Photoelectric fields in doped lithium niobate crystals

N. V. Sidorov^a, A. M. Shuvalova^a, A. A. Yanichev^a, N. A. Teplyakova^a, M. N. Palatnikov^a, and K. Bormanis^b

View metadata, citation and similar papers at core.ac.uk

brought to you by 🗓 CORE

provided by E-resource repository of the University of Latvia

ABSTRACT

Photoinduced light scattering (PILS) in nominally pure stoichiometric and congruent lithium niobate single crystals (LiNbO₃), and ones doped with B^{3+} , Cu^{2+} , Zn^{2+} , Mg^{2+} , Gd^{3+} , Y^{3+} , Er^{3+} cations was studied. All crystals have a relatively low effect of photorefraction and are promising materials for frequency conversion, electro-optical modulators and shutters. It was found that the photovoltaic and diffusion fields for some crystals have a maximum at a wavelength of 514.5 nm. All the crystals studied are characterized by a maximum of the integral intensity of the speckle structure of the PILS at a wavelength of 514.5 nm.

ARTICLE HISTORY

Received 2 October 2018 Accepted 8 February 2019

KEYWORDS

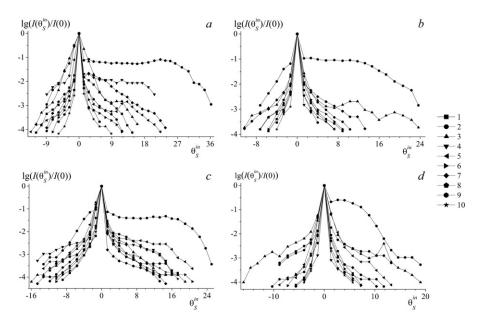
Single crystal of lithium niobate; photorefractive effect; Rayleigh photoinduced light scattering; photovoltaic and diffusion fields

1. Introduction

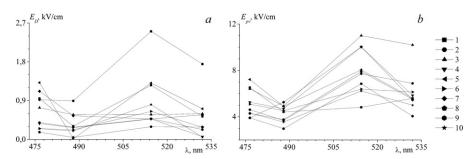
The ferroelectric photorefractive lithium niobate crystal (LiNbO₃) is characterized by a high value of spontaneous polarization, large values of the photoinduced electric fields intensity [1, 2]. The control of the photorefraction (optical damage) magnitude is usually carried out by doping of the crystal with cations of various metals [1, 2]. Photorefractive effect causes Rayleigh photoinduced light scattering, which occurs on static and dynamic (fluctuating) defects with an altered refractive index induced by laser radiation [3, 4]. In this case, the value of the electro-optical effect determines the value of the angle θ of the PILS indicatrix opening in the crystal [4].

In this paper, the angular distribution of the intensity of the speckle structure of the PILS as a function of the wavelength of the exciting laser radiation was studied. Experiments were performed in nominally pure stoichiometric (LiNbO_{3stoich}) and congruent (LiNbO_{3cong}) lithium niobate single crystals, and ones doped with B³⁺, Cu²⁺, Zn²⁺, Mg²⁺, Gd³⁺, Y³⁺, Er³⁺ cations. The following laser lines were used in PILS experiment: 476.5, 488.0, 514.5 and 532.0 nm. Quantitative estimation of the photovoltaic (E_{pv}) and diffusion (E_D) fields values were made using the approach described in [3].

2. Experiment setup


 $LiNbO_3$ crystals were grown from the congruent melt at the "Crystal-2" installation by the Czochralski technique in air [5]. $LiNbO_{3stoich}$ crystal was grown from the melt with

58.6 mol. % of Li₂O. PILS registration was carried out using an installation, described in details in [4]. For the PILS registration the following lines of Spectra Physics (2018-RM) argon-krypton laser were used: 476.5 nm (P = 216 mW), 488.0 nm (P = 98 mW), 514.5 nm (P = 282 mW) and 532.0 nm (P = 160 mW). The value of the intensity of the photovoltaic and diffusion fields in crystals was calculated in the Mathcad 15.0 program using the approach proposed in [3]. The refractive indices of the extraordinary and ordinary rays were determined from empirical equations [6].


3. Results and discussion

The speckle structure of the PILS pattern of LiNbO₃ crystals is determined by the features of the secondary structure of the crystal, which depends significantly on the composition and growing technology [1, 2, 4]. The birefringence of the crystal, both intrinsic and induced by laser radiation, is also important. At a power of excitation laser radiation of 160 mW, the indicatrix of the speckle structure of the PILS in LiNbO₃, LiNbO₃: Zn (2.93), LiNbO₃: Gd (0.002): Mg (0.04), LiNbO₃: Er (3.1 wt. %) crystals is not revealed, and only circular scattering on crystal lattice defects is observed. For all other crystals investigated the indicatrix of the PILS is asymmetric with the form of a figure eight or an ellipse stretched along the polar axis.

It should be noted that for the LiNbO₃: Y (0.46 wt. %) crystal at P = 160 mW, the indicatrix of the speckle structure of the PILS is revealed very rapidly, in a time of about 1 s. For all other crystals, the opening time of the speckle structure of the PILS is about 60 s.

Figure 1. The angular distribution of the scattered light intensity at $\lambda = 476.5$ (*a*), 488.0 (*b*), 514.5 (*c*), 532 (*d*) nm for the following crystals: LiNbO₃:Zn (0.018) (1); LiNbO₃:Zn (2.93) (2); LiNbO₃:Y (0.46) (3); LiNbO₃:Cu (0.007):Gd (0.02) (4); LiNbO₃:Gd (0.05) (5); LiNbO₃:Gd (0.002):Mg (0.4) (6); LiNbO₃:B (0.08 in the reacted mixture) (7); LiNbO₃:Er (3.1 wt. %) (8); LiNbO₃stoich (9); LiNbO₃cong (10).

Figure 2. Dependence of E_D (*a*) and E_{pv} (*b*) on laser line wavelength for LiNbO₃ crystals with various composition: LiNbO₃:Zn (0.018) (1); LiNbO₃:Zn (2.93) (2); LiNbO₃:Y (0.46) (3); LiNbO₃:Cu (0.007):Gd (0.02) (4); LiNbO₃:Gd (0.05) (5); LiNbO₃:Gd (0.002):Mg (0.4) (6); LiNbO₃:B (0.08 in the reacted mixture) (7); LiNbO₃:Er (3.1 wt. %) (8); LiNbO_{3stoich} (9); LiNbO_{3cong} (10).

It can be seen from Figure 1 that crystals LiNbO_{3stoich}, LiNbO₃: Gd (0.05) and LiNbO₃: Y (0.46 wt. %) possess the greatest asymmetry and the scattered radiation angle θ in the series of crystals studied, regardless of the wavelength of the exciting line. At the same time, for a LiNbO_{3stoich} crystal, the shape of the scattering curve when excited by laser lines 476.5, 488.0, and 532.0 nm is approximately the same, but differs significantly from them when excited by a 514.5 nm laser line, Figure 1.

Figure 2 shows the dependences of the E_{pv} and E_D intensities in the investigated crystals on the wavelength of the exciting radiation. For LiNbO₃: Zn (0.018), LiNbO₃: Zn (2.93), LiNbO₃: Gd (0.05 wt. %) crystals, a maximum in the E_D dependence at the length of the exciting laser line of 514.5 nm is observed. However, the maximum in the E_D dependence are not observed for LiNbO₃: Er (3.1), LiNbO₃: B (0.08), LiNbO₃: Y (0.46 wt. %) crystals.

For LiNbO₃: Y (0.46), LiNbO₃: Cu (0.007): Gd (0.02), LiNbO₃: B (0.08 wt. %), LiNbO₃: Gd (0.05), LiNbO₃: Zn (2.93 wt. %), LiNbO_{3stoich} crystals the maximum in the E_{pv} dependence is also observed at the length of the exciting laser line of 514.5 nm. But at the same time, the maximum is absent for LiNbO₃: Zn (0.018), LiNbO₃: Gd (0.02): Mg (0.4) crystals. It is also seen from Figure 2 that the LiNbO_{3stoich} crystal at wavelengths of the exciting radiation of 476.5, 488.0 and 532.0 nm and LiNbO₃: Zn (0.018 wt. %) at 514.5 nm possess the smallest value of the E_{pv} .

4. Summary

Photoinduced light scattering in nominally pure LiNbO_{3stoich} and LiNbO_{3cong} single crystals (LiNbO₃), and ones doped with B^{3+} , Cu^{2+} , Zn^{2+} , Mg^{2+} , Gd^{3+} , Y^{3+} , Er^{3+} cations was studied. According to the characteristics of the PILS, a quantitative estimation of the intensity of the photovoltaic and diffusion fields was made. It was found that the E_{pv} and E_D for some crystals have a maximum at a wavelength of 514.5 nm. However, for the LiNbO₃: Y crystal (0.46 wt. %) there is no maximum in the E_{pv} dependence, but one at a wavelength of 514.5 nm in E_D dependence.

References

1. N. V. Sidorov, T. R. Volk, B. N. Mavrin, and V. T. Kalinnikov, *Lithium Niobate: Defects, Photorefraction, Vibrational Spectrum and Polaritons* (Nauka, Moscow, Russia 2003).

- -
- 2. T. Volk, and M. Wohlecke, *Lithium Niobate: Defects, Photorefraction and Ferroelectric Switching* (Springer, Berlin, Germany 2008).
- 3. M. Goulkov, M. Imlau, and T. Woike, Photorefractive parameters of lithium niobate crystals from photoinduced light scattering, *Phys. Rev. B.* 77, 235110-1 (2008).
- 4. V. A. Maksimenko, A. V. Syuy, and Y. M. Karpets, *Photoindeced Processes in Lithium Niobate Crystals* (Physmatlit, Moscow, Russia 2008).
- 5. M. N. Palatnikov *et al.*, Growth and concentration dependencies of rare-earth doped lithium niobate single crystals, *J. Cryst. Growth.* 291(2), 390 (2006). DOI: 10.1016/ j.jcrysgro.2006.03.022.
- 6. G. G. Gurzadyan, V. G. Dmitriev, and D. N. Nikogosyan, *Nonlinear Optical Crystals: Properties and Applications in Quantum Electronics* (Radio and Communication, Moscow, Russia 1991).