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As members of the steroid receptor superfamily, androgen
receptors (ARs) have been traditionally identified as tran-
scription factors. In the presence of ligand, ARs reside in the
nucleus, where, upon ligand binding, the receptors dimerize
and bind to specific response elements in the promoter region
of hormone-responsive genes. However, in this report, we de-
scribe the discovery that ARs are also present in axons and
dendrites within the mammalian central nervous system. AR
expression in axons was identified in the rat brain at the light
microscopic level using two different antibodies directed
against the N terminus of the AR protein and nickel intensi-

fied 3�-3�-diaminobenzidine, and also using fluorescence
methods and confocal microscopy. This distribution was
confirmed at the ultrastructural level. In addition, AR immu-
noreactivity was identified in small dendrites at the ultra-
structural level. AR-immunoreactive axons were observed
primarily in the cerebral cortex and were rare in regions
where nuclear AR expression is abundant. The observation
that ARs are present in axons and dendrites highlights the
possibility that androgens play an important and novel extra-
nuclear role in neuronal function. (Endocrinology 144:
3632–3638, 2003)

ANDROGENS AND ANDROGEN receptors (ARs) have
powerful effects on the function of the central and

peripheral nervous system and play a crucial role in main-
taining masculine reproductive behaviors and neuroendo-
crine regulation (1). At the cellular level, androgens exert
survival and trophic effects on healthy developing (2–5) and
adult neurons (6), prevent or promote cell death in response
to neurotoxic insults (7, 8), and promote the regenerative
capacity of damaged adult neurons (9, 10).

Testosterone, the most prominent circulating form of an-
drogen in males, can be metabolized in the nervous system
into dihydrotestosterone (DHT) or estradiol. Traditionally,
therefore, androgens have been considered to exert their
effects via two classical steroid receptors, the AR and estro-
gen receptor (ER) (11). Both receptor types belong to the
ligand-activated nuclear receptor family (12). Members of
this family have been defined by their ability to bind to
specific DNA sequences in promoter regions of hormone-
responsive genes. Upon binding to these hormone response
elements in the DNA, the receptors are capable of exerting
powerful modulatory effects on transcription of specific
genes. Thus, the steroid receptors have been identified as
having a nuclear function. In addition to the classically de-
fined nuclear action of steroid receptors, membrane-associ-
ated receptors for gonadal steroid hormones have been pos-
tulated for years, based primarily on the rapid actions of
steroids that could not be attributed to transcriptional reg-
ulation (13–17). Considerable evidence has accumulated to

support the existence of these nonnuclear receptors (18–26)
and thus, ideas about the mechanisms of gonadal steroid
receptor action have been broadened to include extranuclear
sites.

In this report, we describe the observation that AR im-
munoreactivity is present in axons and dendrites in the rat
forebrain. The distribution of AR-immunoreactive (AR-ir)
axons within the forebrain, as detected at the light micro-
scopic level, is restricted primarily, although not exclusively,
to the cerebral cortex. This unique intracellular distribution
of AR points to several intriguing putative mechanisms for
AR action that remain unexplored.

Materials and Methods
Animals and tissue processing

Adult male Wistar rats from the in-house breeding colony at the
Instituto Cajal were used, as well as adult male Sprague Dawley rats
(Zivic-Miller, Pittsburgh, PA) housed at Loyola University Chicago.
Animals were kept on a 12-h light, 12-h dark cycle, with ad libitum access
to food and water. One group of animals (n � 3) was gonadectomized
under sodium pentobarbital anesthesia (40 mg/kg body weight) one
week before the animals were killed. Other animals (n � 10 for light and
confocal microscopic work; n � 3 for electron microscopic studies) were
gonadally intact at the time the animals were killed.

Experiments were conducted in compliance with the NIH Guide for
the Care and Use of Laboratory Animals, guidelines established by the
European Union (86/609/EEC), and the Institutional Committee on
Animal Care and Use at Loyola University.

Immunocytochemistry

Animals were anesthetized with sodium pentobarbital (50 mg) then
perfused via the left cardiac ventricle with 0.9% NaCl followed by
200–300 ml of 4% paraformaldehyde in 0.1 m PBS. Brains were postfixed

Abbreviations: AR, Androgen receptor; AR-ir, AR immunoreactive;
DAB, 3�-3�-diaminobenzidine; DHT, dihydrotestosterone; ER, estrogen
receptor; PB, phosphate buffer.
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for 4 h or overnight at 4 C. Brains were then transferred to PBS and
sectioned on a vibrating microtome the next day, or alternatively, sunk
in 30% sucrose-PBS, then frozen in dry ice and sectioned on a sliding
microtome. Sections were cut at 40 micrometers and stored in ethylene-
glycol based cryoprotectant at �20 C until processing for immuno-
cytochemistry.

For light microscopic detection of AR immunoreactivity, two differ-
ent polyclonal antibodies made in rabbit were used, PG-21 (3 �g/ml, gift
from Dr. Gail Prins, University of Illinois, Chicago, IL) and N-20
(1 �g/ml, Santa Cruz Biotechnology, Inc., Santa Cruz, CA). Primary
antibodies were diluted in 3% normal goat serum, 0.3% Triton X-100,
PBS. Free-floating sections were incubated overnight at 4 C in primary
antibody, then at room temperature for 2 h in secondary antibody
(biotinylated goat antirabbit, from Vector Laboratories, Burlingame, CA;
diluted 1:250 in PBS), then 1 h in ABC reagent (Immunopure ABC
peroxidase staining kit, made according to kit instructions, in PBS;
Pierce, Rockford, IL), with extensive rinses between incubations. After
several rinses in sodium acetate buffer (0.1 m, pH 7.2), sections were
transferred to a solution containing 50 mm nickel ammonium sulfate,
40 mg% 3�-3�-diaminobenzidine (DAB) and 0.0075% hydrogen peroxide
in sodium acetate buffer. Sections were transferred to fresh sodium
acetate buffer to stop the reaction, then rinsed in several changes of PBS
and mounted onto chrom-alum/gelatin subbed slides. Slides were de-
hydrated and coverslipped, then examined using a Leica (Wetzlar, Ger-
many) DMR microscope. Sections were examined from the olfactory bulb
through the caudal brainstem to identify potential sites of AR-ir fibers.
NeuroLucida software and a MicroBrightField imaging system (Burling-
ton, VT) were used to produce a parasagittal map through the forebrain and
brainstem to illustrate the distribution of AR-ir fibers. The Paxinos and
Watson atlas was used to assist in cytoarchitectonic analyses (27).

For fluorescence immunocytochemistry, sections were washed as
above, incubated in PG-21 overnight, and then incubated in a Cy-2
conjugated goat antirabbit secondary antibody (diluted 1:100 in rinsing
solution; Jackson ImmunoResearch Laboratories, West Grove, PA). The
tissue was then examined using a confocal scanning laser microscope
(Zeiss LSM 510 with argon 458/488 and HeNe 543 lasers; Carl Zeiss,
Jena, Germany).

For electron microscopy, animals were perfused with saline followed
by a fixative containing 4% paraformaldehyde and 0.05% glutaralde-
hyde in 0.1 m phosphate buffer (PB). Brains were then immersed in the
fixative for 1 h, rinsed in PB, and coronally sectioned on a vibrating
microtome at 50 �m. The areas of interest were dissected free, collected
into Eppendorf vials containing 10% sucrose in PB, and allowed to sink
in the sucrose solution. To enhance antibody penetration, the vials were
immersed in liquid nitrogen for 15 sec and then allowed to melt at room
temperature. This procedure was repeated three times. Sections were
then processed for immunocytochemistry following the protocol de-
scribed above for light microscopy and the PG-21 antibody, except that
Triton was omitted. The development of the peroxidase activity was
performed with DAB, intensified or not with nickel. Sections were post-
fixed in 1% osmium tetroxide in 0.1 m PB with 5% glucose, dehydrated
in an acetone gradient and embedded in Epon 812. Ultrathin sections
(50 nm) were cut on an ultramicrotome, mounted onto grids and were either
lightly counterstained with uranyl acetate and lead citrate or unstained.
Sections were observed with a Joel 1200EXII electron microscope and pho-
tographed. The criteria used to identify a structure as an axon were that it
was myelinated (to identify the shaft of an axon) or it contained presynaptic
vesicles. Dendrites were identified by their contact with presynaptic ter-
minals and the presence of postsynaptic densities.

In control experiments, sections were processed through all steps of
the immunocytochemistry except that a) the primary or secondary an-
tibody was eliminated or b) the primary antibody (used at a concen-
tration of 1 �g/ml) was preadsorbed overnight with the immunizing
peptide [5-fold excess by weight, as per instructions of Upstate Biotech-
nologies (Rochester, NY), calculated as 5 �g immunizing peptide per
microgram protein in the antiserum].

Results
Nuclear staining for AR

With methods to detect AR immunoreactivity using con-
ventional light microscopy, strong nuclear staining was ob-

served with both the PG-21 and N-20 antibodies in numerous
forebrain regions in all gonadally intact animals (Fig. 1). The
staining intensity within neurons was similar or slightly
greater with the PG-21 antibody than with the N-20, but the
distribution of the nuclear labeling was identical. Strong
nuclear signal was also observed with the confocal micro-
scope in the tissues reacted with PG-21 and a fluorochrome-
tagged secondary antibody (not shown). Preadsorption of
the primary antiserum, or elimination of the primary anti-
serum, eliminated nuclear staining (Fig. 1). In addition, a
basic local alignment search tool (BLAST) analysis for pep-
tide sequences homologous to those used as antigens to
produce the PG-21 and N-20 anti-AR antisera yielded no hits,
suggesting no overlap with other known amino acid
sequences.

Regional distribution of AR expression in cell nuclei

The regional distribution of nuclear labeling corresponded
entirely to previous reports on the distribution of AR ex-
pression in the rodent brain, which has been reported else-
where (28–33). Briefly, intensely labeled AR-ir nuclei were
detected within the bed nucleus of the stria terminalis and the
medial preoptic nucleus, the medial amygdala, and, in the

FIG. 1. Photomicrographs of nuclear AR stain in the medial amyg-
dala (A) and the lack of AR staining in an adjacent section incubated
in primary antiserum that had been preadsorbed with antigen (B).
Scale bar, 50 �m.
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hypothalamus, in the arcuate, ventromedial, ventral pre-
mammillary, paraventricular, and periventricular nuclei.
Numerous moderately labeled AR-ir cells were also detected
in CA1 and CA3 regions of the hippocampal formation and
central and cortical nuclei of the amygdala. Abundant but
less intensely stained AR-ir nuclei were also found in many
regions of the cerebral cortex, with different cortical regions
displaying a region-specific laminar distribution of AR
expression.

Cellular and regional distribution of AR expression
in neurites

Abundant AR-ir fibers (Fig. 2) were observed in gonadally
intact animals using the PG-21 antibody and methods in-
tended for either light microscopic detection or confocal mi-
croscopy. These AR-ir neurites had the appearance of axons,
with punctate swellings along their course that appeared to
belong to synaptic boutons. AR-ir fibers could frequently be
followed up to 100 �m, and often further. None of the fibers
could be traced to a cell soma. A thorough survey of the
forebrain and brainstem did not reveal any cell bodies with
long AR-ir fibers emerging from them. From here on, these
neurites, as observed at the light microscopic level, will be
referred to as axons.

AR-ir presumptive axons were most abundant in discrete
regions of the cerebral cortex (Fig. 3). These axons were
frequent in layer I, coursing parallel to the pial surface of the

brain. AR-ir axons were also abundant in other cortical lay-
ers, especially in layers II–III, perpendicular to the cortical
surface, and layer VI, in no predominant orientation. There
were regional, as well as laminar, differences in AR-ir axon
distribution in the cerebral cortex; more were observed in the
piriform, entorhinal, perirhinal, and cingulate regions of the
cortex than in the parietal cortex, and the frequency was
higher in caudal than in rostral regions. Small numbers of
AR-ir axons were also observed in the medial septum and
vertical limb of the diagonal band of Broca and the hip-
pocampal formation. In the amygdala, immediately lateral to
the cortical nuclei, numerous long AR-ir axons were ob-
served running both parallel and at an angle to the ventral
surface of the brain. AR-ir axons were frequently observed
in the cingulum and external capsule, remaining within the
white matter or continuing on into deep layers of the cerebral
cortex. AR-ir axons were also observed in the corpus callo-
sum and the anterior commissure in some specimens. Very
few AR-ir axons were found in regions where intensely
stained nuclei were observed, such as the preoptic area, bed
nucleus of the stria terminalis, and hypothalamus. There
were no marked regional differences in the appearance of
AR-ir axons, although the length that they could be followed
was greater in the cerebral cortex and amygdala than in other
regions. In addition, there were no apparent qualitative dif-
ferences in the distribution of AR-ir axons in Wistar and
Sprague Dawley rats.

FIG. 2. A, C, E, and F, AR-positive neurites in the cerebral cortex and (G) in the corpus callosum. B and D, AR-positive nuclei in the medial
amygdala (B) and premammillary nucleus (D). F, Confocal image. H, Control section adjacent to that in G; preadsorption eliminated all staining.
Primary antibodies: PG-21, A and B, E–H; N-20, C and D. All sections from intact male rats except E, which was from a gonadectomized male.
Scale bars, 20 �m.
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The PG-21 antibody produced intense and abundant sig-
nal in axons in gonadally intact animals. Within cortical
regions, up to several hundred axons were observed per
40-�m section. However, AR-ir axons were extremely rare in
the gonadectomized males (Fig. 2); AR-ir axons were only
observed in one of the three gonadectomized males, and in
this case only three axons were found throughout the fore-

brain, and these three were in the cerebral cortex. Similarly,
AR-ir nuclei were virtually absent in the gonadectomized
males, with a small number of cells with cytoplasmic label in
the lateral septum and periventricular nuclei.

Tissue that had been incubated with the N-20 antibody
also contained AR-ir axons. The frequency of detectable ax-
ons was much lower than observed with the PG-21 antibody
and the length that the axons could be followed was shorter
(Fig. 2).

Ultrastructural analyses confirmed the existence of AR-ir
axons (Fig. 4), based on the stringent criteria used. In addi-
tion, ultrastructural analyses revealed a low level of AR
expression in small dendrites and somata in pyramidal neu-
rons in the neocortex and in the amygdala (Fig. 4). In some
cases, the AR immunoreactivity was localized within pre-
synaptic or postsynaptic sites. The frequency of types of
synapses was not explored in these qualitative studies. Peri-
mitochondrial labeling was also frequently observed (Fig. 4).

Elimination of the primary or secondary antibodies or
preadsorption with the immunizing peptide abolished all
staining (Figs. 1 and 2).

Discussion

The existence of AR immunoreactivity in axons and den-
drites suggests a unique mechanism of action for androgens
that has not been previously explored. The morphology of
these fibers observed at the light microscopic level, with their
long processes punctuated by varicosities with the appear-
ance of synaptic boutons, is consistent with an axonal local-
ization, as confirmed by the ultrastructural results.

Numerous AR-ir axons could be observed emanating from
the cingulum and dorsal external capsule, and AR-ir axons
were observed in the corpus callosum and anterior commis-
sure of some specimens, although we did not observe any
fiber tracts densely filled with immunoreactive fibers.

None of the AR-ir axons in the cerebral cortex could be
followed directly back to a neuronal cell body, nor were
AR-ir fibers observed emerging from cell bodies in any re-
gion of the forebrain or brainstem, suggesting that insuffi-
cient AR is present in the proximal axon to identify the cell
body of origin. Numerous AR-ir axons were observed in
layer I coursing parallel to the pial surface, arguing that the
source of the AR-ir axons may be local, although the iden-
tification of AR-ir axons in the corpus callosum and external
capsule, and of myelinated axons, would argue for a more
distant site of origin.

The most abundant population of AR-ir axons that we
have observed to date was located in the cerebral cortex as
demonstrated in the parasagittal map (Fig. 3). The more
typical, and expected, pattern of AR protein expression
within nuclei was also observed in the cortex, but in contrast
with nuclear staining in subcortical cell groups within the
septum, preoptic area, hypothalamus and amygdala, the
staining intensity within cortical cell nuclei was much lower.
In most areas with intensely labeled AR-positive nuclei,
sparse or no AR-positive axons were observed.

Although no AR-ir dendrites were observed at the light
microscopic level, the ultrastructural analyses revealed a
population of small dendrites that were AR positive. Given

FIG. 3. Distribution of AR-ir axons in the forebrain and brainstem.
This map was produced using NeuroLucida software (MicroBright-
Field Inc.) and illustrates a single 40-�m parasagittal section, 2.9 mm
lateral to bregma (27). The entire section was scanned at �40, and all
axons observed were traced. An adjacent Nissl-stained section was
used to delineate cortical layers. Amy, Amygdala; cc, corpus callosum;
ctx, cortex; Ent, entorhinal cortex; fmi, forceps minor of the corpus
callosum; fmj, forceps major of the corpus callosum. Hi, hippocampal
formation; LV, lateral ventricle; Pir, piriform cortex; PRh, perirhinal
cortex.
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that the label in the dendrites was punctate and not homo-
geneously distributed throughout the dendrite, it is perhaps
not surprising that the label was not observed at the light
microscopic level. A similar finding has been reported for the
ER-positive dendrites in the hippocampal formation, which
can only be identified at the ultrastructural level (34).

Several different pieces of evidence, of both a biological
and technical nature, point to the specificity of AR immu-
noreactivity in axons and dendrites in the rat. First among the
biological evidence is that the distribution of the AR-ir axons
is restricted to specific brain regions. Second, punctate AR
immunostaining in fibers has been described in the lizard
cortex (35, 36), suggesting some phylogenetic conservation of
this expression. Third, AR-ir axons were abundant in go-
nadally intact male rats but extremely rare in gonadecto-
mized animals, suggesting that the presence of AR protein in
axons depends upon gonadal hormone exposure. Fourth,
other steroid receptors have been identified in axons; ultra-
structural studies have identified ER immunoreactivity in
axon terminals in the ventrolateral nucleus of female guinea
pigs (37, 38) and in the rat lateral habenula (39) and hip-
pocampal formation (34, 40).

The technical evidence arguing in favor of the specificity
of AR immunoreactivity in axons is principally that staining
was abolished by elimination of the primary or secondary
antibody or preadsorption of the primary antibody with the
immunizing peptide. In addition, AR-ir axons were observed
with different detection methods, that is, with either the ABC
method and nickel-intensified DAB as the chromagen, or
with a fluorochrome-labeled secondary antibody, and AR-ir
axons were detected with two different AR antibodies, PG-21
and N-20. PG-21 and N-20 are similar in that both are poly-
clonal antisera made in rabbit, and both were directed
against a synthetic peptide mapping at the amino terminus
of the AR, specific for rat AR (41) and human AR, respec-
tively. The number and intensity of stained axons was greater
by far with PG-21 than with N-20, perhaps because of dif-

ferences in the human and rat AR sequence in the amino
terminus (42).

ARs may function in a ligand-dependent manner as es-
sentially a traditional transcription factor, but in an extranu-
clear location, by binding to hormone response elements in
mitochondrial genes. Mitochondrial genes have been iden-
tified that are regulated by testosterone (43, 44) and have
functional androgen response elements (44). However, to
date, we have observed peri-mitochondrial labeling at the
ultrastructural level, but not intramitochondrial label, argu-
ing against this possibility.

A second, perhaps more likely, function for ARs in axons
may not involve the transcriptional regulatory function of
the AR, but instead modulation of membrane or cytoplasmic
physiology. In bone, both androgenic and estrogenic ligands
are able to bind to ARs or ER � or � and protect osteoblasts
and osteocytes from induced apoptosis (25); this effect de-
pends on the presence of the ligand-binding domain and a
nonnuclear distribution of receptor. Moreover, the antiapo-
ptotic effects of the steroids appear to be mediated through
Src-dependent phosphorylation of ERK and are not depen-
dent on transcriptional activity. These authors and others (24,
26) have suggested that the classical steroid receptors may
have rapid nongenotropic actions through interaction with
signal transduction pathways, perhaps binding to caveolin
or similar proteins, such as flotillin, which tether functionally
related components of several signal transduction cascades
to docking sites (e.g. caveolae). A recent study demonstrated
that ARs, and in particular the ligand-binding domain of AR,
coprecipitate with caveolin-1, and this interaction is ligand
dependent (45). Thus, ARs located in the cytoplasm may also
participate in intracellular signal transduction cascades. As
previously mentioned, membrane-associated functions for
steroid hormone receptors have also been postulated for
many years, and there is now compelling evidence from
transfection experiments that functional ERs can be ex-
pressed in the membrane and are capable of activating signal

FIG. 4. Ultrastructural localization of ARs in
axons and dendrites in the cerebral cortex. The
dense granular clusters represent label. A, Lon-
gitudinal; and B, cross-sectional views. Arrows
in A point to dense clusters of DAB-nickel de-
posits. The arrow in B points to a mitochondrion
with perimitochondrial label. C and D, Small
AR-positive dendrites. d, Dendrite; m, mitochon-
dria; pt, presynaptic terminal; sc, synaptic cleft.
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transduction cascades (21). Whether ARs have a similar ca-
pacity to activate signal transduction cascades via actions in
the membrane or cytoplasm is unknown, but is a possibility
that must now be explored in light of the present findings.

Studies of AR dynamics have shown that unliganded ARs
are present primarily in the cytoplasm, moving into the nu-
clear compartment within 15–60 min, and back to the cyto-
plasm for recycling (46, 47). This observation is consistent
with the finding that treatment with androgens up to 1 h
before the animals were killed enhances nuclear AR staining
in the brain (48). It is unlikely that ARs in axons represent a
pool of receptors ready to translocate to the nucleus, because
the receptors would have to be actively transported first
down the axon and then back to the cell soma; the time frame
for this retrograde transport would seem to be inconsistent
with such a role for axonal ARs.

A wealth of studies have now shown that gonadal hor-
mones, particularly estrogen, induce profound synaptic plas-
ticity in multiple brain regions in the adult (49–51) as well as
the developing brain (52). The finding that ERs (34, 38–40)
and ARs are located in both presynaptic and postsynaptic
elements may have important implications for the mecha-
nisms involved in steroid-induced plasticity in neuronal ar-
chitecture, in that steroids may modify neuronal architecture
not only via the classic transcriptional regulatory mecha-
nisms in the nucleus, but also perhaps via transcriptional
effects on mitochondrial genes or via direct protein:protein
interactions within the presynaptic and postsynaptic
terminals.
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