage of equivalence classes that are
covered by the input set. In this work we do not address this problem and we assume the
feasibility of the coverage criteria.

Observe that the equivalence relation RCI ∈ Eq(IP ) naturally induces an equivalence
relation on traces RC ∈ Eq([[P ]]) where (σ1, σ2) ∈ RC iff ∃x1, x2 ∈ IP : P (x1) = σ1,
P (x2) = σ2 and (x1, x2) ∈ RCI . Thus, we can say that a given coverage criterion, and
therefore any test set that satisfies that coverage criterion, can be associated to a partition
of program trace semantics. Our idea is that the partition of the program trace semantics
induced by the coverage criterion could be used to reason on the class of semantic program
properties for which the coverage criterion can ensure soundness. To this end, we need
to represent semantic program properties in a way that can be compared with partitions
on traces.

Properties of traces are naturally modelled as abstract domains, namely as closure
operators in uco(℘(Σ∗)). A semantic property ρ ∈ uco(℘(Σ∗)) maps an execution trace
(or a set of execution traces) to the minimal set of traces that cannot be distinguished
by the considered property. Each closure operator ρ ∈ uco(℘(Σ∗)) induces an equivalence
relation Rρ ∈ Eq(Σ∗): σ1Rρσ2 iff ρ({σ1}) = ρ({σ2}), where traces are grouped together
if they are mapped in the same element by abstraction ρ. In the following, we model the
properties of traces as equivalence relations over traces or equivalently as partitioning closures
in uco(℘(Σ∗)), and we denote these properties as A ∈ Eq(Σ∗). According to [29] there is
more than one closure that maps to the same equivalence relations, thus considering the
partitions induced by closure operators corresponds to focusing on the set of partitioning
closures (which is a proper subset of closure operators over ℘(Σ∗)). This allows us to express
properties of the single traces but not relational properties that have to take into account
more than one trace. This means that we can use equivalence relations in Eq(Σ∗) to express
properties such as: the order of successive accesses to memory, the order of execution of
instructions, the location of the first instruction of a function, the target of jumps, function
location, possible data values at certain program points, the presence of a bad states in the
trace, and so on. These are properties of practical interest in dynamic program analysis.
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What we cannot express are properties on sets of traces, the so called hyper-properties,
that express relational properties among traces, like non-interference. The extension of the
framework to closures that are not partitioning is left as future work. This allows us to
formally model the soundness of dynamic analysis.

I Definition 2. Given a program P and a property A ∈ Eq(Σ∗), the dynamic analysis A
on input set InSet ⊆F IP is sound, denoted InSet s

 A(P ), if ∀[σ]A ∈ [[P ]]/A we have that
[σ]A ∩ InSet 6= ∅.

This precisely captures the fact that dynamic analysis needs to observe the different behaviours
of the program with respect to the property of interest in order to be sound. Indeed, when
considering a program P and a property A it is enough to observe a single trace in an
equivalence class [σ]A ⊆ [[P ]] in order to observe how property A behaves in all the traces of
program P that belong to that equivalence class. If we consider program Q in Figure 3 we
have that in order to precisely observe the evolution of the sign property along the execution
we have to consider at least one trace that follows the path B1 → B2 → B4 and one trace
that follows the path B1 → B3 → B4 as depicted in Figure 4.

Modelling program properties as equivalence relations makes it easy to compare them
with the coverage criteria and to reason on soundness.

I Theorem 3. Given a program P , a coverage criterion C, an input set InSet ⊆F IP and a
property A ∈ Eq(Σ∗), we have that if RC � RA|[[P ]]

and InSet |= C, then InSet s
 A(P ).

Proof. InSet |= C therefore ∀[x]RC ∈ IP /RC we have that InSet ∩ [x]RC 6= ∅. Since
RC � A|[[P ]] we have that for each equivalence class [σ]RC there exists an equivalence class
[σ]A|[[P ]]

that [σ]RC ⊆ [σ]A|[[P ]]
. This implies that for every [σ]A|[[P ]]

∈ [[P ]]/A we have that
[σ]A|[[P ]]

∩ InSet 6= ∅ and therefore InSet s
 A(P ). J

In Figure 4 on the right we provide a graphical representation of the above theorem. Traces
in Σ∗ exhibit different attributes with respect to property A and this is represented by the
different shapes: circle, triangle, square and star. Trace partition is then represented by the
thick lines that group together traces that are undistinguishable with respect to property
A. Dotted lines are used to represent a trace partition induced by coverage criterion C on
the traces of P and that ensures the absence of false negatives in the analysis. Indeed, from
the graphical representation it is clear that when InSet |= C then InSet contains at least a
trace for each equivalence class of RC , and this implies that it contains at least a trace for
each one of the possible attributes (circle, triangle and square) that traces in [[P ]] can exhibit
with respect to property A. This allows us to characterise the set of properties for which a
given coverage criterion can ensure soundness.

I Definition 4. Given a coverage criterion C on a program P , we define the set of properties
Π(C) def= {A ∈ Eq(Σ∗) | RC � A|[[P ]]} that are coarsest than the equivalence relation induced
by the coverage criterion.

It follows that any input set that satisfies a coverage criterion C on a program P would lead
to a sound dynamic analysis on any property in Π(C).

I Corollary 5. Given a coverage criterion C on a program P , and input set InSet ⊆F IP
such that InSet |= C, than ∀A ∈ Π(C) we have that InSet s

 A(P ).

In Figure 5 we summarise the relation between coverage criteria and soundness of a particular
program property. Given a program P , Figure 5 depicts the domain of equivalence relations
over [[P ]] where id denotes the most fine equivalence relation that corresponds to the identity
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id
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A A1
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8RC : RC � A ) soundness

8A 2 ⇧(C) ) soundness
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Figure 5 Comparing RC and A for soundness.

relation, ∀σ1, σ2 ∈ [[P ]] : (σ1, σ2) ∈ id iff σ1 = σ2, and top denotes the coarser equivalence
relation that sees every trace as equivalent ∀σ1, σ2 ∈ [[P ]] it holds that (σ1, σ2) ∈ top. As
stated in Theorem 3 whenever RC � A|[[P ]] then the coverage criterion C can be used to
ensure soundness of the analysis of property A on program P . As stated by Corollary 5 a
coverage criterion C can ensure soundness for all those properties in Π(C).

Following our reasoning, the most natural coverage criterion for a given semantic property
A is the one for which RC = A, namely the coverage criterion whose partition on states
corresponds to the property under analysis. In the literature there exists many different
coverage criteria and some of them turn out to be equivalent when compared with respect to
the partition that they induce on the input space. It has been observed that all existing test
coverage criteria can be formalised in terms of four mathematical structures: input domains,
graphs, logic expressions, and syntax descriptions (grammars) [1]. Even if these coverage
criteria are not explicitly related to the properties being analysed they have probably been
designed while having in mind the kind of properties of interest. For example, some of the
most widely known coverage criteria are based on graph features and are typically used for
the analysis of properties related to a graphical representation of programs, like control flow
or data flow properties of code or variables that can be verified on the control flow graph of
a program, or function calls that can be verified on the call graph or a program, and so on.
For example code coverage requires the execution of all the basic blocks of a control flow
graph and wants to ensure that all the reachable instructions of a program are considered at
least in one execution of the test set.

What we have stated so far allows us to begin to answer the question regarding how
well the coverage criterion behaves with respect to the analysis of a given semantic property
(when this can be modelled as a partitioning closure on the powerset of program traces). The
design of an automatic or systematic strategy for the generation of an input set that covers
a given coverage criterion remains an open challenge that deserves further investigation.

Transforming properties towards soundness

There are two questions that naturally arise from our reasoning and that would be interesting
to investigate regarding the systematic transformation of the property under analysis or the
coverage criterion towards soundness.
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1. Consider a program P , a coverage criterion C that induces a partition RC ∈ Eq([[P ]]) on
the traces of program P and a trace property A1 for which the coverage criterion C cannot
ensure soundness. We wonder if it is possible to design a systematic transformation of
property A1 that, by grouping some of its equivalence classes, returns a trace property
for which we have soundness when C is satisfied by the input set. It would be interesting
to understand when this transformation is possible without reaching top, i.e., while still
being able to distinguish trace properties. This is depicted by the arrow labeled with T1
in the upper part of Figure 5.

2. Consider a program P , a coverage criterion C1 that induces a partition RC1 ∈ Eq([[P ]]) on
the traces of program P and a trace property A for which the coverage criterion C1 cannot
ensure soundness. We wonder if it is possible to design a systematic transformation of
RC1 that, by further splitting its equivalence classes, returns a partition of the program
traces, and therefore a coverage criterion, that when satisfied by the input set ensures
soundness for the analysis of property A. In this case it is interesting to investigate when
this refinement is possible without ending up with the identity relation, namely without
collapsing to id where all program traces needs to be considered for coverage. This is
depicted by the arrow labeled with T2 in the bottom part of Figure 5.

Transforming programs towards soundness

As for static analysis also for dynamic analysis the way in which programs are written
influences the precision of the analysis either because they expand the input set that satisfies
a given coverage criterion, thus requiring the observation of more program runs, or because
they complicate the automatic/systematic extraction of an input set that satisfies a given
coverage criterion. We focus on the first case since we still have to formally investigate the
extraction of input sets for a given coverage criterion, namely the input generation and input
recogniser procedure.

Let us consider program R on the right of Figure 3 that computes the absolute value of
an integer value and does it by adding some extra control on the range of the input integer
value in order to proceed with the computation of the modulo in some syntactically different,
but semantically equivalent ways. Indeed, in this example it is easy to observe that blocks B4
and B5 are equivalent, but we can think about more sophisticated ways to write equivalent
code in such a way that it would be difficult for the analyst to automatically recognise that
they are equivalent. If we consider again the path coverage criterion we can observe that in
order to cover the control flow graph of program R we need at least three input values: a
negative integer, a positive integer smaller than 100 and a positive integer greater than or
equal to 100. Of course what is done in block B2 can be replicated many times, as far as we
are able to write blocks that are syntactically different but semantically equivalent to B4 or
B3. According to our framework, path coverage is more complicated to reach on program
R than on program Q. Indeed, in this case, every input set that satisfies path coverage for
program R also satisfies path coverage for program Q while the converse does not hold in
general. This reasoning is limited to the amount of traces that we need to satisfy a given
coverage criterion and does not take into account the difficulty of generating such traces. Of
course both aspects would need to be taken into account by our formal framework.

Moreover, as done for static analysis in [6], it would be interesting to define the notions
of sound clique S(P, InSet,A) and of unsound clique S̄(P, InSet,A) that represent the sets
of all programs that are functionally equivalent to P and for which the dynamic analysis of
property A on input set InSet ⊆ IP is respectively sound and not sound:

S(P, InSet,A) def= {Q ∈ Prog | Den([[P ]]) = Den([[Q]]), InSet s
 A(P )}

S̄(P, InSet,A) def= {Q ∈ Prog | Den([[P ]]) = Den([[Q]]), Q 6∈ S(P, InSet,A)}.
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We plan to study the existence of transformations from S̄(P, InSet,A) to S(P, InSet,A) in
order to rewrite a program toward soundness. It is interesting to identify the properties
for which this can be done in a systematic way and the key for reaching soundness. The
intuition is that for reaching soundness with respect to a property A on an input set InSet
we should choose programs whose variations of property A are all considered by the input set
as stated in Theorem 3. Thus, in general, if we reduce variations of the considered property
by merging traces that are functionally equivalent even if they have diversified A properties
we would probably facilitate soundness. This needs to be formally understood, proved and
validated on some existing dynamic analysis.

4 Software protection: a new perspective

In the software protection scenario we are interested in preventing program analysis while
preserving the intended behaviour of programs. To face this problem Collberg et al. [9]
introduced the notion of code obfuscation: program transformations designed with the explicit
intent of complicating and degrading program analysis while preserving program functionality.
Few years later Barak et al. [3] proved that it is not possible to obfuscate everything but
the input-output behaviour for all programs with limited penalty in performances. However,
it is possible to relax some of the requirements of Barak et al. and design obfuscating
techniques that are able to complicate certain analysis of programs. This is witnessed by the
great amount of obfuscation tools and techniques that researchers, both from academia and
industry, have been developing in the last twenty years [8]. What it means for a program
transformation to complicate program analysis is something that needs to be formally
stated and proved when defining new obfuscating transformations. The extent to which an
obfuscating technique complicates, and therefore protects, the analysis of certain program
properties is referred to as potency of the obfuscation. A formal proof of the quality of
obfuscation in terms of its potency is very important in order to compare the efficiency of
different obfuscation techniques and in order to understand the degree of protection that they
guarantee. Unfortunately, a unifying methodology for the quantitative evaluation of software
protection techniques is still an open challenge, as witnessed by the recent Dagstuhl Seminar
on this topic [20]. What we have are specific measurements done when new techniques are
proposed, or formal proofs that reduce the analysis of obfuscated programs to well known
complex analysis tasks (like alias analysis, shape analysis, etc.).

In our framework, complicating program analysis means inducing imprecision in the
results of the analysis of the obfuscated program with respect to the results of the analysis
of the original program. This means that code obfuscation should induce false positives in
static program analysis and false negatives in dynamic program analysis.

4.1 Program transformations against static program analysis
The abstract interpretation framework has been used to reason on the semantic properties
that code obfuscation transformations are able to protect and the ones that they can still be
analysed on the obfuscated program. It has been observed that a program property expressed
by an abstract domain A is obfuscated (protected) by an obfuscation O : Prog → Prog on
a program P whenever [[P ]]A ≤A [[O(P )]]A, namely when the analysis A on the obfuscated
program returns a less precise result with respect to the analysis of the same property on
the original program P . The spurious information added to the analysis by the obfuscation
is the noise that confuses the analyst, thus making the analysis more complicated. The
relation between potency of code obfuscation and the notion of (in)completeness in abstract
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interpretation has been proven, as obfuscating a property means to induce incompleteness
in its analysis [22]. So, for example, the insertion of a true opaque predicate OT (see the
program in the middle of Figure 1) would confuse all those analyses that are not able to
precisely evaluate such a predicate and have to consider both branches as possible. No
confusion is added for those analyses that are able to precisely evaluate the opaque predicate
and consider only the true branch as possible, namely those analyses that are complete for
the evaluation of the predicate value. Following this idea, a formal framework based on
program semantics and abstract interpretation has been developed, where it is possible to
formally prove that a property is obfuscated by a given program transformation, compare
the efficiency of different obfuscating techniques in protecting a given property, define a
systematic strategy for the design of a code obfuscation technique for protecting a given
program property [17, 19, 22, 25]. This semantic understanding of the effects that code
obfuscation has on the semantics and semantic properties of programs as shown its usefulness
also in the malware detection scenario where malware writers use code obfuscation to evade
automatic detection [15, 16].

Thus we can say that the effects of functionality preserving program transformations on
program semantics and on the precision of the results of static analysis has been extensively
studied and a mature formal framework has been provided [15, 16, 17, 19, 22, 25].

4.2 Program transformations against dynamic program analysis

To the best of our knowledge, the effects of functionality preserving program transformations
on the precision of dynamic analysis have not been fully investigated yet. Following our
reasoning, the general idea is that dynamic analysis is complicated by program transformations
that induce false negatives while preserving program’s functionality. Let A ∈ Eq(Σ∗) denote
a property of interest for dynamic analysis. Inducing false negatives for the analysis of
a property A can be done by exploiting the partial observation of program’s executions
innate in the test set, and thus adding traces that do not belong to the test set and have
a different A property. Thus, the key for software protection against dynamic analysis is
software diversification with respect to the property under analysis. The ideal obfuscation
against the dynamic analysis of property A should specialise programs with respect to every
input in such a way that every input exhibits a different behaviour for property A. Namely,
an ideal obfuscation against A is a program transformation O : Prog → Prog such that
∀σ1, σ2 ∈ [[O(P )]] we have that A(σ1) = A(σ2)⇔ σ1 = σ2. In this ideal situation in order
to avoid false negatives the analyst should consider every possible execution trace of O(P )
since each trace exhibits a different aspects of property A, so missing a trace would mean
to miss such an aspect. This intuition is confirmed in a preliminary work in this direction
where it is shown how diversification is the basis of existing software protection techniques
against dynamic analysis [18]. This work provides a topological characterisation of the
soundness of the dynamic analysis of properties expressed as equivalence relations (as we
have done in Section 3.2.1). This formal characterisation is then used to define the notion of
transformation potency for dynamic analysis.

I Definition 6. A functionality preserving program transformation O : Prog → Prog is
potent for the analysis of A ∈ Eq(Σ∗) of program P if:
∀σ1, σ2 ∈ [[O(P )]] : [σ1]A = [σ2]A, ∀ν1, ν2 ∈ [[P ]] : Den(ν1) = Den(σ1),Den(ν2) =
Den(σ2) then [ν1]A = [ν2]A
∃ν1, ν2 ∈ [[P ]] : [ν1]A = [ν2]A for which ∃σ1, σ2 ∈ [[O(P )]] : Den(ν1) = Den(σ1),Den(ν2) =
Den(σ2) such that [σ1]A 6= [σ2]A
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[[P ]]/A [[O(P )]]/A

O

Figure 6 Transformation Potency.

Figure 6 provides a graphical representation of the notion of potency. On the left we have the
traces of the original program P partitioned according to the equivalence relation A induced
by the property of interest, while on the right we have the traces of the transformed program
O(P ) partitioned according to A. Traces that are denotationally equivalent have the same
shape (triangle, square, circle, oval), but different dimension since they are in general different
traces. The first condition means that the traces of O(P ) that property A maps to the
same equivalence class (circle and square), are denotationally equivalent to traces of P that
property A maps to the same equivalence class. This means that what is grouped together
by A on [[O(P )]] was grouped together by A on [[P ]], modulo the denotational equivalence
of traces. The second condition requires that there are traces of P (triangle and star) that
property A maps to the same equivalence class and whose denotationally equivalent traces in
O(P ) are mapped by A to different equivalence classes. This means that a defense technique
against dynamic analysis with respect to a property A is successful when it transforms a
program into a functionally equivalent one for which property A is more diversified among
execution traces. This implies that it is necessary to collect more execution traces in order
for the analysis to be precise. At the limit we have an optimal defense technique when A
varies at every execution trace.

The above definition of transformation potency for dynamic analysis has been validated
by modelling in the proposed framework some existing software defence strategies against
dynamic analysis for the extraction of the control flow graph of programs like Range Dividers
[2] and Gadget diversification [30]. In both cases it is possible to show that the proposed
transformations complicate the dynamic extraction of the control flow graph by adding new
diversified paths to the control flow graph, as stated in Definition 6. In the following we
report a simple example from [18] that shows how the key for obfuscating properties of data
values for dynamic analysis is diversification.

I Example 7. Consider the following programs P and Q that compute the sum of natural
numbers from x ≥ 0 to 49 (we assume that the inputs values for x are natural numbers).

P

input x;
sum := 0;
while x < 50
• o X = [0, 49] o
sum := sum + x;
x := x + 1;

Q

input x;
n : = select(N,x)
x := x * n;
sum := 0;
while x < 50 * n
• o X = [0, n ∗ 50− 1] o
sum := sum + x/n;
x := x + n;

x := x/n;



M.Dalla Preda 4:19

Consider a dynamic analysis that observes the maximal value assumed by x at program
point •. For every possible execution of program P we have that the maximal value assumed
by x at program point • is 49. Consider a state s ∈ Σ as a tuple 〈pp, [valx, valsum]〉, where
pp denotes the current program point, valx and valsum denote the current values of variables
x and sum respectively. We define a function τ : Σ→ N that observes the value assumed by
x at state s when s refers to program point •, and function max : Σ∗ → N that observes the
maximal value assumed by x at • along an execution trace:

τ(s) def=
{

valx if pp = •
∅ otherwise max(σ) def= max({τ(s) | s ∈ σ})

This allows us to define the equivalence relation Amax ∈ Eq(Σ∗) that observes traces with
respect to the maximal value assumed by x at •, as (σ, σ′) ∈ Amax iff max(σ) = max(σ′).
We can observe that all the execution traces of P belong to the same equivalence class of
Amax . In this case, a dynamic analysis of property Amax on P is sound whenever the test
set contains at least one execution trace of P . This happens because the property that we
are looking for is an invariant property of program executions and it can be observed on any
execution trace.

Let us now consider program Q equivalent to P , i.e., Den[[P ]] = Den[[Q]], where the
value of x is diversified by multiplying it by the parameter n. The guard and the body
of the while are adjusted in order to preserve the functionality of the program. When
observing property Amax on Q, we have that the maximal value assumed by x at program
point • is determined by the parameter n generated in the considered trace. The statement
n:=select(N,x) assigns to n a value in the range [0, N ] depending on the input value x. We
have that the traces of program Q are grouped by Amax depending on the value assumed by
n. Thus, A([[Q]]) contains an equivalence class for every possible value assumed by n during
execution. This means that the transformation that rewrites P into Q is potent according
to Definition 6. Dynamic analysis of property Amax on program Q is sound if the test set
contains at least one execution trace for each of the possible values of n generated during
execution.

5 Open research directions

We have provided an unifying view of the relations between properties and program trans-
formations and the precision of static and dynamic analysis in the standard analysis scenario
and in the software protection scenario. Researchers have proposed possible ways for tuning
the precision of static analysis while less attention has been posed to the formal investigation
of dynamic analysis. In this context it is worth to mention the recent work of O’Hearn [26]
that defines a formalism called incorrectness logic, which is similar to Hoare’s logic, and
allows us to prove the presence of bugs but not their absence, thus capturing the essence
of program testing. The incorrectness logic is based on a under-approximation triple that
plays a dual role when compared to the standard over-approximation triple that we are
used to see in Hoare’s logic. Indeed, while logic and symbolic reasoning are useful since
they can cover many states or program paths at once, they do not allow in general to cover
all paths and this makes it difficult to prove the absence of errors. The author claims the
necessity and usefulness of incorrectness logic that formalises under-approximate reasoning
in order to provide a logical proof of the presence of bugs. Such reasoning should of course
be combined with standard correctness proof in order to obtain a global view of program’s
runtime behaviour. The incorrectness logic of O’Hearn does not try to gain soundness,
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namely to avoid or reduce false negatives, but provides formal proofs for what can be derived
in an unsound context. Our idea is to investigate the extent to which it is possible to induce
or force soundness by modifying either the program, the property to be analysed or the
coverage criterion. Once we have understood when and how soundness can be forced we
should see how this interacts with incorrectness logic.

The preliminary work done in the investigation of program and properties transformations
towards sound dynamic analysis have pointed out many interesting aspects that need to be
studied and that we list below as future research directions.

The preliminary results that relate program properties, coverage criteria and the soundness
of the analysis should be generalised and extended to properties that cannot be modelled
as partitioning closures. Soundness of the analysis and transformation potency should
be redefined probably in terms of join-irreducible elements instead of equivalence classes.
This further investigation would probably lead to a classification of the properties usually
considered by dynamic analysis based on the domain model needed to express them: properties
of traces, properties of sets of traces, relational properties, hyper-properties. For each class
of properties it would then be interesting to derive a suitable obfuscation strategy. This
unifying framework would provide a common ground where to interpret and compare the
potency of different software protection techniques in harming dynamic analysis.

As regarding the transformation of properties towards soundness, we plan to verify if
and when it is possible to refine the coverage criterion C in order to ensure soundness with
respect to a given property A, or when it is possible to further abstract the semantic property
A in order to make it sound for a given coverage criterion C. This should be done starting
with properties that can be expressed as partitioning closures and then generalised to the
other classes of properties.

As regarding the transformation of programs towards soundness, it is important to
investigate when it is possible to transform a program P for which the dynamic analysis of a
given property A is sound (resp. unsound) into a different program P ′ which is functionally
equivalent to P and for which the dynamic analysis of property A is unsound (resp. sound).

It would also be important to extend the framework in order to take into account the
feasibility of the considered coverage criterion, maybe defining some constraints that a
program has to satisfy in order to guarantee the feasibility of a given coverage criterion, or
by modelling and measuring situations when full coverage is not possible.
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