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Abstract

The majority of reported field studies, using admubackscattering, for the measurement of
nearbed suspended sediment processes, have bemsedcon field sites with sand size
fractions and unimodal size distributions. Howewennany sedimentary environments, and
particularly for estuaries and rivers, sands andisntoexist in the bed sediment substrate,
forming a size regime that is often bimodal in mattro examine the interaction of sound in
these more complex sedimentary environments a ncahestudy is presented based on
observations of sediment size distributions measumethe Dee estuary, UK. The work

explores the interpretation of the backscatteraidmom a mixed sediment composition in

suspension, with mud-sand fractions varying witlglhie above the bed. Consideration is
given to the acoustical scattering properties dredibversion of the backscatter signal to
extract information on the suspension. In commath wiost field deployments, the scenarios
presented here use local bed sediments for thesacanversion of the backscattered signal.
The results indicate that in general it is expedteat particle size and concentration will

diverge from what is actually in suspension, witle former being overestimated and the
latter underestimated.

Key words: Acoustics, sediments, scattering, maagllsuspensions, inversion



37

38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61

62

63
64
65
66
67
68

1. Introduction

Developments in the application of acoustics, te theasurement of sediment transport
processes, is an ongoing area of research (Thorale, 018). It is within this context that
the present study examines its application to teasurement of suspended sediments, above
a bed of mixed composition. In general the deplayno¢ acoustic backscatter systems, ABS,
in coastal environments, for sediment transportgse studies, has been under conditions
where the suspensions were considered to be irsdhd regime, with a unimodal size
distribution (Young et al., 1982; Vincent et al98R; Hanes et al., 1988; Lynch et al., 1991,
Hay and Sheng 1992; Crawford and Hay 1993; Thotnal.e 1993; Lynch et al., 1994;
Osborne and Vincent 1996; Thorne and Hardcastlg;19Blard et al., 2000; Thorne et al.,
2002; Cacchione et al., 2008, O’Hara Murray et2011; Moate et al., 2015). However, in
many marine environments, particularly estuarias rarers, the composition of sediments is
more complex, often with mixtures of sands and mwith a bimodal size distribution.
Therefore, the deployment of ABS and the interpi@taof the backscattered signal in such
environments is of interest. In the study presete@, consideration is given to the impact
upon acoustics backscattering and attenuation,aeing a very broad bimodal mass size
distribution, in which particles span the size marigpm sub-micron clays, to hundreds of
microns sands. The interest in looking at this agenis associated with some recent
measurements of bed sediments and suspended s&gjicm@lected over a muddy sand bed
in an inter-tidal estuarine environment (Lichtmanak, 2018). The composition of the
suspended sediments changed significantly with hhe@pove the bed and this has
implications for the interpretation of the acousbackscattered signal and suspended
sediment estimates. To address this problem a neethestudy is presented, which aims to
examine in a practical manner, the implications dopustic measurements of suspended

sediments in a mixed sediment environment.

To underpin this study, use is made of the laboyaémd theoretical studies conducted to
provide a framework for understanding the intemactof sound with suspended sediments
and for inverting the backscatter signal to obtispension parameters. Measurements of the
backscatter characteristics of aqueous suspensities, expressed non-dimensionally using
the form function (Sheng and Hay, 1988; Thornel.etl893) have been carried out over the
past three decades (Hay, 1991; He and Hay, 1998n€&€hand Buckingham, 2004; Moate and
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Thorne, 2012) leading to a number of comparableresgions. Similarly, the scattering
attenuation can be represented non-dimensionaithg ke normalised total scattering cross-
section (Flammer, 1962; Schaafsma and Hay 1997rn€hand Buckingham, 2004; Moate
and Thorne, 2009) with again a number of similgregsions representing the observations.
Most of these works were collected together in Tikaand Meral (2008). Studies have also
looked at sediments of different and mixed mineggldMoate and Thorne, 2012), the
angular scattering characteristics of suspensiooof® and Hay, 2009) and visco-thermal
attenuation by suspended particles (Urick, 1948y dad Mercer, 1985; Richards et al.,
2003; Moore et al., 2013). In these studies, ttepsnsions generally consisted of unimodal

relatively narrow sized suspensions.

To utilise the above laboratory and theoreticatigtsi in field deployments of ABS, requires
a description of the size distribution of the suspen, to enable calculation of the scattering
characteristics. In most marine studies, in-sittaitkd measurements of suspended sediment
size distribution are unavailable. The general epghn has therefore been to collect bed
sediments when possible (Hay and Sheng, 1992; €hetral., 1993; Osborne and Vincent,
1996; Thorne and Hardcastle, 1997; Lee et al., 2BOtanos et al., 2012; Moate et al., 2016)
and obtain a mass size distribution by using akstéé/s ¢ sievesp=-logy(d) where d is the
particle diameter in mm (Soulsby 1997). Such anr@ggh preferentially samples the sand
size component of the distribution, particularly ahly a small proportion of the bed
sediments are in the muddy regime. For a calibrA®8 system as described in Betteridge et
al., 2008, the sieved size distribution would bedufor acoustic inversions. Alternatively, the
ABS could be site specific calibrated using the lsedliments. Using either approach,
inversions are based on bed sediment sampleselprégsent study, a numerical analysis is
carried out to assess the impact of using bed ssdimamples, for acoustic estimates of
suspended mean particle size and concentratiorgrucehditions of varying suspension
composition with height above the bed. The analigssonducted under conditions of sandy
sediments dominating the mass concentration neabéld and muddy sediments becoming
more predominate with height above the bed. Gihenbroadening use of acoustics in more
complex sedimentary environments (Shi et al., 199®7; Holdaway 1999, Bartholoma et
al., 2009; Sassi et al., 2012, 2013; Moore et 2012, 2013; Guerrero et al, 2013;
Dwinovantyo et al., 2017; Fromant et al., 2017;grer et al., 2020), it was considered such a



101 study would be timely and of use to the coastakrine and estuarine communities using

102 acoustics for suspended sediment studies in migditnentary environments.
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2. Measurements of particle size distribution.

Hydrodynamic and sediment process data, were tetlecn an intertidal flat in the Dee
estuary, located on the north west coast of the askpart of studies on ripple migration and
bed material transport rates in mixed muddy sahdhiman et al., 2018). The estuary is
tidally dominated, with a 7-8 m mean spring tidahge and data were collected in early
summer over a spring-neap cycle, in order to coxgrous mixtures of sand and mud
composition. As part of the study, surficial sedninsamples from the bed were collected at
low tide when the bed sediments were exposed. 8dspesediment samples were obtained
during periods of tidal inundation, using a novalltirtier cylinder unit. Figure 1, shows the
site location, a photograph of the unit and an weer of the hydrodynamics. The individual
cylinders had a height and diameter of 0.1m an@l thQespectively and were located at 0.2,
0.41, 0.58, 0.74 and 1.0 m above the bed. Thedsfghobtained samples of the suspended
sediments, transported by currents and waves, &s dbascended towards the bed under
gravity. To reduce turbulence within the cylindefghe tier and possible resuspension of the
collected sediments, baffles were installed witkie cylinders. The multi-tier sampler,
cumulatively collected suspended sediments oveerakvidal inundations, under changing
hydrological conditions. These samples were re@at the end of the 150 hr measurement
period and are considered to be indicative of therage suspended sediments size
distributions, at the field site, over the deploymperiod. The size distributions of the bed
and multi-tier sediments were measured over the singe 1.10 — 2.10° m, using a
Malvern Mastersizer 2000, a laboratory laser ditien particle size analyser. The
Mastersizer rather than sediment sieving was useshsure any fine muddy components of
the bed and suspended sediments were captured sizéh analysis. Since the finer particles
may have adhered to one other as settling occumrédte tiers, the sediment samples were

dispersed to ensure it was the primary particle digtribution that was being measured.
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Fig 1. a) Site location, 1-3, in the Dee Estuari(. U) Photograph of the multi-tier cylinder

unit used to capture suspended sediments, aboed aftmuddy sand. c) Measurements of

the water depth, depth averaged velocity, <u> aadevorbital velocity, .

2.1 Bed sediments

Figure 2a shows the mass concentration size pridtlyathénsity distribution,ps(a), for the

bed, a is the particle radius. This shows the leetingents to be dominated by sand with a
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small muddy component indicated by the low valuesveen a=0.5-3@m. Mud is defined

on the Wentworth scale (Whitehouse et al., 2000 amixture of mainly fine-grained
sediments (clays and silt) with diameters less &pm. In most nearbed sediment process
field studies only bed samples are available fdingi the analysis of the acoustic backscatter
data, due to the difficulties of collecting timeriss of in-situ suspended sediment samples.
Bed samples are therefore generally used to carrgosat-deployment laboratory ABS
calibration, or, by measuring the size distributioarrying out a more theoretical inversion
(Hanes, 1991; Hay and Sheng, 1992; Osborne anckint996; Green and Black 1999; Lee
et al., 2004; Bolanos et al., 2012; Moate et @&16). Given the dominance of the sandy
component in figure 2a it would seem reasonablig #@ probability density function to the
sandy component for interpretation of the backscaignal. A lognormal probability density
function was fitted to the bed data, and as caedam in figure 2a, there is good agreement

between this fit and the measurements. The lognatisisibution is given by:

Pi(a) = e~ (n@-v)?/23? (1)
alv2m

¢=+/In[(0e/acp)? + 1],

y = In(aZ,/. /aib +02%,)

Where the subscript ‘b’ refers to the bed and ‘@ssiconcentration. For the distributiqpia
the mean radius anily, the standard deviation, these had values respgctof 140um and

46 um.
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Fig 2. a) Comparison a lognormal distributiBf(a) (-) with the measured concentration
radius probability distribution of the bed sedingnf) and b) comparison a lognormal
distribution P'(a) (-), with the number radius probability distiion, calculated using
equation (2), with the fitted lognormal distributito PS(a) (¢).

For the analysis of acoustic backscatter data,the particle number size distributid,(a),
which is required. This can be calculated for tkd,kz=0, and the suspension, frgfita, z),

where z is the height above the bed, using:

P(a,7) = P (a,z)/<jaz Pf(a,z) da) ()

a¥(z) "\Jo, 2°(2)

Which has the condition,
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P"(a,z)da=1

a
Here a and a are the lower and upper values of the size digioh and j=b or s to represent
the bed or the suspension. The evaluation of emud##) using a lognormal distribution for
P;(a) at z=0, results in a lognormal distribution Rf¥(a), with a smaller value for the mean
number radius, 8103 um, while retaining the samgyan, ratio as forPS(a). This can be
clearly seen in figure 2b. To obtain profiles osgended sediment size and concentration
from an inversion of multi-frequency acoustic bakter data, requires a description for the
form of P/*(a,z). Given the lognormal fit tB$(a) for the bed sediments shown in figure 2a,
and the lognormal fit t®;'(a) as illustrated in figure 2b, it would not seenreasonable to
use the lognormal distribution oP'(a) for acoustics inversions, in the absence of

independent suspended sediment measurements.

2.2 Suspended sediments

As described earlier, a novel multi-tier cylindeangpler was used to collect suspended
sediments in the field, over several tidal cyctegrovide measurements of the particle mass
size distribution with height above the b&g(a,z). The results from these measurements are
shown in figure 3. Figure 3a shows the formPffa,z) at increasing heights above the bed.
As can be observed the measured size range istfrersub-micron to near millimetric. The
vertical line at a=31.nm represents the demarcation between the mud andcsanponents.
The plot shows an increasing mud content in theesuded sediments, with height above the
bed. The mean mass concentration radigg),aeduces from 140m at the bed, to 11pm

at 1.0 m above the bed. The suspended sedimenissvirPs$(a,z) have been converted to
PJ'(a,z) using equation (2) and the results are shaoviigure 3b. As can be seen the form for
P(a,z) is very different fromPs(a,z), with Pi*(a,z) having a decreasing power law
distribution with particle size and with the muddgmponent orders of magnitude greater
than the sandy. The power law distribution ®t(a,z) is not uncommon in the marine
environment in oceanic and estuarine waters (Badirgl., 2003; Kostadinov et al., 2009;
Buonassissi and Dierssen, 2010) and is generd#yreel to as the Junge distribution (Junge,
1963). The form of a Junge distribution is showrthmy dashed line with the measured values

of P'(a,z) in figure 3b and has the simple form:

10
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207 numberP?(a,z), calculated with equation (2) usiPga,z). The legend provides the values of
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z for the individual suspension curves. A Jungdrihistion (— —) is also shown for

comparison.

This Junge distribution is not intended to be &fithe measurements, just simply to illustrate
the approximate power law form of the suspended bmunsize distribution in the Dee
estuary. The mean number radiugizp is almost uniform for the suspended sediments
reducing from 0.8um at 0.2 m above the bed to 0448 at 1.0 m above the bed. The value
for a,(z) is therefore greater than two orders of magia@tsmaller than.é).

Following the aims of the present study, it wasstdered of value to conduct an examination
of how an acoustic inversion, based on a lognorfitalo a bed particle number size
distribution, P}'(a), such as in figure 2b, would impact on compyteafiles of suspended
size and concentration, having number size didioha P8(a,z), closer to those shown in
figure 3b. Therefore, a case study is presentededan the observations of the size
distributions measured in the Dee estuary, whighlaegs the outcome of using a sandy bed
sediment size distribution, to interpret backscasignals from a mixed composition in
suspension, with varying mud-sand fractions witlghieabove the bed. This was carried out
as a numerical study, as there are no field orrlboy data available, with the detailed in-
situ suspended sediment measurements required siessasuch an inversion. It was
considered such a study would provide some usefights into the analysis of acoustic
backscatter data, collected above beds composetxed sediments, under hydrodynamic

conditions that lead to significant size sortinghAieight above the bed.
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3. Sediment size distributions and scattering characteristics.

3.1 Bed and suspended sediment size distributions.

To carry out the study, mass size distributionsewset up for the bed and suspended
sediments which were comparable to those showigumefs 2 and 3. The bed sediments were

represented by a lognormal distribution composededium sand:

e—(n@-y)?/232 (4a)

Py (a) = Ny

For the bed =150 um andocy/ap=0.3 which is comparable to the values for the togral
distribution in figure 2a. The suspended sedimemie formed by combining two lognormal

distributions as below:

1-06(2)

PS(a,z) = 0(z)PE(a) + - e~ (n@-v)*/2¢ (4b)

2T

The second term in equation (4b), represents tepesuled muddy component. This had a
mean radius,g and standard deviatiosg,, of a,=10 um andoc/a,=1. To characterize the
suspended sediment mixtur@(z)=0.95-0.05 in one hundred equal intervals of0910
between z=0.01-1.0 m with 0.01 m spacing. This esgmts suspended sediment mass
transitioning from 95% sand at 0.01 m above the the@5% mud at 1.0 m above the bed.
The modelled suspension structure was selecte@ to-bhodal with reducing sand content
with z to reflect the observations shown in figuda, rather than trying to replicate
specifically the field parameters. In practice thectional form for6(z) will depend on the
hydrodynamics and site specific sediment compasitichich could readily result in a more
complex form foro(z), than the linear model adopted for simplicitytihe present study, to
highlight compositional impacts. Plots Bf(a) andPs(a,z) are given respectively in figures
4a and 4c. For the acoustic analy&j¢a) andP.(a,z) were required and these were obtained

using equation (2).

13
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The forms for these two distributions are showiflignre 4b and 4d and they are similar to
those in figures 2b and 3b. The lognormal distrdyutn figure 4b has a mean number size of
ap=109 um andonyaw=0.3. A Junge distribution is also shown for conapiae purposes in
figure 4d. The profiles of the mean mass radiy&)afrom figure 4c and mean number
radius, a(z), from figure 4d are shown in figure 7. It camd®een in figure 7 that(a) shows a
steady decrease in size with z, whilfezais uniform and significantly smaller thagz@, both

of which are consistent with the field observations

Although in the marine environment flocculation magcur in the finer fraction of the size
distribution, this process and the associated aicossattering characteristics (MacDonald et
al., 2012; Thorne et al., 2014; Fromant et al.,7Z2@ke not considered here. The distributions
in figure 4 represent the bed and suspended setiimdestributions upon which the present
study is focussed.

3.2 Acoustic scattering characteristics of the sediment distributions.

The acoustic scattering properties of a suspensiosediments are normally described in
terms of the intrinsic scattering properties of theividually sized particles integrated over
the particle number size probability density dimition (Hay, 1991; He and Hay, 1993;
Thorne and Buckingham, 2004; Moate and Thorne, ROTae intrinsic scattering
characteristics are represented by the backsdatter function, f and the normalised total
scattering cross-section;. Intrinsic refers to the scattering characterssticeasured using
suspensions sieved into narrowgvsize fractions which provide a nominally singletjzde
size. Physically, ifdescribes the backscattering characteristics péréicle relative to its
geometrical size, whilgt quantifies the scattering from a particle overaalgles, relative to
its cross-sectional area, and is proportional tattedng attenuation. Both parameters are
dimensionless. There are a number of similar espyas for f andy; (Sheng and Hay 1988;
Crawford and Hay, 1993; Thorne and Meral, 2008, tdand Thorne 2012). Here use is
made of the expressions of Thorne and Meral (2088)ed on a series of published data sets,

on acoustic scattering by narrowly sieved suspesddiments:
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(1 - 0.35e~(x=18)/07%) (1 4 0.5e~(x~18)/22)*)x2
1+ 0.9x2

fi(x) = (52)

0.29x*
0.95 + 1.28x% + 0.25x*

Xix) = (5b)

In equation (5), x=&af/c, withf and c respectively the frequency and velocityairsl in the
fluid and a is the particle radius. Owing to thelusion of mud and sand components in the
suspension to be studied, the finer fractions wiliroduce viscous attenuation. The

normalised total viscous attenuatigp,can be expressed as:

2 T

Xv = 7 x(8 — 1)? TG ro)E (50)

~3

Where,

T

e

The expression in equation (5¢) (Urick, 1948) actsuor viscous losses for x<<dspdpw
andp=,/w/2v, wheren=2xf is the acoustic angular frequeneythe kinematic viscosity for

water, py, is the density of water ang is the density of the solid particles. The norsedi

total cross-section is given by the addition ofghettering and viscous termg:= i+ yv-

To represent the ensemble scattering by a suspemgtb a range of particle sizes, the
intrinsic scattering values are integrated over pheicle number size probability density

function, P"(a), where j=b (bed) or s (suspension), to yie&thdiy, the ensemble scattering

characteristics:
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n 2¢ 2pn 2
f(x0,2) = Jo ah (a’Z)?j‘f: : fiCo2)h (. 2)da (6a)
fo a®P"(a,z)da
B fooo aP"(a,z)da fooo a*Xiv(x,2)P"(a,z)da
X(X0,2) = [ a3P™ (2 2)da (6b)
o H &
a,(2) :f aP"(a,z)da (60)
0

To obtain the scattering characteristics of the dedl suspended sediments, equation (6) was
evaluated using equation (5) with equations (2) @dFor the calculations=2600 kgn?,
pw =1027 kgn?, and v=1.10° m’s*. The ensemble average form function,.#)% and
normalised total scattering and viscous cross-@ecji(Xo,z), are plot against x2naf/c

respectively in figures 5a and 5b.

The commonly employed non-dimensional plots in g% indicate different scattering
characteristics for the suspended sediments anoettheln figure 5a, f(%z) has higher values
for the suspension than the bed fgr>0.1, and smaller values fogxl. These dissimilarities
are associated with the different forms Rj(a) andP(a, z), and due to the value of for
the bed being approximately two orders of magnitgdeater than that for the suspension.
Also, for the suspension below0.1, the trend is for fgz) values to decrease with height
above the bed, while above this value fqr the reverse is the case. This crossover in
suspension scattering characteristics is considierde associated with Rayleigh scattering
when %<<1 and a convergence towards geometric scattéomigrger values of x Figure

5b shows comparable differences to those identifiefigure 5a, with similar variations in
1(X0,2) between the suspension and the bed and whieirsispension itself for the reasons
given above. There is also the additional factovis€ous absorption, which introduces an
increase iny(Xo,z) with height above the bed below~R.005. Plotting the scattering
characteristics in the customary non-dimensionainfoshown in figure 5 indicates
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337 significantly different scattering characteristiostween the suspended sediments and the

338 bed, which could be considered to have importaptications for acoustic inversions.
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341 Fig 5. a). Selected form function, §(x) and b) total normalised cross-sectigi,,z) with x,,
342 for suspended sediments between 0.01-1.0 m abevbeith and for the bed sedimenr#s (

343 ==). The legend provides the values of z for thevitllial suspension curves.
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However, inspection of equation (9) showfsaf(r)) andy(f,a(r)) are divided respectively by
VJag(r) and a(r), where r=¢-z is the range from the transceiver aptithe range to the bed.

Therefore a more representative description ofsttedtering characteristics for the present

study would be f(z)/\/a,(z) andy(f,z)/a(z) with frequencyf.

f( fz)/a (Z)O.S (m-O.S)

x(f2)a(z) (m7)

Fig 6. Selected modified scattering characteristiors a) ff,z)./a,(z) and b)y(f,z)/a(z),
with frequencyf, for suspended sediments between 0.01-1.0 m abeveed and for the bed

sediments«===). The legend provides the values of z for theviudial suspension curves.
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Using these forms in figure 6 allows for a readiemparison between values for the bed and
the suspension. The bed and suspension chardactensiw coalesce and follow the same

trends in the Rayleigh, geometric and viscous regias considered above.
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4. Particle size and concentration profile

Formulations for the profiles of mean particle saed concentration were required to
examine the scattering from mixed sediment suspeasirhe mean particle size profiles, for
mass, &z), and number,é) are prescribed by the form of the suspensigargin equation

(4b) and are expressed as:

a.(z) = f ooaPSC(a, z) da (7a)
0

ap(z) = jooaPsf’(a, z)da (7b)

The forms for the profiles using equation (7) arespnted in figure 7a. The figure shows a
steady reduction in.&z) with height above the bed as the sand contestispension reduces,
while the profile for &z) is very different to that of.g&), with a(z) being significantly

smaller and almost uniform with height above thé.be

Two commonly used concentration profiles profileravadopted for the analysis. These were
based on a Rouse power law (Rouse, 1937; Soul8i®y)land an exponential formulation
(Schmidt, 1925; Nielsen, 1992). The power law wiasryby:

C(z) = C, (%)_y (8a)

C, is the reference concentration g#¢@01 m and=wd«ku- is the Rouse parameter wherg w
is the sediment fall velocity is the von Karman constant andisi the form drag frictional
velocity, a typical value of=1.0 was adopted for the modelling (Cheng et &13}. The

exponential expression used was:
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—(Z—ZO)/L

C(z) =C,e (8b)

Lsis a vertical mixing length dependent on bed roagis and for the present study was set to
0.15 m (van der Werf et al., 2006), €2.0 kgm?® in both cases (Rose and Thorne, 2001).

a (z)

Rouse power

. 06 \\ 2 R Exponential

1072 107" 10° 10"

Fig 7 Profiles of; a) mean suspended particle sdir mass &z) (—) and number,é&z) (ee*)
and b) mass concentrations, C(z), with heightpnya the bed, for the Rouse power (-) and
exponential (- —) forms. The mean bed mass radipéx), is shown in a).
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The form for the two expressions is presented garg 7b and show the expected steady
reduction in concentration with height above thd.beis the scattering characteristics shown
in figure 6, coupled with the profiles given indige 7, which are used in the present analysis
to compute the backscatter signals to be usedeinntrersions to obtain acoustic profiles of

suspended sediment mean mass particle si¢e), and concentration M(z).
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5. Backscattered signal and acoustic inversions.

5.1 Calculation of the backscattered signal from the mud-sand suspension.

Acoustic scattering theory for suspensions of sedisiin a fluid is well developed (Thorne
and Hurther, 2014 and references therein). Undaditions of incoherent scattering the
mean square backscattered sigWgl(r), from a suspension with mass concentration, C(r),

insonified with a piston transceiver, can be expedsas:

2
VI%(I‘) = <K§$(i{)) C(r) e~ 4(raw+as(r)) (9)
f(f,a, r 3x(f,a,
K(r) = % w() = | Emew dr, z(r)=—§iaao((r;))

In the above, r is the range from the transceiygr) accounts for the departure from
spherical spreading within the transceiver neatfi@owning et al., 1995)R is a system
constant (Betteridge, et al., 2008) angdis attenuation due to water absorption. Equat®n (
can be readily evaluated; equation (6) providésuff)), x(f,a(r)) and a(r), equation (8)
provides C(r)y(r) was calculated for the transceivers using nalameters of 0.01 m and
R values were obtained from a manufacturer’s cdiidma for an ABS. For the present study,
the transceivers were mounted at 1.0 m above tlenid a vertical sampling resolution of
0.01 m and having 100 range bins. The computed scatiered signals from the two
modelled concentration profiles at frequencies.6f 2.0 and 4.0 MHz are shown in figure 8.
The backscattered signal from the Rouse power taveentration is given in figure 8a, this
shows mean square signal profiles with a peak enstgnal at approximately the boundary
between the near field and far field, within r=0nlof the transceivers, at a height between
z=0.9-1.0 m. Above the peak the signal reducestatiee form of)(r) and below the peak,
even though the particle size and concentrationireceeasing, the backscattered signal

reduces due to the spherical spreading and attenuaft the two way propagation. Below
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425 about z0.2 m the higher concentrations begin to dominagebiackscattered signals, which

426 increases as the bed is approached.

427

1073

1073

428

429

430 Fig 8 Profiles of the mean square backscatterathkig? (z) with height, z, above the bed
431 for three frequencies propagating through; a) tbese® power law and b) the exponential,

432 concentration profiles.
433

434  Figure 8b shows that the backscatter from the espitedl concentration profile has a similar
435 reduction in signal level in the near field, while the far field the forms are somewhat

436 different. Below z0.8 m the interplay between, spherical spreaditignaation, particle size
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and concentration leads to backscatter signalsOatiHz and 2.0 MHz showing an increase
with reducing z, while at 4.0 MHz there is a slowbrying backscatter signal between z=0.1-
0.9 m, with a reduction below z=0.1 m as the bedppgroached and sediment attenuation
begins to dominate the 4.0 MHz backscattered signal

5.2 Inversion of the backscattered signals.

To acoustically obtain profiles of the suspendedceantration and mean number particle
radius, requires an iterative solution to an implkguation computed over a range of radii.

Rearranging equation (9) gives:

2
M) = (—pge) VA (et (10)

ay(r) = f EOM() dr
0

M(r) is used to represent the acoustic estimathetuspended concentration C(r). Equation
(10) is implicit because M(r) is on both sideslod £quation due tay(r). To obtain an initial

estimate for M, the sediment attenuation is ifitiaeglected to give M

i (r)

R ) V2 (r)etraw (11)

Mo () = (

An improved estimate for M can be obtained using,

M; (r) = Mo (r)e*ese (12)

Whereas, is calculated using M Generally, equation (12) can be written as,
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Myc41(r) = Mo (r)etese (13)

Equation (13) is iterated until a convergence dote has been satisfied and the value for
M(r) estimated. Equations (11)-(13) were computedroa range of particle radii which

covers the expected mean patrticle sizes in suspensor the present study the range was
3=0.05um to 250um in steps of 0.0um. This covered the range from clay through to
coarse sand. To obtain an acoustic estimate of maarber particle size, the mean and

standard deviation of M(r) were calculated as:
1 1w
M(a,r) = NZ M;(@r) oyar) = mz:(M]-2 (a,r) — M(a,r)?) (14)
j=1 j=1

Where N is the number of acoustic frequencieshenpgresent case N=3. The ratio below is

now formed,

om(a, r)) (15)

¢@ar) = <1\7[(a, r)

The minimum value ofb(a,r) is used to specify the acoustic values of nmaamber size,
an(r), and the mass concentration, M(r), at rangéhis methodology identifies the particle
size at which the concentrations for the differajuencies converge and have minimum
normalized variance. This provides values fgr)aand M(r) in the first range bin from the
transceiver at. r=0.01 m. The computation is rege&dr each range bin downwards towards
the bed, with the accumulating sediment attenuatictounted for, to provide profiles of
an(z) and M(z). Further details on the inversion roeiblogy are given in Thorne and Hurther
(2014).

To evaluate equation (10) over a range of mean meadis the scattering characteristics
presented in figure 6 were not used, because utilkattenuation scattering component, the
viscous attenuation varies differently with, -as frequency or particle size is varied.
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Therefore, the scattering characteristics wereutatled for each of the three frequencies
using the size distributions derived from equat{dh) as &z) was varied and(z)/a,(z)
remained constant at 0.3 and 1.0 for the sand artlammponents respectively. Equation (6)
was again used to evaluate ofgx and y(a,,z) and for consistency with figure 6,
f(a0,2)\/a,(2) andy(a,z)/a(z) are plotted in figure 9 at the same selectéghte above the

bed as in figure 6.
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Fig 9. The 2.0 MHz modified scattering charactarsstvith mean particle radiuse, dor the
suspended sediments between 0.01-1.0 m above drenblehe bed sediments=(==) for; a)
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f(ao,2)\/a,(z) and b)y(a,z)/a(z). The dotted curve (+) is the bed scatteringrattaristics

translated along the axis. The legend provides the values of z forikévidual curves.

The calculations shown in figure 9 are for 2.0 MM#h similar curves being calculated for
1.0 MHz and 4.0 MHz. For the inversion lookup tablg, f(a,,z) andy(a,,z) were generated
at each of the three frequencies for each 0.01lghhebove the bed over the broad range of
mean number radii shown in figure 9. As with figlrethe suspension and bed scattering
characteristics are separated due to the approxitwat orders of magnitude difference in a

If the bed scattering characteristics are trandlaieng the @axis by this difference, as
indicated by the dotted curves in figure 9, thettecmg characteristics coalesce as in figure
6. The variations in the scattering characteristith a, follow the same trends as considered
above for figures 5 and 6 and are associated watyleiyh scattering below the cross-over
point, &~10 um with convergence to geometric scattering fordarg. For the 1.0 MHz and
4.0 MHz scattering characteristics the cross-ow@ntp occur @a~20 um and @5 um

respectively. The main difference between figuran@ figures 5 and 6 is in figure 9 the

dependency is upon the variabl¢zy with a fixed frequency, which due {fa, and ain the

denominator of f(@z)//a,(z) andy(a,z)/a(z) leads to scattering characteristics which plot

somewhat differently to figures 5 and 6, wheg@)is fixed and frequency is varied.

5.3 Inversion when the form of P£(a,2) is known

In the first instance, it was assumed a priori kieolge was available fd{(a,z) in the form
given in equation (4b) and convertedPft(a, z) using equation (2). Carrying out an inversion
as outlined above, equations (10)-(15) were sobxext the range of,dbetween 0.2-30Qm

in step intervals of 0.0@m, using the suspension scattering characteristios/n in figure 9
to yield acoustical mean number particle radiy$z)aand suspended concentration, M(z).
The values for #4z) obtained from the inversion were converted {gzp the acoustic

estimate of mean particle mass size, using equéti®nbelow:
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| f:lz aPSf(a,z)da

am (2) = an(Z)| (16)

f:lz aPM(a,z)da

S —

522

523 Acoustic values for &z) and M(z) were compared with the input profile&) and gz),
524 used to calculate the backscattered signals givéigure 8. The results of the comparison are
525 shown as regression plots in figure 10.
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Fig 10. Regression plots of the inverted acoustipat profiles with the input profiles for; a)

mean mass size,@) and §z) and b) concentration, M(z) and C(2).

It can be clearly seen that the output from theissn compares well with the input profiles
for both the mean mass particle radius and corafgonr Linear regression analysis gives
regression coefficients, gradients and interceptstfe Rouse power and exponential mass
profile respectively of 1.0000, 1.0015, 0.0000 dn@d000, 1.0015, 0.0000 for the size and
1.0000, 1.0014, -0.0001 and 1.0000, 0.9988, 0.0fa@4the concentration. The slight
departures from unity and zero for the gradientsiatercept respectively are associated with
the discretisation of both the lookup tables agdfom the calculations. It is sometimes
indicated (e.g. Brand et al., 2020) that in a mixagspension environment, acoustic
backscattering would be insensitive to the clay ponent, however, this is belied by the
results in figure 10, which show that the fine cam@nts of the suspension are captured in
the inversion. Therefore the analysis in this sectvas not only conducted as an assessment
of the veracity of inversion methodology, but aledighlight that with the correct ensemble
scattering characteristics in a mixed mud and samvitonment, the suspension particle size
and concentration profiles can be accurately racected. This will be seen to not be the

case for the scenarios below.

5.4 Inversion when the form of Py (a) is known for the sand component

The results presented in figure 10 are for the vdsen the form of the mass size distribution,
PS(a,z), is a priori known above the bed, but thdile® for a(z) and for C(z) are unknown
and these were obtained from the acoustic invensiuich yields a(z) and M(z). Invariably
in field studies such details @(a,z) over time are not available and consequdntky
sediments collected from the study site are usezhitry out the acoustic inversion (Vincent
and Green, 1990; Hanes, 1991, Vincent et al., 18&iy, and Sheng, 1992; Thorne et al.,
1993; Sheng and Hay, 1995; Osborne and Vincent6;1%8orne and Hardcastle, 1997;
Green and Black 1999; Lee et al., 2004; Bolan@d.eR012; Moate et al., 2016). It is this use
of bed sediments for the inversion over broadlyedigsediments that is investigated here.

31



559
560
561
562
563
564
565
566
567
568
569

570

571

To carry out the acoustic inversions for suspendedn mass size and concentration using
the bed sediments, the same approach as usedtionsB@ was adopted, with equations
(10)-(15) solved over a range of wsing the scattering characteristafsthe bed shown in
figure 9. This resulted in the mean mass partiathi and suspended concentrations profiles
shown in figures 11 and 12. In the figures dasheisolid lines are shown. The dashed line
in the figures are profiles from equations (7) 48§l and are the same as those shown in
figure 7 for g(z) and C(z). The solid lines are solely the sacoiyponent of the suspended
sediment, with equation (7) evaluated ushfga), which results in a uniform mean mass
particle size of @150 um with height above the bed and concentration j@®ijiven by a
modification of equation (8), represented byz{0(z)C(z). The results from the acoustic
inversions are given by the solid circles.
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572

573 Fig 11. Inversion usin@;' (a) with 0% mud. a). Comparisons for the Rouse powefilp of
574 a) mean mass radius for the mixed suspended setdinan) (— —), the sand component of
575 the bed sedimentsga—), and the acoustic inversiop(a) (¢). b) The concentration for the
576 mixed suspended sediments, C(z) (- —), the sangpaoemt of the suspended sediments,
577 C42z) (-), and the acoustic inversion M(z) (*).
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Fig 12. Inversion usin®,'(a) with 0% mud. Comparisons for the exponential feodif a)
mean mass radius for the mixed suspended sedinagils(— —), the sand component of the
bed sediments,@a(-), and the acoustic inversiom(a) (¢). b) The concentration for the
mixed suspended sediments, C(z) (- -) , the sampaoent of the suspended sediments,
C«(2) (-), and the acoustic inversion M(z) (*).

It can be seen that usirRj(a), that is a lognormal mass distribution witfa,z)/a(z)=0.3,
with equation (2), to obtain a lognormj(a) for the inversion, results in values fo((®

and M(z) which closely follow the uniform sand valof g,=150 um for the bed and the
sand component of the suspensif(g)C(z), for both the Rouse power and exponential
profiles. It is therefore the case, that when thenithant sand component of the bed sediments
is used for an inversion consisting of a mixture sainds and muds, with the muddy
component becoming increasingly dominant with hieajiove the bed, the result is a profile
very comparable to the sandy component of the sisspe
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Fig 13. Ratios of the components of the mean sqoackscatter signal in suspension from
the mud, V,.2(m), and the sand, M(s), for; a) Rouse power and b) exponential
concentration profiles.

To examine the results presented in figures 1112nithe backscattered signal from the sandy
and muddy components were computed separatelye Mree obtained by firstly calculating
the suspension scattering characteristics usingateou (6), with P{*(a,z) derived from
equation (2) using (4a) for the sandy component\aitkd 6(z)=0 in equation (4b) for the
muddy component. Using the sand and mud scattesiragacteristics respectively with
concentration profile components for sandz§>6(z)C(z), and mud, C(z)-«(z), equation (9)
was evaluated to provide the individual mean-sqaekscattering from the sand(z),

and mud,V2,(z), components. The ratio of these two signalg,{)/Vmd(z), with height
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above the bed are shown for the power Rouse armherfial concentration profiles in figure
13. It can be clearly seen that the backscatten ftte sand component dominates that from
the mud, even when the sandy component is only B#eototal mass at z=1.0 m. It is the
combination of the dominance of the sand scattedomponent, coupled with the bed
lognormal particle number size distribution used ciculate the suspension ensemble

scattering characteristics, which leads to thersivas shown in figures 11 and 12.

5.5 Inversion when the form of P§(a) is known for the sand and mud component

It was considered important to carry out an inve@rswith a size distribution not solely based
on the bed sand component, but one which alsopocated the mud component in the bed.
The interest being to assess if calculating theerabte scattering characteristics using the
correct size distribution of the mud and sand camepts in the bed, resulted in an inversion
closer to the actual suspension, than that ofgoigihg the sand component. To represent a
combined distribution for the bed, the suspensaattering characteristics closest to the bed,
shown in figure 9 at 0.01m above the bR®(a, 0.01), which had a 5% mud component, was
selected. The inversions for this scenario are shaviigures 14 and 15. The outcome is very
comparable to figures 11 and 12. This shows thah éivthe full-size distribution of the bed
is used to compute the scattering characterigtesjnversion still yields profiles for M(z)
and &,(z) which compare closely with the sandy componehtke suspension. This outcome
is essentially due to the ensemble scattering cteistics used in the inversion being those
of a composition of 95% sand and 5% mud, whichasan accurate representation of the

suspension scattering characteristics, as opposée tase in section 5.3.
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Fig 14. Inversion usin@,'(a, 0.01) with 5% mud. Comparisons for the Rouse power [@ofi

of a) mean mass radius for the mixed suspendedhsets, &z) (— —), the sand component

of the bed sediments;,d—), and the acoustic inversiog(a) (¢). b) The concentration for the

mixed suspended sediments, C(z) (- —), the sangpaoemt of the suspended sediments,

C«(2) (-), and the acoustic inversion M(z) (¢).
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Fig 15. Inversion usingy" (a, 0.01) with 5% mud. Comparisons for the exponential pecdif

a) mean mass radius for the mixed suspended sedinggn) (— —), the sand component of
the bed sediments¢pa—), and the acoustic inversiop(a) (¢). b) The concentration for the

mixed suspended sediments, C(z) (- -), the sangp@oemt of the suspended sediments,

C«(2) (-), and the acoustic inversion M(z) (*).
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To shed some further insight on the results presem figures 11, 12, 14 and 15 the
variation of¢(a) with a is plotted in figures 16a and 16b. In figd6a, when using; (a) for
the inversion, it can be seen that the minimumeédu d(a), which yields the profile fora
occurs in the sandy regime between values,@)=96-117um which are comparable with
the mean number size for the bed gF&a09 um. This is therefore consistent with using the
bed lognormal particle size number distributiontfoe inversion, resulting in the plots shown

in figures 11 and 12.

107" 109 10°

107" 10° 10" 102 10%
a (um)

Integral ratio

P
100 &

Fig 16. Plots of¢(a,z), equation (15), versus a for a) an inversisimg P.'(a) and b) an
inversion usingPy'(a,0.01). c) The ratio of the integrals given in equatid®)( bed X),

suspension (¢). The dashed lines apEe09um in a) and gz)=1.2um in b).
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However, as shown in figure 16b, when the particlenber size probability density
distributionPg*(a,0.01) is applied in the inversion, with the 5% mud comtehe minimum
values for¢(a) occur in the mud regime, with a profile for meammber particle sizes
a(2)=0.94-1.28um. These values are comparable with the suspensgam number particle
size of a(z)=1.2 um and not the sand size profile fqy shown in figures 14 and 15. The
explanation for this is revealed in figure 16¢c whishows the ratio of the integrals in
equation (16) used to convel(®8 to a,(z). For the lognormal bed particle size distribati
this ratio, shown by the cross, is close to unéyihg a value of 1.37, which yields values for
an(z) between 130-16@m, which are close to the value for the bed masannsze of
a=150 um. However, for the suspended sediments the irtegia varies from 112 at 0.01
m to 13 at 1.0 m above the bed. It therefore thegnal ratio of 112 at 0.01 m above the bed,
that translates the,@)=0.94-1.28um profile from the mud regime, to the sandy regime

an(z)=105-144um and leads to the results shown in figures 141&nd

5.6 Inversion when the form of Py (a) is known for the sand with a large mud component

The scenarios described above for sediments irstary of the type measured in the Dee,
were for the case when the muddy fraction was atively small component of the total.
However, riverine and estuarine environments arg variable and can be composed of a
much higher mud fractions. Therefore to broadenatiaysis and assess outcomes, the case
when mud is a significant component is conside&uecifically the case when the bed is
composed of 25% mud and 75% sand is examined. iBguatvas evaluated using the same
mean and standard deviations for the mud and samgbanents as previously, but in this
case the suspended sediment mixture was charaderssngf(z)=0.75-0.05 in one hundred
equal intervals of 0.0071 between z=0.01-1.0 m v@tAl m spacing. This represents
suspended sediment mass transitioning from 75% 2&an% mud at 0.01 m above the bed to
5% sand, 95% mud at 1.0 m above the bed. Frommhss size distributior®s(a,z), the
number size distributionP(a,z), was calculated and used to recompute thpemsamn
acoustic scattering characteristics. For consigtahese were combined with the same
profiles of C(z), given in equation (8), used iretlprevious cases to calculated the
backscattered signal. Following the approach ofi@ed.5, the inversion was recomputed
with the complete size distribution for the bed;luding the muddy and sandy components,

usingPy(a,0.01). The outcomes from this scenario are pteden figure 17 and 18.
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Fig 17. Inversion usingy'(a, 0.01) with 25% mud. Comparisons for the Rouse powerilgrof
of a) mean mass radius for the mixed suspendedhsets, &z) (— —), the sand component
of the bed sedimentsg,d—), and the acoustic inversion(a) (¢). b) The concentration for the

mixed suspended sediments, C(z) (— -), the sangpaoemt of the suspended sediments,
C«(2) (-), and the acoustic inversion M(z) (*).
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These figures show that for both the Rouse powerdad exponential C(z) profiles the
trends for g(z) and M(z) are comparable to those in figures1Pl,14, 15. The values for
an(z) are nominally uniform, albeit with mean valugsaller than for the two previous
scenarios, due to the bed composition having 25% coatent. The profiles for M(z) remain
consistently close to the sandy componen{z)e6(z)C(z), with height above the bed, as
observed in the former two inversions. Therefohne, tesults from the inversions in sections
5.4-5.6 are consistent with(@)~a., and M(z)>C4z), thereby indicating the generality of the
outcomes from this study.
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6. Discussion and conclusion

The present study was stimulated by measuremerite afediment mass size distribution of
the bed and suspended sediments, in an inter-istalarine environment, composed of
muddy sand. For the Dee estuary the mud componethiei bed sediments was a relatively
small fraction of the total mass. Due the hydroayizaconditions in the estuary, caused by
combined waves and tidal flow, significant sizetisy of the sediments entrained from the
bed into suspension, was measured with height athevieed. It was observed that suspended
sediments close to the bed in the estuary were rded by the sandy component of the
surficial sediment layer, while progressively witkight above the bed the muddy component
became more significant. Analysis of the bed argpended sediment samples, showed the
former could be considered to be reasonably wplesented by a lognormal distribution, for
the both the mass and number sizes, while fordter,Ithe mass size distribution was bi-
modal and the number size distribution was closelunge. These contrasting distributions,
led to considerations regarding the impact of apglyan acoustic inversion, based on a
lognormal distribution from bed samples, would haweestimates of M(z) ang,&), derived

from signals backscattered from a suspension havuhgtribution closer to Junge.

Predominately in the literature ABS deploymentseh&een reported as being over sandy
sediments, with a unimodal mass sand size disioibubhormally represented by a lognormal
probability density function (Hay and Sheng, 19@2awford and Hay, 1993; Osbourne and
Vincent, 1996; Lee et al., 2004; Dolphin and Vinget009; Bolanos et al., 2012; Moate et
al., 2016). The source for this representatiorsisally based on bed samples. The lognormal
distribution of the bed samples can be used torétieally invert the acoustic backscattered
data, or, as is often the case, the bed samplebecased to provide a laboratory calibration
for the ABS, applicable to the deployment locat{@sbourne and Vincent, 1996; Lee et al.,
2004; Dolphin and Vincent, 2009). Given the expagdedimentary environments in which
acoustics is being deployed (Best et al., 2010jrSethal., 2013; Topping and Wright, 2016;
Sahin et al., 2017; Fromant et al., 2017; Vergnal.et2020), it was considered of value to
assess scenarios where the sandy bed sedimendistzbution, was used to interpret
backscatter data, from a suspension of wide sigeilalition and with significantly varying
sand and mud composition with height above the bed.
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To carry out the investigation, suspension scesasiere modelled, which reflected some of
the properties identified in the field study. Thedlsediments were considered to be primarily
sandy in nature with a lognormal distribution #j(a) andP;'(a). The suspended mass
distribution, PS(a,z), was bi-modal, while the form foP(a,z) was similar to the Junge
distribution. Two commonly used expressions wergliag to represent the suspended

sediment concentration profiles.

In general, there is little prospect in the mammeironment, presently or in the near future,
of being able to obtain detailed high resolutiossitu measurements & (a,z,t), where t is
time. There is the LISST instrument, Laser in-sicattering and Transmissometry, which
gives relatively coarse measurement®{dh,t) at a single height above the bed (Agrawal and
Pottsmith, 2000), this can provide a partial solutto the inversion problem. Nevertheless,
the LISST cannot resolve the detailed size distidouof the in-situ suspended sediment
composition with height above the bed, as collectéth the multi-tier sampler, and
measured with the Malvern Mastersizer 2000. Howetrer latter approach only provides
time integrated suspended size distributions, ¢iselts of which are shown in figure 3. It is
these limitations in the measurement of profilebath in-situPs (a,z,t) and C(z,t) necessary
to assess field inversions of M(z,t) ang(zt), which led to the adoption of the current
modelling approach for the present study, which Wakh underpinned and stimulated by
actual field observations. As previously notedairably it is the dominant sandy component
of the bed sediments collected from the ABS deplkynsite, which is used for the acoustic
inversion. For the presented scenarios using thoach leads to the results shown in
figures 11 and 12 where essentially the profilesafgz) and M(z) are those of only the sand
component in suspension. Even when the whole pagize distribution of the bed including
both sandy and muddy components is used for thersion, figures 14 and 15 show some
decrease in mean patrticle size with height aboeeb#d, however, #z) and M(z) are still
closely aligned with solely the sandy componentplemations for these responses are
presented in the dominance of the sand scatteangponent shown in figure 13 and the size
selection and integral ratio calculation of figu& Furthermore, increasing the mud content
in the bed to 25%, still yields trends in(2) and M(z) comparable to that of the lower mud
content, that is&z)~a;, and M(z}xCsz). Essentially, for any acoustic inversion basedhe
scattering characteristics of the bed sedimentdigteibution, errors will be introduced into

the acoustic estimates of C(z) antzawhen vertical gradients are present in the ended
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size distribution, due to the inappropriate desmip of the suspension scattering

characteristics.

In the scenarios considered here, there were impoghanges in the suspended sediment
composition with height above the bed, which, it @@curately accounted for, leads to
suspended particle size and concentration divergiggificantly from what was actually
modelled in suspension. Certainly, suspended sedic@mposition with height above the
bed will vary depending on the mud-sand compositbrihe bed and the hydrodynamic
conditions, leading to functional forms f®(z) that will vary from the simple linear
dependency on z adopted for the scenarios preséeted However, it would seem to be
generally the case that suspended sediment sizeb&ibverestimated and concentration
underestimated, in mixtures of muddy and sandyensgd sediments, when bed samples are
used for the inversion of acoustic backscatteradigata. Therefore, acoustic inversions are
more problematic for mixed sediments than for tagecof unimodal sands and caution needs
to be applied in the interpretation of ABS datdestikd in these more complex sedimentary

environments.
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Highlights

A numerical study explores the acoustic backscatter from a suspension of a mud-sand

mixture with a composition varying with height above the bed.

Changes in the mud-sand composition with height above the bed generally leads to errorsin

the acoustic estimates of particle size and concentration.

When using bed samples, the dominant sand component is generally chosen for the acoustic
inversion, leading to an overestimate of mean suspended sediment size and an underestimate

of the concentration.

Obtaining accurate measurements of suspended sediments acoustically in a mixed mud-sand

environment can be problematic
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