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Abstract

The effects of an ice-shelf collapse on inland glacier dynamics have recently been
widely studied, especially since the breakup of Antarctic Peninsula’s Larsen-B ice shelf
in 2002. Several studies have documented acceleration of the ice streams that were
flowing into the former ice shelf. The mechanism responsible for such a speed-up lies5

with the removal of the ice-shelf backforce. Independently, it is also well documented
that during the last glacial period, the Northern Hemisphere ice sheets experienced
large discharges into the ocean, likely reflecting ice flow acceleration episodes on the
millennial time scale. The classic interpretation of the latter is based on the existence
of an internal thermo-mechanical feedback with the potential to generate oscillatory10

behavior in the ice sheets. Here we would like to widen the debate by considering
that Larsen-B-like glacial analog episodes could have contributed significantly to the
registered millennial-scale variablity.

1 Introduction

Over the last two decades climate warming has begun to noticably affect the Antarc-15

tic Peninsula. Annual mean air surface temperatures have increased by ∼ 3K (e.g.
Vaughan et al., 2003). Ice shelves are also responding rapidly to a warmer ocean (e.g.
Cook et al., 2005; Jacobs et al., 2011) and three major sudden collapses have been
observed: the Larsen A in January 1995, Wilkins in March 1998 and the Larsen B in
March 2002.20

The potential effect of an ice-shelf breakup on inland ice flow was already predicted
some decades ago (Hughes, 1977; Thomas, 1979). A confined ice shelf exerts a
backforce via longitudinal stresses on the inland glaciers that feed it. However, the
quantification of this mechanism remains highly model-dependent, while at the same
time, the limited observations suggested more stable glacier–ice-shelf behavior (Alley25

and Whillans, 1991; Vaughan, 1993) than expected theoretically. By focusing on the
Larsen-B case, several studies based on satellite observations have finally highlighted
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the importance of the ice-shelf buttressing effect for understanding ice sheet mass
balance and also for accurately projecting sea level changes in the context of a warming
ocean (Rignot et al., 2004; Scambos et al., 2004; Hulbe et al., 2008; Rott et al., 2011).

Meanwhile, the study of marine sediment cores has revealead pseudo-cyclical
millennial-scale variability in the amount of ice rafted debris (IRD) present in the North5

Atlantic floor during last glacial period (Heinrich, 1988). Some episodes of an unusu-
ally large amount and especially widely dispersed IRDs (near the coast of Portugal)
have been so-called Heinrich events (HEs). These Heinrich layers (Hemming, 2004)
are primarily composed of detritical material from the areas around Hudson Bay (Bond
et al., 1992). However, without strictly being considered as Heinrich events, several10

peaks of IRDs can be counted between the formal HEs, usually during relative minima
of temperature in Greenland (i.e., during stadials) and likely reflect enhanced iceberg
production from the Laurentide ice sheet (LIS). Different mechanisms have been pro-
posed to explain these ice discharge events. The “classical” explanation considers
these to be internal oscillations of the LIS associated with cyclical switching between15

a frozen and a temperate basal ice layer (MacAyeal, 1993; Calov et al., 2002). On the
other hand, the potential effects of an ice-shelf breakup were also postulated to play an
important role, via atmospheric warming (Hulbe et al., 2004), tidal effects (Arbic et al.,
2004), sea-level rise (Flückiger et al., 2006) and/or oceanic subsurface warming (Shaf-
fer et al., 2004; Clark et al., 2007; Alvarez-Solas et al., 2010b, 2011; Marcott et al.,20

2011). Concerning the latter hypothesis, proxy studies have revealed large changes in
both mid-high latitude oceanic heat content (i.e., during Dansgaard-Oescheger events)
(e.g. Dansgaard et al., 1993; Hodell et al., 2010) and atmospheric temperatures, with
strong implications for ice-shelf stability. Moreover, the recent availability of the first
generation of hybrid (ice-sheet–ice-shelf; SIA/SSA) models applied to the Laurentide25

makes this scenario fully testable. Here we briefly discuss results of the hybrid model
GRISLI by showing that the collapse of the Laurentide ice shelves indeed had the
potential to strongly modulate significant ice discharges on the millennial time scale
during the last glacial period.
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2 Model setup and experimental design

The three-dimensional model, GRISLI, treats both grounded and floating ice on the
hemispheric scale. It was developed by Ritz et al. (2001) and validated over Antarctica
(Ritz et al., 2001; Philippon et al., 2006; Alvarez-Solas et al., 2010a) over Fennoscan-
dia (Peyaud et al., 2007) and over the Laurentide (Alvarez-Solas et al., 2011). It ex-5

plicitly calculates the LIS grounding line migration, ice-stream velocities and ice-shelf
behavior. Inland ice deformation is computed according to the stress balance given by
the shallow ice approximation (Morland, 1984; Hutter, 1983). Ice shelves are described
following MacAyeal (1989) and ice streams are also treated under MacAyeal’s L1 equa-
tion, thus they are considered as dragging ice shelves. A more detailed description of10

the model’s dynamics can be found in Ritz et al. (2001); Peyaud et al. (2007); Alvarez-
Solas et al. (2011) and references therein. In order to isolate the dynamic effects of the
ice-shelf collapse, the surface climate imposed on the ice sheet is not time-evolving.
Climate fields (including subsurface oceanic temperatures used for computing ice-shelf
basal melt) are based on the standard CLIMBER-3α simulation of the last glacial max-15

imum (LGM) (Montoya et al., 2005; Montoya and Levermann, 2008). Ice-shelf breakup
is ensured here by quadrupling the former standard basal melt rates over all Laurentide
ice shelves. The timing of ice-shelf response to this enhanced basal melt is labelled
in Figs. 2 and 3. We hereafter analyze the consequence of such an imposed ice-shelf
collapse on three different Laurentide ice streams (i.e., McLure Strait, Amundsen Gulf20

and Hudson Strait ice streams; see Fig. 1, top), while at the same time, we compare
the Crane Glacier response to the observed Larsen-B disappearance (Fig. 1, bottom).

3 Results

Despite the clear difference in size, Laurentide ice streams also react significantly to
the breakup of their respective ice shelves, just as Crane Glacier did after the Larsen-B25

collapse (Fig. 2). Within a spatio-temporal scale two orders of magnitude larger (i.e.,
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thousands vs. tens of kilometers; millennia vs. decades) the GRISLI model shows
that the Hudson Strait ice stream accelerates similarly following the confined Labrador
ice shelf breakup (Fig. 2). In the case of the Crane Glacier, satellite data indicate a
large decrease in the surface elevation occurred within the post-collapse months. The
stress perturbation at the glacier front associated with complete ice shelf removal to5

the grounding line initiates the acceleration which, in turn, stretches the ice and thins
it. The associated lowering of the glacier surface then propagated upstream through
dynamic coupling over the ensuing months and has continued for several years. The
post-collapse period is characterized by similar velocity values along the Crane glacier
profile (i.e., a speed-up of ∼1300 m yr−1 near the grounding line), suggesting that the10

ice flow has not yet adapted to the new boundary conditions and a balance state still
has not been reached (Rott et al., 2011).

Similarly, the Labrador ice shelf thinning and enhanced calving reduce ice-shelf but-
tressing, which allows faster flow. This pattern is successfully captured by the GRISLI
model: the imposed (over 1000 years) fourfold increase in ice-shelf basal melting trans-15

lates into a complete removal within 300 years (Figs. 2 and 3). A progressive accel-
eration is simulated near the grounded line due to ice thinning. Once the ice shelf
is missing and the calving front has shifted to the grounded line, velocities appear to
reach a steady state characterized by a strong increase in ice flow (i.e., a speed-up of
∼1800 m yr−1 near the grounding line). Returning to the former floating-ice basal melt20

rates then allows a phase of ice-shelf regrowth, which favors a gradual decrease in ice
velocities. As the ice shelf regrows, inland ice flow substantially decelerates, respond-
ing to an increase in the buttressing caused by the new confinement of the Labrador
ice shelf.

The simulated effects of the ice-shelf breakup on the far inland dynamics depend25

on the magnitude of the former ice-shelf buttressing. In the case of the Amundsen
Gulf, a lack of any enbayment means that the ice shelf spreads anisotropically from the
grounding line, thus not generating any substantial backforce. An ice flow acceleration
is nevertheless simulated near the grounding line as a consequence of the ice-shelf
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collapse and ice thinning from enhanced basal melt. But this effect only propagates
inland marginally (Fig. 3; bottom-right panel). Further changes, as well as changes
inland, in this ice stream’s velocities are much more likely responding to internal vari-
ability than the ice-shelf collapse. Meanwhile, because of topographical characteris-
tics, the MClure Strait ice stream flows into a partially embayed ice shelf. This results5

in more evident downstream acceleration following the ice-shelf’s collapse (Fig. 3; top-
right panel). This effect clearly propagates upstream and begins to cease when the ice
shelf buttresses again.

4 Discussion

The hybrid model used here simulates different levels of ice-stream acceleration de-10

pending on the size and geometry of the former ice shelves that collapse. As a con-
sequence of the thinning simulated along the profile, the upstream parts of the Hud-
son Strait ice stream suffered a thickness reduction of several hundred meters. This
translates into a less pronounced surface slope along the profile and an associated
decrease in the gravitational driving flow, explaining the reduced velocities during the15

re-buttressing period with respect to the initial state (Figs. 2 and 3). At this point, a new
Labrador ice-shelf collapse would then cause a weaker acceleration, even for a similar
magnitude buttressing removal: as suggested by Schoof (2007), the grounding line
flux is about half as sensitive to buttressing as it is to ice thickness. This phenomenon
of distinct responses to the same ice shelf removal depending on the inland glacier20

behavior prior to the collapse opens the way to speculations about oscillatory mecha-
nisms. In other words, the existence of two different characteristic times (i.e., the time
needed for ice shelf regrowth and re-buttressing and the time needed for thickening at
the grounding line) gives the system a non-linearity potentially appropriate to induce
oscillations.25

In light of these results, our answer to the question posed in the title of this pa-
per is certainly yes. However, several aspects likely pertinent to this analogy remain
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uncertain. Firstly, the main motivation for considering that glacial ice-shelf collapses
may have contributed significantly to Laurentide millennial-scale variability lies with
only a single present-day example, the Larsen-B breakup. One could believe, however,
that this is not a problem given that the ice-shelf buttressing effect is based on robust
physics. Nevertheless, without using Full-Stokes models, several uncertainties remain5

in the numerical simulation of these physical processes. For example, as documented
by Bueler and Brown (2009), the shallow shelf approximation is an effective “sliding
law” for ice-stream flow within the context of hemispheric ice-sheet modeling. How-
ever, the hybrid approach used here for calculating ice velocities implies, by default,
a sharp transition between areas controlled by the SIA uniquely and areas were both10

SIA and SSA are computed. The criterium followed here for avoiding potential numer-
ical instabilities in this transition zone consists of computing the SSA terms of a larger
area than the strict region in which these terms are applied (which is determined by
the presence of basal water and sediments). Therefore, SSA terms are already com-
puted for areas susceptible to becoming ice streams or ice shelves. On the other hand,15

ice-stream velocities depend here on basal dragging coefficients and indirectly on the
presence of sediments. Dragging coefficients can be efficiently calibrated for Antarctica
by comparing resulting ice surface velocities given by GRISLI with those measured by
satellites (Ritz et al., 2010), but this approach cannot be used for the Laurentide, thus
uncertainty remains concerning dragging coefficient values which must be explored by20

sensitivity tests. Finally, as recently exposed (Levermann et al., 2011), the simulated
ice velocities in ice streams and ice shelves strongly affect the expected calving rates.

All of these rather poorly constrained aspects explain why processes concerning
ice-shelf buttressing are likely to be strongly model dependent. For this reason, this
communication emphasizes the necessity for new experiments with hybrid ice sheet25

models. This will definitely shed light on the pertinence of considering coupled ice-
stream–shelf dynamics for understanding Laurentide millennial-scale variablity, with
important implications in other areas of the climate system.
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Fig. 1. Top: illustration of the Laurentide ice sheet during the last glacial period obtained
from GRISLI simulations (Alvarez-Solas et al., 2011). Bottom: illustration of the present-day
Antarctic ice sheet obtained from the SeaRISE data website (Le Brocq et al., 2010). Zoom:
MODIS image from 18 June 2009 of the Antarctic Peninsula with 2002 Larsen-B ice-shelf extent
prior to its collapse and the Crane glacier profile.
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Fig. 2. Top: Surface ice velocity simulated by GRISLI for the Hudson Strait ice stream profile
highlighted in Fig. 1. Colors indicate different phases of ice-stream activity with respect to
the Labrador ice shelf status. Bottom: Surface ice velocity of the Crane Glacier profile as
highlighted in Fig. 1; derived from the satellite data published by Rott et al. (2011) and shown
in their Fig. 6. The different profiles correspond to (a) December 1995, (b) December 1999,
(c) October 2008, (d) November 2008, (e) April 2009 and (f) November 2009.
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(top-right) and Amundsen Gulf (bottom-right) ice streams.
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