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We report the experimental observation and numerical simulations of a polarization instability of spatial vec-
tor solitons in an AlGaAs slab waveguide. At power levels where the nonlinear index change becomes com-
parable to the birefringence, the fast soliton becomes unstable. The instability is related to coupling of the
fast soliton to the slow radiation modes through phase matching. The combined effects of bifurcation and
radiation coupling are the processes ultimately limiting the stability of any single-polarization (fast and slow)
Kerr soliton. © 2002 Optical Society of America
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1. INTRODUCTION
In materials that exhibit the optical Kerr effect, where
the nonlinear index change is proportional to the irradi-
ance (Dn 5 n2I), optical fields localized in space (beams)
or time (pulses) can self-trap due to an optically induced
positive index change.1 In a situation where the nonlin-
ear effect exactly balances the diffraction (in the spatial
case) or dispersion (in the temporal case), optical solitons
exist, resulting in propagation without change of shape.2

Solitons have received a great deal of attention due to
their unique physical properties and a number of novel
applications, such as long-haul data transmission in opti-
cal fibers or light-induced, reconfigurable waveguide
structures that become possible. One of the main rea-
sons for the interest in solitons is their remarkable stabil-
ity, which leads to a particlelike behavior.3,4

It is also well known that in the Kerr case a single com-
ponent soliton is stable only in (1 1 1)-dimensional sys-
tems. Typical examples of such systems are fibers, where
the two dimensions are the retarded time and the propa-
gation direction, and slab waveguides, where they are the
two spatial in-plane dimensions. In (2 1 1), or higher,
dimensional geometries, solitons collapse in Kerr media.5

In this paper we deal with planar waveguides, which are
essentially a (1 1 1)-dimensional problem; thus the prob-
lem of collapse does not appear.

It is remarkable that in the Kerr case the scalar non-
linear problem in (1 1 1) dimensions is integrable.2
0740-3224/2002/040695-08$15.00 ©
Solitons in such systems are nonlinear modes of the non-
linear system, and they do not exchange energy either in
collisions with each other or in the process of interaction
with radiation.2,4 If we perturb the integrable model
changing the nonlinearity or take into account birefrin-
gence or other physical phenomena, then the system be-
comes nonintegrable and soliton collisions become inelas-
tic. The solitons now not only exchange energy during
collisions but also lose part of their energy into radiation
modes. At the same time, it is less known that not only
collisions lead to energy losses but even a single soliton
may lose energy during propagation due to interaction
with radiation modes. This happens due to the possibil-
ity of coupling between the soliton and the radiation
modes.

A very well known example of such process is soliton
propagation in fibers with higher-order dispersion.6 In
this case, the wave numbers of the linear dispersive
waves extend into the region where solitons exist, and
due to phase-matching conditions the solitons can inter-
act with radiation and emit small-amplitude linear
waves. Another example is the soliton propagation in bi-
refringent media.7 The difference between the refractive
indices of the two polarization components results in the
beating between the two components, and the soliton has
slow oscillations that contribute to the phase matching
between the soliton and the radiative waves. The energy
exchange becomes possible, and as a result the soliton
2002 Optical Society of America
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loses part of its energy. This process has been numeri-
cally investigated in detail in Ref. 7, and analytical calcu-
lations for a similar case such as soliton propagation in a
nonlinear directional coupler have been done in Ref. 8.
We should note that, even without interaction with radia-
tion, stability properties of vector solitons in birefringent
media are quite involved.9–12

What is important for us in the present paper is that,
due to the interaction with radiation waves, the soliton
may become unstable, having an instability growth rate
that is usually complex. In the case of third-order disper-
sion, the radiation phenomena are ‘‘beyond all orders’’ 6

and hardly could be observed experimentally. However,
in the case of birefringent media, the perturbation, due to
the energy-exchange terms in the propagation equation,
is not small at high-enough powers (even if the linear bi-
refringence is small), and radiation may be appreciable,
causing the soliton instability, which therefore could be
observed experimentally. In the present paper we report,
for the first time to our knowledge, an experimental ob-
servation of soliton instability, caused by the interaction
with radiation modes.

The rest of the paper is organized as follows. In Sec-
tion 2 we present the theoretical background for beam
propagation in Kerr birefringent slab waveguides, in Sec-
tion 3 we describe our numerical simulations and some
numerical results, and in Section 4 we show our experi-
mental results that are then compared with the numeri-
cal ones. Finally, Section 5 contains our main conclu-
sions.

2. THEORETICAL BACKGROUND
In many cases, soliton propagation can be treated as a
scalar problem where the evolution of the field is de-
scribed by a single nonlinear Schrödinger equation.2 In
optical fibers, and especially in planar waveguides, this
approach must be generalized due to the presence of lin-
ear birefringence. In standard fibers there exists a re-
sidual birefringence, which is mainly due to small devia-
tions from the cylindrical symmetry and is generally
weak. It typically changes with distance in a nondeter-
ministic manner so that it can be treated as a random
perturbation of an otherwise isotropic system. For mak-
ing polarization-preserving fibers it is necessary to intro-
duce artificially asymmetry in the core fiber in order to
have well-defined polarization states. For slab
waveguides, even those made from isotropic media, there
is a relatively large structural birefringence between the
TE (polarized in the plane, x) and TM (dominant polariza-
tion orthogonal to the plane, y) polarized eigenmodes.
When the index difference between the high-index film
and the bounding media is small (polarization beat
length . 0.1 mm), the case here, the z-polarized field
component for TM can be neglected. In this case with
well-defined birefringence, the vector nature of the elec-
tromagnetic wave needs to be taken into account, and the
system has to be described by a set of coupled nonlinear
Schrödinger equations for the amplitudes along both bire-
fringent axes. They are12
iuj 2 bu 1
1

2
utt 1 ~Cuuu2 1 Auvu2!u 1 Bv2u* 5 0,

ivj 1 bv 1
1

2
vtt 1 ~ uvu2 1 Auuu2!v 1 Bu2v* 5 0.

(1)

Here, the normalized coordinates are j 5 kz and t
5 kx, where z is the direction of propagation, x is the
transverse coordinate, k is the average propagation con-
stant, and the asterisk denotes complex conjugate. The
functions u and v are the normalized amplitudes along
both birefringent axes (parallel to x and y, respectively),

u 5 A n2

deff n
Ex , v 5 A n2

deff n
Ey , (2)

n and n2 are the linear and nonlinear refractive indices in
the medium, and deff is the effective height of the slab
waveguide, all defined for the appropriate polarization.
The normalized birefringence b is given by b 5 (ky
2 kx)/(2k), where kx and ky are the waveguide propaga-
tion constants for the two modes polarized along x (TE
mode) and y (TE mode), respectively.

The Kerr nonlinearity, the magnitude of which is given
by n2 , is further characterized by the parameters A, B,
and C. Here C describes the anisotropy of self-phase
modulation, A is the ratio of cross-phase to self-phase
modulation, and B is the ratio of four-wave mixing to self-
phase modulation [last term in Eqs. (1)]. B couples en-
ergy between the two polarizations. The values of the co-
efficients A, B, and C are determined by the
characteristics of the medium. In optical fibers, B 5 1
2 A, A 5 2/3, and C 5 1. For this set of parameters
three one-parameter families of solitons exist. In addi-
tion to two families of solutions linearly polarized along
the fast and slow axes, respectively, a branch of ellipti-
cally polarized solitons emerges at power levels above the
critical one.9 In semiconductor planar waveguides the
coefficients have different values, and this leads to more
complicated bifurcation patterns. Two additional non-
trivial solutions of Eqs. (1) that possess a mixed polariza-
tion have been identified.13

The polarization instability of the fast soliton in fibers
has been discovered numerically in Ref. 14. In particu-
lar, the symmetry-breaking soliton instability has been
investigated theoretically in Ref. 15 and generalized to
the case of solitons in planar waveguides in Ref. 16.
However, it was found in Ref. 7 that there are two differ-
ent physical reasons for the instability of solitons in bire-
fringent media. First, it is the appearance of the modes
with mixed polarization that causes the fast (and slow)
solitons to be unstable above a certain threshold. Sec-
ond, even in the absence of the branches with mixed po-
larizations, fast solitons are unstable due to radiation
phenomena.7

The reason why the fast solitons are unstable at power
levels below the bifurcation point is the coupling to radia-
tion fields. Namely, perturbations of the fast soliton os-
cillate around zero so that the fast soliton oscillates
around its average shape. These oscillations along the
propagation direction induce a periodic grating on top of
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the soliton. As a result, phase-matching conditions in
the longitudinal direction can be fulfilled, and the soliton
couples to orthogonally polarized radiation fields through
the grating. As is well known, the phase matching in the
transverse direction for narrow sources is not required
when the width of the beam is comparable to or smaller
than the wavelength. The narrower the beam, the stron-
ger is radiation. In this sense the phenomenon is similar
to the surface-emitted second-harmonic generation. In
our case, the higher the soliton power, the larger is its an-
gular spectrum because the soliton becomes narrower,
and therefore the more likely is its coupling to radiation
modes. This instability has a complex exponent in the
decay factor,7 and its growth rate is the real part of this
exponent. Numerical calculations below correspond to
this real part.

Experimentally, the instability of the fast temporal soli-
ton in fibers related to the symmetry breaking has been
studied in Ref. 17. This instability also occurs in fiber
lasers,18 but in that case it is even more complicated due
to the presence of nonconservative effects. Instabilities
related to radiation have not been studied experimentally
before, either in the temporal or in the spatial case.

Another interesting fact is that, in semiconductor
waveguides, symmetry-breaking bifurcations occur from
both (TE and TM) branches of orthogonally polarized soli-
tons, with two new eigensolutions emerging, which are el-

Fig. 1. (a) Growth rate (numerical results) of the instability ver-
sus total guided power for TM (dotted curve) or TE (dashed
curve) solitons. The power region that is not achievable in the
experiment is shown in gray shading. The horizontal axis is
given in units of birefringence-normalized power. Q/Aubu 5 1
corresponds to a power of 300 W. (b) Real (dotted) and imagi-
nary (dashed curve) parts of the perturbation eigenmode with
the largest growth rate associated with the fast soliton (solid
curve) for Q/Aubu 5 4 (shown by the solid dot in the upper plot).
The eigenmode has only the slow component. The solid curve
shows the transverse profile of the fast soliton.
Fig. 2. (a) Beam-propagation-method simulation of the evolu-
tion of a fast soliton in the region where the radiation-related in-
stability develops. The emergence of a TE component upon
propagation simultaneously with the emission of small disper-
sive waves is clearly seen. (b) Propagation of the slow soliton.
This plot shows that the TE mode is stable. A 5 0.95, B
5 0.5, C 5 1, Q/ubu1/2 5 4.

Fig. 3. Amount of power contained in the main beam versus
normalized propagation distance.

Fig. 4. Beam profiles (in logarithmic scale) during propagation
of the fast soliton initially perturbed in accordance with Eq. (6),
at Z 5 jubu 5 0, 10, and 20. (a) TE-component and (b) TM com-
ponent. The beam power Q/Aubu 5 4.
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Fig. 5. Schematic of the birefringence measurement. The input polarization was varied by rotating the half-wave plate, and the trans-
mission after the sample with the polarizer at u 5 45° was measured for different wavelengths between 1530 nm and 1630 nm, with a
tunable color-center laser as the source.
liptically and linearly polarized, respectively.19 The bi-
furcation points on these branches are located at different
power levels depending on the actual values of the param-
eters A, B, and C. In this case, even the slow soliton be-
comes unstable but at a different (usually higher) thresh-
old power. As we show in Section 3, for the slow soliton,
only the symmetry-breaking instability takes place but
not the one related to radiation. Hence planar
waveguides have soliton features that are absent in fi-
bers, and they therefore deserve special attention. The
existence of two new soliton branches has been confirmed
theoretically for the particular case of anisotropic cubic
media that include semiconductor materials such as
GaAs, AlGaAs, or InSb in Ref. 20.

3. NUMERICAL SIMULATIONS
Equations (1) can be further simplified with the following
rescaling that allows us to eliminate one parameter, b:

U 5
u

Aubu
, V 5

v

Aubu
, Z 5 ubuj, X 5 tAubu. (3)

Fig. 6. Transmission measurement with and without the wave-
guide sample for the birefringence measurement.
With the above change of variables and assuming that b
is negative, the propagation equations become

iUZ 1 U 1
1

2
UXX

1 ~CuUu2 1 AuVu2!U 1 BV2U* 5 0,

iVZ 2 V 1
1

2
VXX

1 ~ uVu2 1 AuUu2!V 1 BU2V* 5 0. (4)

We study the stability of the solitons linearly polarized
along the fast and the slow axes using the linearization
method that is analogous to the case of low-birefringent
fibers (see details in Ref. 21). Figure 1(a) presents the
numerical results obtained from linear-stability analysis.
Namely, it shows the largest instability growth rate ver-
sus Q/Aubu, where Q is Q 5 *2`

` (uuu2 1 uvu2)dj.
Similar results were obtained for slightly different val-

ues of the parameters A, B, and C. Namely, both types of
solitons are unstable just above its corresponding bifurca-
tion point. In addition, the instability related to radia-
tion appears at power levels below the bifurcation point
for the fast solitons. Figure 1(b) shows the slow compo-
nent of the eigenfunction of perturbation with the largest
growth rate associated with the fast soliton, which is also
plotted in the figure, for Q/Aubu 5 4, i.e., in the region be-
low the bifurcation point. The perturbation oscillates
around zero and is much broader than the fast soliton, an-
ticipating what will be the actual behavior of these soli-
tons on propagation, i.e., that small dispersive waves will
be emitted from the center of the soliton as we show from
the numerical solution of Eqs. (4). Note that the eigen-
function of perturbation associated with the fast soliton
does not have the fast component.

Figure 2 illustrates the evolution of (a) a fast soliton
and (b) a slow soliton slightly perturbed as they propagate
along the waveguide. Namely, we used as input the fol-
lowing:

~a! U 5 0.01V, V 5 2 sech~2X !, (5)

~b! U 5 2 sech~2X !, V 5 0.01U. (6)

Their corresponding energy is in both cases Q/Aubu 5 4;
thus we are below the bifurcation point. Clearly the slow
soliton is stable, whereas the fast one is not. Part of its
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energy is transferred to the TE component, and in this
process much of its energy is radiated away. (The pulse
profiles are symmetric around t 5 0; thus what we ob-
serve in the right part of the beam happens also in the left
part, which is only partially plotted.) The importance of
the radiation emission is clearly demonstrated in Fig. 3,
which shows the energy contained in the main beam ver-
sus the propagation distance. Initially all the energy is
contained in the main beam, and it remains there when
the input beam is a slow soliton, but it decreases quickly
during propagation if the input is the fast soliton. On
the other hand, Fig. 4 shows the beam profiles at different
propagation distances, namely, at Z 5 0 (continuous
curve), 10 (dotted curve) and 20 (dashed curve) in a
y-logarithmic scale. In total agreement with the pertur-
bation analysis the slow component acquires a larger ped-
estal than the fast component that broadens and grows on
propagation; i.e., radiation is mainly emitted initially in
the slow mode.

In Section 4 we compare the experimental results with
numerical ones. In order to have an idea of the corre-
spondence between the physical units and the adimen-
sional ones, let us take typical values deff 5 1.8
3 1024 cm, n2 5 1.5 3 10213 cm2 W, and b 5 28.5
3 1025. Then, for l 5 1.57 we get for the power

P 5
deffl

2pn2
Q ' 29984QW; (7)

thus Q/Aubu 5 1 corresponds to a power P ' 300 W, a
sample length of 1.5 cm corresponds to ZL 5 ubujL ' 17,
and a beam width of 1.8 mm corresponds to Xw 5 Aubutw
' 1.8.

4. EXPERIMENTAL RESULTS
Experimentally, the principal problem in studying insta-
bilities in Kerr slab waveguides is to identify a material
system in which the response is truly Kerr. In addition,
the birefringence should be small enough and the Kerr co-
efficient large enough that instabilities will occur before
the damage threshold is reached. In our experiment we
used the half-bandgap nonlinearity of AlGaAs. The
samples were grown by molecular-beam epitaxy on a
GaAs substrate. The refractive-index tuning required
for defining the waveguide structure was achieved by
changing the Al/Ga ratio.

The lower cladding layer was 4 mm thick and consisted
of Al0.24Ga0.76As (n 5 3.325 at 1550 nm). The high-
index waveguide core was 1.5 mm thick and consisted of
Al0.18Ga0.82As. Finally, the upper cladding was a 1.5-mm-
thick layer of Al0.24Ga0.76As (n 5 3.336 at 1550 nm).
Slab waveguides, 15 mm long, were cleaved from the wa-
fer. The effective thickness of the resulting waveguide

Fig. 8. Horizontal line scans of the near-field image of the soli-
ton showing the input beam (dots), the shape of a diffracted low-
power beam (dashed curve), and the soliton (solid curve) at the
end of the sample.
Fig. 7. Experimental setup: PBS, polarizing beam splitter; l/2, half-wave plate; det, detector; cam, camera.
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was 1.8 mm. From previous measurements in similar
samples, we found that in the 1.55-mm-wavelength region
the nonlinear response is effectively Kerrlike (for photon
energies just below one half of the semiconductor band-
gap), with n2 5 1.5 3 10213 cm2/W, A ' 1, B ' 0.5, and
C ' 1.17 For the given waveguide structure, this results
in n2 eff 5 1.5 3 10213 cm2/W. In such samples, single-
polarization, Manakovlike, and vector solitons have all
been observed under appropriate conditions.19,20,22 The
typical birefringence of such samples was .1023, which
results in the critical power required for the observation
of instabilities approaching the damage threshold of the
samples.

Due to its cubic crystal symmetry, bulk AlGaAs exhibits
no material birefringence. In molecular-beam-epitaxy
grown AlGaAs waveguides such as the one used for this
experiment, the value of the birefringence has been
known to differ considerably from the structural wave-
guide birefringence due to stress induced by the growth
process. The effects of the instability scale with the
value of the waveguide birefringence; therefore a mea-
surement of this parameter is crucial for the evaluation of
the experimental results.

We measured the birefringence by launching a linearly
polarized low-power input beam with a varying angle of
the launch polarization to the TE axis and by analyzing
the polarization state at the waveguide output as a func-
tion of wavelength. The setup is shown schematically in
Fig. 5. A continuously tunable color-center laser (Bur-
leigh FCL-120) was used as a light source, and the input
polarization was varied by use of a half-wave plate. At
the waveguide output, an analyzer at 45° to both the TE
and TM axes was used in front of a detector. Special care
was taken so that the only wavelength dependence of the
experiment arose from the sample itself.

The birefringence-induced phase delay G between the
TE and TM depends on the sample length L, the birefrin-
gence nx 2 ny , and the wavelength l:

G 5
2p

l
~nx 2 ny!L. (8)

The different values of G result in varying transmission as
a function of the angle of the input polarization with the
wavelength axes. Figure 6 shows the transmission as a
function of half-wave-plate angle V for two wavelengths,
with and without the sample. Measurements were per-
formed at a number of wavelengths in order to avoid any
ambiguity in the value of G with respect to multiples of
2p. Neglecting the wavelength dispersion of the birefrin-
gence, we found nx 2 ny 5 5.5 6 1.0 3 1024, which is
considerably higher than the calculated structural bire-
fringence for this waveguide configuration (nx 2 ny
5 1.5 3 1024). This yields b 5 28.5 3 1025. The ex-
periments for the polarization instability were performed
with a lithium triborate based optical parametric
generation/amplification system with a 10-Hz repetition
rate and an idler wavelength of 1.57 mm, pumped at 0.532
mm with a doubled Nd:YAG laser with a subsequent re-
generative amplifier. Pulse lengths were of the order of
20 6 5 ps, with up to 1.2 mJ of energy. The system oper-
ated below the saturation point for the parametric process
and had a shot-to-shot rms stability of 630%.

The experimental setup is shown in Fig. 7. The launch
power was varied with a half-wave-plate/polarizer combi-
nation, which was operated by a stepper motor. A second
half-wave plate was used in order to control the polariza-
tion state with which the soliton was launched. The
crossed-polarizer transmission was 2 3 1024. However,
with the sample present in the setup, the best extinction
ratio decreases to 2 3 1023 for both input polarizations
due to waveguide imperfections so that, during launch
and propagation, 0.2% appears in the crossed polariza-
tion. This acts as a seed for the polarization-conversion
process. The beam was then resized, and a cylindrical
telescope was used to form an elliptical in-coupling spot,
thus launching solitons ;12 mm wide (ellipticity 1:8).
For solitons of width 12 mm, the present sample is
roughly ten diffraction lengths long, and the soliton peak
power is '500 W. The beam was coupled into the guide
with a 403 microscope objective. The output was imaged
by a 103 microscope objective; TE and TM components
were separated by a second polarizing beam splitter and
imaged onto a camera, or a detector. Each detector was
calibrated and read out with boxcar integrators, and the
signal was averaged over 10 pulses. In Fig. 8, a horizon-

Fig. 9. Experimental irradiance ratio of weak to strong polar-
ization versus total guided power for a beam launched into the
waveguide polarized along the (a) x axis (TE component) or (b) y
axis (TM mode).
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tal line scan of the input spot and the soliton at the end of
the waveguide is shown, together with the theoretical
curve for the (diffracted) low-power beam at the end of the
sample. Also, an image of the soliton near field at the
waveguide end face is shown.

In order to investigate the stability of vector solitons in
this system, we launched solitons that were linearly po-
larized along the x and y axes, respectively (i.e., TE and
TM polarized) by selecting the proper angle for the half-
wave plate before the polarizer. We then changed the
power launched (keeping the beam width at 12 mm) by ro-
tating the half-wave plate before the polarizer. Note that
although input beams with powers below or above 500 W
do not couple directly at the input to solitons, they gener-
ate solitons after some propagation by trade-offs between
the peak power and the width.23 With no polarization in-
stability present, the fraction of the output light in the po-
larization orthogonal to the one launched (referred as the
‘‘weak’’ polarization as opposed to the ‘‘strong’’ polariza-
tion launched) should be constant. It cannot, however, be
expected to be zero due to a finite amount of leakage
through the polarizer and stray scattering. Prior to us-
ing this setup for actual measurements, we carefully cali-
brated the measurement system in order to ensure that
there was no power dependence in the transmission of ei-
ther polarization.

We took images of the soliton launched into the wave-
guide with an IR-sensitive camera and a frame grabber.
Figures 9(a) and 9(b) show our results for TM and TE soli-
tons launched respectively: At low powers, there is con-
siderable uncertainty in both the weak and the strong sig-
nals due to the low signal levels and consequently the
ratio of weak/strong fluctuates strongly at low powers.
At higher power levels, for the slow mode (TE), the rela-
tive amount of light polarized orthogonal to the launch di-
rection is constant, independent of launched power. For
the fast mode (TM), an increasing amount of light is
coupled to the orthogonal polarization with increasing in-
put power, indicating an instability of this mode.

Figure 10 shows the numerical results for the simula-
tion of the above experiment for cw input beams. There
is good qualitative agreement with the results of the ex-

Fig. 10. Theoretical irradiance ratio of weak to strong polariza-
tion versus total guided power for a TM (dotted curve) and TE
(dashed curve) Gaussian beam launched into the waveguide.
The power region that is not achievable in the experiment is
shown in gray.
periment, which show that the TE mode is stable and the
TM mode unstable. We did not perform a detailed analy-
sis of the data and direct comparison with theory because
of the large uncertainties in the laser’s shot-to-shot peak
power and in the birefringence. The waveguide-coupling
efficiency makes the exact location of our experiments in
Fig. 1 unknown to a factor of at least 50% and because for
most of the power range investigated the pulsed beams
launched have to first evolve into solitons with propaga-
tion distance. However, it is noteworthy that the anoma-
lous distribution in the noise in the data for TE/TM, i.e.,
always to the high conversion side, is characteristic of
exponential-gain processes in which a small increase in
power produces greatly increased polarization conversion.

5. CONCLUSIONS
We have experimentally observed and theoretically ana-
lyzed the radiation-related polarization instability of spa-
tial vector solitons in Kerr media.

ACKNOWLEDGMENTS
This research was supported at the Center for Research
and Education in Optics and Lasers, by the National Sci-
ence Foundation and a U.S. Army Research Office Muli-
disciplinary University Research Initiative, at the Uni-
versity of Glasglow by the Engineering and Physical
Science Research Council, and at the Instituto de Óptica
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