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Generalized priority-based model for smartphone screen touches
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The distribution of intervals between human actions such as email posts or keyboard strokes demonstrates
distinct properties at short versus long timescales. For instance, at long timescales, which are presumably
controlled by complex process such as planning and decision making, it has been shown that those interevent
intervals follow a scale-invariant (or power-law) distribution. In contrast, at shorter timescales—which are
governed by different processes such as sensorimotor skill—they do not follow the same distribution and we
know little about how they relate to the scale-invariant pattern. Here, we analyzed 9 million intervals between
smartphone screen touches of 84 individuals which span several orders of magnitudes (from milliseconds to
hours). To capture these intervals, we extend a priority-based generative model to smartphone touching events.
At short timescale, the model is governed by refractory effects, while at longer timescales, the intertouch intervals
are governed by the priority difference between smartphone tasks and other tasks. The flexibility of the model
allows us to capture interindividual variations at short and long timescales, while its tractability enables efficient
model fitting. According to our model, each individual has a specific power-law exponent which is tightly related
to the effective refractory time constant suggesting that motor processes which influence the fast actions are
related to the higher cognitive processes governing the longer interevent intervals.

DOI: 10.1103/PhysRevE.102.012307

I. INTRODUCTION

Human actions such as mail correspondences, library
loans, or website visits are not equally distributed in time but
are typically structured in bursts followed by long periods
of inactivity [1–3]. Several types of models have been pro-
posed to capture the power-law structure of interevent time
distribution (for a review see Ref. [3]). Priority-based queuing
models [4–9] rely on one (or multiple) list(s) of tasks to be
executed, where each task is associated with a priority level
which directly influences the timing of its execution. This
class of models have been pioneered by Barabási [4] and then
generalized to multiple interacting queues [7,9], time-varying
priorities [10], or priorities which depend on the position
within the list of tasks [11]. Those models provide an inter-
esting interpretation for the origin of the power-law scaling
for long intervals (they come from prioritizing tasks) but are
usually not designed to capture short interevent timings.

Poisson-based models belong to another class [12–15].
They rely on the assumption that the event rate is governed
by a Poisson process whose rate can change over time. Be-
cause of this dynamic rate assumption, those Poisson-based
models can easily accommodate a precise description of short
interevent intervals. In the simplest case where the Poisson
rates are piecewise constant and stochastically jump at each
event time, the power-law exponent can be directly obtained
from the distribution of Poisson rates [12]. This approach
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has been extended to continuously changing Poisson rates
[12–15]. In particular, the framework proposed by Malmgren
et al. [14] provides a circadian explanation for the origin of
power-law distributions. Self-exciting point processes (also
called Hawkes processes [16,17]) have also been used to
provide a mechanistic interpretation of power law interevent
intervals [18,19]. Those models are very flexible (they can ac-
commodate both short and long interevent intervals), but lack
the priority-related interpretation. Indeed, it is unclear how
those Poisson-based models relate to priority-based models.

Here, we start from a priority-based framework, generalise
it on different levels and apply it to smartphone touchscreen
interaction data (see Fig. 1). First, unlike the priority-based
model from Barabási, our priority-based model aims at pre-
dicting interevent distribution instead of response-time distri-
bution. Second, our model is the continuous-time extension
of the classical priority-based model. Under this limit, we
can compute analytically the interevent distribution and show
that our generalized priority-based model can be mapped to
Poisson-based models. Third, our priority-based model does
not only describe long interevent intervals but also includes a
detailed description of short interevent intervals and thereby
overcomes the need to define an arbitrary onset of the power-
law distribution [20]. In particular, it assumes that the agent
remains in a so-called refractory state during a short time after
each event, where the probability of generating a new event is
reduced.

Finally, because our model is based on arbitrary priority
distribution and not on specific priority distribution imposed
by the presence of lists (with discrete number of items), it
can produce any power-law exponent. We found that for each
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(a) (b)

FIG. 1. Smartphone touch data. (a) Smartphone touch events
(vertical bars) are characterized by bursts as well as long gaps at
timescales of hours (a1), minutes (a2), and seconds (a3). At the sub-
second timescale (a4), touches are more regular. (b) The intertouch
interval (ITI) distribution is scale free from seconds to hours. Data
from one individual.

subject, the intertouch interval (ITI) distribution is different
and well captured by the model. We also found that from those
fitted parameters, we can quantify the relative priority placed
on smartphone actions.

II. SMARTPHONE TOUCHING MODEL

A. Discrete-time model

In the first step, we propose a discrete-time generative
model for smartphone touches. This model extends existing
priority-based models by including refractoriness [4,7]. The
output of the model is the set of touch times {t0, t1, . . . , tN },
where ti can take discrete values, i.e., ti = ki�t , with �t being
the bin width and ki ∈ N. Equivalently, the model output can
be described by the touch train st where st = 1 denotes the
presence of a touch while st = 0 indicates the absence of a
touch.

Every touch is the result of a decision process. We assume
that an individual can perform tasks from only two categories:
either a task related to a smartphone screen touch or other
task such as driving a car. In each category, there can be
important tasks (such as dialing an emergency number) or
less important tasks (such as checking the news). So we will
assume that every task can be described by its priority level
which is a number between 0 and 1. Let xt ∈ [0, 1] denote the
priority associated with a touch task at time t and yt ∈ [0, 1]
the priority associated to the other task. If at time t the touch
task associated to priority xt is executed (i.e., st = 1), then a
new touch task is considered and will be attributed a new touch
priority value drawn from the touch priority distribution, i.e.,
xnew ∼ p(x). If the touch task is not executed (st = 0), then its
priority remains the same. This can be summarized as

xt+�t = xt (1 − st ) + xnewst xnew ∼ p(x). (1)

Conversely, the dynamics for the other priority yt is such that
when the screen is not touched at time t (i.e., st = 0), then it is
the other action that is executed and a new priority ynew must
be drawn from q(y). This is summarized as

yt+�t = yt st + ynew(1 − st ), ynew ∼ q(x). (2)

To generate a smartphone touch, two conditions need to
be satisfied. First, the priority xt of the smartphone action
needs to be greater than the priority yt of the other action,
and second, the individual must be in a nonrefractory state.
Formally, the touch variable st is sampled from the following
Bernoulli distribution:

st ∼ Bernoulli(λ(xt , yt , τt )�t ), (3)

where the touching intensity λ (probability per time bin �t) is
given by

λ(x, y, τ ) = ρr(τ )H (x − y), (4)

where τ = t − t̂ is the time since last touch (t̂ = maxtk {tk <

t}) and H is the Heaviside step function which guarantees
that touches can only be generated when x > y and ρ is
the touching rate. r(τ ) � 0 is the refractory function which
includes post-touch effects (i.e., right after a touch, the touch
probability can be reduced). A hard refractoriness function
takes the following form:

r(τ ) = H (τ − �), (5)

where H (τ ) is the Heaviside step function [i.e., H (τ ) = 1 if
τ � 0 and H (τ ) else] and � the hard refractory time (i.e.,
minimal ITI). If we relax this strong condition and allow
touches for any τ > 0 (but with reduced probability when
τ � 0), then we can define a relative refractoriness function
as a sum of basis functions,

r(τ ) = 1 +
n∑

k=1

γk exp (−αkτ ), (6)

with logarithmically spaced inverse time constants, i.e., αk =
α1β

−(k−1). We took α−1
1 = 50 ms and set β such that α−1

n =
1000 ms. Note that the set {γk}n

k=1 has to be chosen such that
the condition r(τ ) � 0 is satisfied for all τ � 0. If r(0) � 0.5,
then we define the effective time constant τ ∗ as the time for
which refractoriness is half, i.e., r(τ ∗) = 0.5; see Fig. 4(c). In
the rare cases where multiple solutions exists for τ ∗ (which
can occur when r(τ ) is nonmonotonic), we took the maximal
value of the set of solutions.

The discrete-time model described by Eqs. (1), (2), and (3)
is a latent dynamical system. Note that sampling this model
is slow since the complexity of this sampling scheme scales
with the number of bins. Even more critical is the learning
procedure for such a latent dynamical model which can be
prohibitively slow for smartphone touching data sets which
typically extend over months. A much faster sampling scheme
is proposed below.

B. Continuous-time model

The idea of the continuous-time model is to directly sample
the intervals τ instead of sampling the touch variable st at
each time step. The transition to this continuous model can
be done in two steps. First, we observe that when �t is small,
the other priorities yt constantly change (except at the rare
times where st = 1), i.e., Eq. (2) can be approximated as
yt ∼ q(y). This means that the priorities yt are independent
of time and therefore, the probability of generating a touch
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can be marginalized over yt :

p(st |xt , τt ) =
∫ 1

0
p(st |xt , yt , τt )q(yt )dyt

= Bernoulli(λ̄(xt , τt )�t ), (7)

where the average touching intensity λ̄ is given by

λ̄(x, τ ) =
∫ 1

0
λ(x, y, τ )q(y)dy = ρr(τ )π (x), (8)

and π (x) is the probability of having x > y for a given x,

π (x) =
∫ x

0
q(y)dy. (9)

In the second step, we take the limit �t → 0 and therefore,
the intertouch interval distribution conditioned on x can be
expressed as (see also Ref. [21]):

p(τ |x) = λ̄(x, τ ) exp

(
−

∫ τ

0
λ̄(x, t )dt

)
. (10)

The unconditioned ITI distribution is obtained by averaging
the conditioned ITI distribution over the touch priority distri-
bution p(x):

p(τ ) =
∫ 1

0
λ̄(x, τ ) exp

(
−

∫ τ

0
λ̄(x, t )dt

)
p(x)dx. (11)

So samples of the continuous-time model can be simply
obtained in a two-step procedure. First, x is sampled from
p(x), then τ is sampled from p(τ |x) given by Eq. (10). For this
second step, one can use the time rescaling theorem [21]. Note
that this continuous-time model describes a renewal process
and hence the sampling complexity scales with the number of
touches N .

In the absence of refractoriness [i.e., r(τ ) = 1], the sam-
pling procedure is even simpler. First, a Poisson rate λ̄ = ρx
can be drawn from a distribution of rates p(λ̄) with maximal
rate λ̄max = ρ, then τ is sampled from an exponential distri-
bution p(τ |λ̄) = λ̄ exp(−λ̄τ ) and the ITI can be expressed as

p(τ ) =
∫ ρ

0
p(τ |λ̄)p(λ̄)dλ̄, (12)

which is precisely the ITI one would get from an heteroge-
neous Poisson model [12]. This shows the equivalence be-
tween the priority-based model and the Poisson-based models.

III. PROPERTIES OF THE MODEL

A. Invariance of the model

Before giving a parametric form for all distributions, let
us first note an invariant property of the model. In particular,
it can be shown (see Appendix A 1) that the ITI distribution
given by Eq. (11) remains unchanged if the pair of priority
distributions [p(x), q(y)] is replaced by [p̃(x), q̃(y)] given by

p̃(x) = p[φ(x)]φ′(x) and q̃(y) = q[φ(y)]φ′(y), (13)

where φ is a differentiable and strictly monotonously increas-
ing function with boundary conditions φ(0) = 0 and φ(1) =
1. This invariance can be understood intuitively by noting
that the notion of priority contains some arbitrariness. Indeed,

(a) (b)

FIG. 2. Properties of the smartphone touching model. (a) The
refractory time constant affects the early part of the ITI distribution.
n = 1, τr = α−1

1 . (b) The parameter a from the priority distribution
affects the power-law exponent of the ITI distribution.

the only element which is relevant in the decision process
is whether x is larger or smaller than y [see Eq. (4)]. If we
define a new priority x′ = φ(x) (with the above conditions
on φ), then we observe that the ordering remains unchanged,
i.e., x > y ⇒ φ(x) > φ(y). This observation can also be made
more formally with a change of variable in Eq. (11) (see
Appendix A 1). Second, this invariance property of the model
means that without loss of generality, we can set one distri-
bution and rescale the other one. For example, without loss
of generality, we can set q(y) = 1. For the touch priority
distribution, we will assume that it is given by a β distribution:

p(x) = β(x; a, b) = xa−1(1 − x)b−1

B(a, b)
, (14)

where B(a, b) = ∫ 1
0 xa−1(1 − x)b−1dx is the β function. With

the above choice of q, the ITI distribution in Eq. (11) can be
rewritten in a simpler form

p(τ ) = ρr(τ )
∫ 1

0
x exp

(
−xρ

∫ τ

0
r(t )dt

)
p(x)dx. (15)

B. Scale-free intertouch interval distribution

For short timescales (τ < α−1
n ), the ITI distribution is

governed by the refractory function r [see Fig. 2(a)]. However,
for longer timescales (τ 	 α−1

n ), the ITI distribution follows a
power-law distribution. This can be seen in two steps. First, in
the limit of large τ , we have r(τ ) → 1. Second, in the limit of
large τ , we know from Eq. (15) that the ITI distribution is only
sensitive to the touch priority distribution in the vicinity of x =
0 that we denote as p0(x). Note that p0(x) is not normalized.
For the β distribution, we have p(x) → p0(x) = xa−1/B(a, b)
when x → 0. Therefore, when τ 	 α−1

n , the ITI distribution
can be approximated as

p(τ ) � ρ

∫ 1

0
xp0(x)e−xρτ dx

� �(a + 1)

B(a, b)ρa
τ−(a+1), (16)

where �(z) = ∫ ∞
0 xz−1e−xdx is the � function. Therefore, the

power-law exponent is given by a + 1 [see Fig. 2(b)]. So when
a is large, touching tasks are more important—in the sense
that there are few low-priority touch tasks—and consequently
there are less large ITI.
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TABLE I. List of models.

Model Parameters Number of parameters Assumptions

M1 θ = (a, ρ ) 2 No ref.
M2 θ = (a, b, ρ ) 3 No ref.
M3 θ = (a, ρ,�) 3 r: hard, b = 1
M4 θ = (a, b, ρ,�) 4 r: hard
M5 θ = (a, ρ, γ1, . . . , γn) n + 2 r: rel, b = 1
M6 θ = (a, b, ρ, γ1, . . . , γn) n + 3 r: rel
M7 θ = (κ, ϕ) 2 No ref.
M8 θ = (κ, λ) 2 No ref.
M9 θ = (μ, σ 2) 2 No ref.

IV. RESULTS

A. Model fitting

For each subject, we fitted six versions of the priority-based
model (M1–M6) and three benchmark models (M7–M9). Those
six versions are obtained by fixing a subset of parameters
to specific values in the case of no refractoriness (M1–M2),
hard refractoriness (M3–M4) as well as relative refractoriness
(M5–M6) (see Table I). The three benchmark models (M7–M9)
are further detailed in Appendix A 4. So, in total, we fitted
nine models per subject:

(1) Model M1 is the simplest model and contains only two
parameters: θ = (a, ρ). It is assumed that b = 1 and that there
is no refractoriness (� = 0).

(2) Model M2 is the same as model 1 except that the touch
priority distribution has 2 free parameters: a and b. Overall, it
contains three parameters: θ = (a, b, ρ).

(3) Model M3 includes hard refractoriness (with refractory
time �) but assumes b = 1. It contains therefore three param-
eters: θ = (a, ρ,�).

(4) Model M4 is the same as model 3 except that the touch
priority distribution is described by both a and b. It contains
four parameters: θ = (a, b, ρ,�).

(5) Model M5 uses a relative refractory kernel
parametrized by n basis functions with coefficients γ1, . . . , γn.
It also assumes that b = 1. So the model contains n + 2
parameters: θ = (a, ρ, γ1, . . . , γn).

(6) Model M6 is the same as model M5, but b is not
constrained to be equal to one. The models contains therefore
n + 3 parameters: θ = (a, b, ρ, γ1, . . . , γn).

(7) Model M7 is the gamma distribution with θ = (κ, ϕ).
(8) Model M8 is the Weibull distribution with θ = (κ, λ).
(9) Model M9 is the log-normal distribution with θ =

(μ, σ 2).
For each model and for each subject, the model parameters

θ are fitted from the set D = {τi}N
i=1 of intertouch inter-

vals τi = ti − ti−1. To do so, we relied on the continuous-
time model which massively simplifies the expression of the
log-likelihood. Indeed, the detailed model can be seen as a
dynamical latent variable model (where the latent variables
are x and y) which can be fitted through EM type al-
gorithm but is known to be very slow. Here, because of
the analytical expression of the ITI for the continuous-time
model [see Eq. (15)], we can express the following objective

function:

L(θ ) = L(θ ) − λ

n∑
k=1

γ 2
k , (17)

which is the log-likelihood L(θ ) = ∑N
i=1 log p(τi ) [see

Eq. (A6)] minus a regularization term on the coefficients γk to
prevent overfitting. This regularization term (with λ = 1000)
is only used in models 5 and 6. Note that this objective
function can be seen as the log-posterior with a Gaussian prior
(with variance 1/2λ) on the coefficients γk and a flat prior for
the other parameters.

Because the refractory kernel must remain positive for
all time, i.e. r(τ ) � 0, ∀τ � 0, the optimization task can be
expressed as

θ∗ = arg max
θ

L(θ )

s.t.
n∑

k=1

exp(−αkτ )γ ∗
k � −1 ∀τ � 0. (18)

However, the difficulty of the optimization problem defined
in Eq. (18) lies in the fact that the constraints are defined
for all τ � 0 (i.e., infinitely many inequality constraints). For
a practical numerical implementation, we defined a grid of
M = 200 points τ1, . . . , τM where the first 100 points are
linearly spaced (τi = i�t for 1 � i < 100 and �t = 1 ms)
and the subsequent 100 points are logarithmically spaced
(τi = κ i−100τ100 for 100 < i � 200 where κ is set such that
τ200 = 3α−1

n ). So we replace the inequality constraints of
Eq. (18) by

n∑
k=1

exp(−αkτi )γ
∗
k � −1 ∀i = 1, . . . , M.

B. Fitting results

We recorded smartphone touches from 84 individuals for
an average duration of 36.5 days (see Appendix B 1 for details
on data collection). The average number of smartphone screen
touches per day ranged from 285 to 9915 with a median value
of 2540 touches per day.

For each individual, the six different models were fitted
according to the procedure described above. In particular, we
first fitted the models without refractoriness (M1 and M2) and
the models with hard refractoriness (M3 and M4). We found
that the likelihood can be drastically improved by adding the
hard refractory time parameter � [see Figs. 3(a), 3(b) and
Fig. 5(a)]. Actually, the optimal value is exactly �∗ = τmin,
where τmin is the minimal ITI [see Eq. (A15)]. The fitted ITI
for model M4 [see Figs. 3(c) and 3(d)] is decent, but short ITI
are not well captured.

We then fitted the models with relative refractoriness (M5

and M6) and displayed the fitting results of the best model
(M6 with n = 21 basis functions); see Fig 4. We found that for
each individual the empirical ITI distribution [see Fig. 4(a)] is
well captured by the model both for the short timescales
(up to 1 s) which is strongly influenced by the refractory
kernel r(t ) [see Fig. 4(c)] as well as the longer ITI which has
a typical power-law decay. Note that because of the richness
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(a) (b)

(c) (d)

FIG. 3. Fitting results for the models with hard refractoriness
(M3 and M4). (a) Log-likelihood of model M3 (black, dashed dotted)
and M4 (red, solid) as a function of the refractory time � for a
single subject. The best refractory time is �∗ = 50 ms. (b) The log-
likelihood summed across subjects also elicits an optimal refractory
time at � = 50∗ ms for both model M3 (black, dashed dotted) and
M4 (red, solid). (c) Intertap interval distribution for one subject (solid
line, fit; circles, data). (d) Intertouch interval distribution across the
whole population. Each gray line corresponds to the data from one
subject. Solid black line denotes the median model ITI distribution.

of the data, the power-law relationship extends over 5 decades
(from 103 to 108 ms).

The fitted refractory kernel [see Fig. 4(c)] shows a strong
reduction of touching rate during the first few hundreds of
milliseconds after the last touch. For one subject, it even
displays a small increase in touching rate about 300 ms after
the last touch [see Fig. 4(d)]. This smooth transition from
short ITI to longer ITI removes the need to define an arbitrary
onset of the power-law distribution [20].

The fitted touch priority distribution [see Fig. 4(e)] [assum-
ing that the other priority distribution is given by q(y) = 1]
diverges for small priorities (which is the case when a < 1).
We repeated this fitting procedure for the 84 subjects. The
population results are displayed on Figs. 4(b), 4(d) and 4(e).
We found that over the population the priority parameter a
is fairly scattered around a median value of a = 0.53 (for
model M6) and of a = 0.49 (for model M5). The large in-
terindividual differences is also highlighted in Fig. 4(g) which
displays a broad distribution of touching rate ρ over the
population.

C. Model comparison

To compare the different models (see Table I) for each
individual, we can use the Bayesian information criterion
(BIC) which is well suited for large data sets (i.e., large
number of touching intervals N) which is precisely our case.
BIC is given by BIC = log(N )|θ | − 2L(θ∗), where |θ | is the
number of parameters and L(θ∗) is the objective function
given by Eq. (17) and is evaluated at the MAP parameter θ∗.

(a) (b)

(c) (d)

(e) (f)

(g) (h)

FIG. 4. Fitting results of model M6 (with n = 21) for one subject
(a, c, and e) and for the population of 84 subjects (b, d, and f). (a) The
ITI distribution for one given subject (open circles) is well captured
model (solid line). (c) Refractory kernel. The effective time constant
τ ∗ is defined as r(τ ∗) = 0.5. (e) touch priority distribution (with q =
1). (b, d, and f) same as in (a, c, and e) but for each of the 84 subjects
(gray lines). Solid lines denote the median ITI (b), refractory kernel
(d), and priority distribution (f). (g) Distribution of the parameter a.
(h) Distribution of the touching rate ρ.

To compare the different models for the whole population
of S = 84 subjects, we can define a population BIC in an
analogously to the individual BIC given above. Let Npop =∑S

s=1 N (s) denote the total number of intertouch intervals of
the whole population where N (s) is the number of data points
of subject s. Let |θpop| = S|θ | denote the total number of
fitted parameters and let Lpop(θ∗

pop) = ∑S
s=1 L[θ∗(s)] denote

the population objective function where θ∗(s) denotes the
fitted parameters of subject s. The population BIC is therefore
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(b)

(a)

(c)

FIG. 5. Model comparison. (a) Comparison of the population
BIC for the different models as a function of the number of basis
functions n. Priority-based models (black and red) largely outper-
form simple models such as the gamma distribution (dashed, or-
ange), the Weibull distribution (dashed, green), and the log-normal
distribution (dashed blue). Note that the piecewise linear y-axis is
changing at BICpop = 1.5 × 108. Furthermore, models with relative
refractoriness (M5 and M6, solid lines) outperform models with hard
refractoriness (M3 and M4, dotted lines; M1 and M2, dot-dashed
lines). The best number of basis functions for model M5 is n∗ = 20
(black star). The overall best model is M6 with n = 21 (red star).
Note that the BIC difference between the red and the black star is
−3.8 × 104. (b) Quantile plot for the priority parameter a for model
M5 (black) and model M6 (red). Solid lines denote the median across
subjects and the error bars denote 25 and 75 percentiles. (c) Same as
panel (b) but for the effective time constant τ ∗.

given by

BICpop = log(Npop)S|θ | − 2
S∑

s=1

L[θ∗(s)]. (19)

First, we found that the three benchmark models i.e., the
gamma, Weibull, and log-normal distributions are outper-
formed by all the priority-based models (Fig. 5). This is
interesting since the exact shape of interevent distribution,
although in the context of other data sets such as email
correspondence, has been an object of dispute [4,22,23];
see also the review from Karsai et al. [3]. In particular, it
has been argued that for email correspondence a log-normal
distribution can better capture interevent distribution [22] but
see also Ref. [23]. In our case, it is actually not a surprise
that log-normal distribution is outperformed by a power-law
distribution. Indeed, as we have seen in Fig. 4, the power-law
exponent is on the order of α = a + 1 � 1.5, whereas the

log-normal distribution has a power-law decay for large τ with
an exponent of α = 1 which is significantly different from 1.5.

Second, we found that the simplest priority-based models
without any refractoriness (M1 and M2) or with hard re-
fractoriness (M3 and M4) are outperformed by models with
relative refractoriness (M5 and M6); see Fig. 5. Indeed, despite
their relative large number of parameters which penalizes the
BIC, the models with relative refractoriness have a better (i.e.,
lower) BIC than the other models since they better describe
short intervals. In particular, we found that the overall best
model is M6 with n = 21 basis functions. When the priority
parameter b is set to one, then the best model of M5 is when
n = 20. Note that the difference between the difference in
BIC between the best model M6 and the best model M5 is
�BICpop = −3.8 × 104 which is highly significant.

D. Short versus long intervals

Given the fairly broad distribution of fitted power-law ex-
ponent a [Fig. 5(b)] and effective time constant τ ∗ [Fig. 5(c)],
one could wonder whether this is a fitting artifact (which
would come from a fairly flat landscape of the objective
function for every subject) or whether the variability of those
parameters actually comes from subject-to-subject variability.
To test this, we compared the within-subject variability with
the between-subject variability of those parameters and found
a high degree of fitting consistency between different instan-
tiations (i.e., different number of basis functions) of the same
model [see Figs. 6(c)–6(f)].

We then asked whether the effective refractory time con-
stant τ ∗ is correlated with the power-law exponent across
different subjects. Note that from the way the model is con-
structed, those two parameters are a priori unrelated since the
refractory affects short intertouch intervals and the power-law
exponent affects longer intervals (see Fig. 2). We found that
a and τ ∗ are indeed inversely correlated [Fig. 6(a)] with an
explained variance of 40% for model M5 and 22% for model
M6 [Fig. 6(b)]. This indicates that subjects that have a fast
motor control (i.e., have a small τ ∗) also put a higher priority
on their smartphone (i.e., higher a) in the sense that they have
less low priority smartphone tasks.

V. DISCUSSION

We proposed a generalized priority-based model which is
both flexible and tractable. The flexibility comes from the
set of basis functions which describe refractory effects at
short intertouch intervals, while the tractability stems from
the simplified structure of the generative model in continuous-
time which enables a fast fitting procedure. The flexibility
is essential to capture interindividual differences in touching
behavior while the tractability is crucial for fitting large data
sets. We found that the intertouch intervals are better captured
by the priority-based model than by other reference distribu-
tions such as log-normal, gamma, or Weibull distributions.
We also found that the interindividual differences in low level
motor control ability (reflected by the effective refractory
time constant) can be partially explained by the higher-level
cognitive processes which attributes priority to specific tasks
(reflected by the priority parameter a).
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(a) (b)

(c) (d)

(e) (f)

FIG. 6. (a) The scale-free exponent a is inversely correlated with
the effective refractory time constant for model M5 (b = 1, black)
and M6 (b �= 1, red). (b) Explained variance (R2) for this inverse
correlation as a function of the number of basis functions. For
the best model M5, (n = 20), R2 = 40% and for the best model
M6, (n = 21), R2 = 22%. For all numbers of basis function, the slope
is negative (see inset). (c–f) consistency of the fitted parameters.
(c) The distribution of the difference an(s) − an−1(s) across subjects
s = 1, . . . , 84 and across basis function numbers n = 10, . . . , 30
(black, σfit = 0.022) is much narrower than the distribution of the
differences an(s) − an−1(s′) where the indices s′ are randomly per-
muted (white, σrand = 0.28). (d) Same as panel (c) but for model
M6 (σfit = 0.043, σrand = 0.23). (e) Similarly as in panel (d), the
distribution of the difference of effective refractory time constants
τ ∗

n (s) − τ ∗
n−1(s) (black, σfit = 88.7 ms) much narrower than the one

obtained when subjects are permuted for each n (white, σrand = 458
ms). (f) Same as in panel (e) but for model M6 (σfit = 100 ms,
σrand = 366 ms).

Other models describing smartphone activity have been
proposed. However, they are aimed at addressing different
questions (mostly sleep related) and use different type of data.
The model of Cuttone et al. [24] aims at predicting sleep
patterns and rely on app launch timings binned over 15-min
duration and therefore lack the possibility to describe refrac-
tory effects on the tens of milliseconds resolution. Abdullah
et al. [25] only considered screen-on and screen-off events to
predict sleep patterns.

More generally, circadian rhythms have received recently
a lot of attention [26–28] and the question has been addressed
whether circadian rhythms could explain heavy tail distribu-
tion [14] has argued that a cascade of Poisson processes can
give rise to power-law distribution. Interestingly, Jo et al. [19]

showed that even if the data is deseasoned (i.e., the circadian
and weekly patterns are removed from the time series of
mobile phone events), the heavy-tails remain.

Closer to the present study, the priority model proposed by
Refs. [2,4,7] already predicts a power-law distribution. How-
ever, our model deviates significantly from their approach in
several aspects.

First, and most importantly, the priority-based model from
Barabási is aimed at predicting the response time distribution
(e.g., the time interval between the reception of a letter and
its response), whereas in our case, our priority-based model
predicts interevent times (e.g., the time interval between two
consecutive posted letters—or in our case intertouch inter-
vals). It is, however, interesting to note that even though the
response-time and the interevent-time metrics are clearly dif-
ferent, they can still be seen within the same umbrella. On the
formal level, the response-time priority-based model with a
list of L = 2 is equivalent to the discrete-time emission model
described in Sec. II A. Furthermore, on the interpretation
level, since a new smartphone touching task arrives just after
every smartphone touching event [see Eq. (1)], one could still
reinterpret the following interevent time as a response time.
For a further discussion on the relationship between response-
time distribution and interevent distribution, see Ref. [3].

Second, on the conceptual level, those authors stress the
universality of the various behaviors. Their claim is that the
interevent intervals for certain activities such as browsing the
Web, sending emails or loaning books fall into a specific
universality class with power-law exponent of α = 1 while the
response time for other activities such as writing mails follow
another universality class with exponent of α = 3/2. Actually,
more recently, Formentin et al. [29] elegantly showed that
various response-time datasets (on sms [30], email [29], and
mail [1]), with apparently different power-law exponents can
be cast within the same α = 3/2 universality class provided
that the events are properly reclocked [31]. Here, we found
that the power-law exponent (averaged over the population) is
α = a + 1 � 1.56 ± 0.16 which is indeed close to the rational
exponent of 3/2. However, it should be noted that the power-
law exponent of individuals are fairly spread ranging from
α = 1.31 ± 0.04 to α = 2.19 ± 0.04 which are clearly differ-
ent from α = 3/2. Capturing those nonuniversal exponents is
possible in our model since the power-law exponent is given
by a + 1 where a can take any real positive value. In contrast,
in the work of Oliveira et al. [7], the exponent is determined
by the length of the list of tasks [32].

The third difference w.r.t. the studies of Refs. [2,4,7] is that
our model has been actually fitted to the whole set of event
times (the touch times) such that we did not neglect small
interevent intervals by defining a (somewhat artificial) onset of
the power-law distribution [20]. This is possible in our model
since short intervals are captured by the refractory kernel.
Note that even though refractory kernels have been used in
other fields (e.g., in spiking neuron models, the probability of
generating a spike just after a first one is also modulated by
a refractory kernel [33–35]), the particularity here is that the
specific form of the refractory kernel is such that its integral
can be computed analytically which boosts the computational
efficiency.

Finally, fitting our model to the touching data has been
possible because we considered the continuous-time priority
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model. Indeed, the marginal likelihood can be expressed
analytically for the continuous-time model (and not for the
discrete time model) which makes the maximum-likelihood
parameter learning extremely efficient.

A separate line of research based on biological signals
has also encountered scale-invariant relationships referred as
1/ f pink noise [36,37]. However, those studies compute the
power-spectrum density and not the interevent distribution.
Actually, if we do compute the power-spectrum density for
the smartphone touching model, then we find that in the limit
of large frequencies, the power-spectrum density remains
constant and does not decrease as 1/ f .

Here, this generalized priority-based model has been ap-
plied to smartphone touching data but could be applied to
other event-based data sets which display power-law property
for large interevent intervals such as surface mails, emails, or
even foraging patterns.

The simulations have been performed using Matlab. The
code and the smartphone touching data are available online
[38].
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APPENDIX A

1. Invariance of the model

In this section, we will show that that the ITI distribu-
tion remains unchanged if the pair of priority distribution
[p(x), q(y)] is replaced by [p̃(x), q̃(y)], where p̃(x) and q̃(y)
are given by Eq. (13).

Let us consider the following change of variable: x =
φ(x′). The ITI distribution can be therefore expressed as

p(τ ) =
∫ 1

0
pq[τ |φ(x′)]p[φ(x′)]φ′(x′)dx′, (A1)

where the conditional ITI distribution pq[τ |φ(x′)] depends on
the other priority distribution q(y) via the instantaneous rate
λ̄q[φ(x′), τ ] which can be expressed as

λ̄q[φ(x′), τ ] = ρr(τ )
∫ φ(x′ )

0
q(y)dy

= ρr(τ )
∫ x′

0
q[φ(y)]φ′(y)dy = λ̄q̃(x′, τ ), (A2)

where q̃ is given by Eq. (13). Note that the dependence
on q is included only here for the clarity of the argument,
but is omitted otherwise for the simplicity of the notation.
Therefore, the ITI distribution is invariant under the change
of variable φ for both x and y. Indeed, we have

p(τ ) =
∫ 1

0
pq(τ |x)p(x)dx

=
∫ 1

0
pq̃(τ |x) p̃(x)dx. (A3)

For example, if the touch priority distribution is given by
p(x) = β(x; a, 1) and the other priority distribution is given
by q(y) = β(y; a′, 1), then the function φ(x) = xk allows us
to generate a family of equivalent pairs of priority distribu-
tions [ p̃(x), q̃(y)] = [β(x; ka, 1), β(y; ka′, 1)]. Therefore, the
ITI remains unchanged as long as a/a′ remains constant.

Note that this argument can be generalized to arbitrary
smooth distribution p̃ and q̃. Let Ã(x) denote the ratio of
the logarithm of both cumulative density functions P̃(x) =∫ x

0 x′ p̃(x′)dx′ and Q̃(x) = ∫ x
0 x′q̃(x′)dx′:

Ã(x) = log[P̃(x)]

log[Q̃(x)]
. (A4)

Since p̃ and q̃ are smooth, when x → 0, we can express those
priority distribution as p(x) � c1xa−1 and q(y) = c2ya′−1.
Also, since φ(x) is smooth, it can be approximated as φ(x) =
xk in the vicinity of x = 0. Now we can show that the Ã(0) is
independent of the change of variable function φ. Indeed,

Ã(0) = lim
x→0

log[x p̃(x)]

log[xq̃(x)]

= lim
x→0

log{p[φ(x)]} + log[φ′(x)] + log(x)

log{q[φ(x)]} + log[φ′(x)] + log(x)

= lim
x→0

log(c1) + ka log(x)

log(c2) + ka′ log(x)
= a

a′ (A5)

is independent of k.

2. Log-likelihood gradient

For the models with relative refractoriness, we fitted the
parameters θ = (a, b, c, γ1, . . . , γn) by performing maximum
likelihood with a suitable regularization for the parameters γi.
Note that for a practical implementation, it is easier to learn
c = log(ρ) instead of ρ itself. For a set of intertouch intervals
D = {τi}N

i=1, the log-likelihood can be expressed as

L(θ ) = Nc +
N∑

i=1

log[r(τi)] + log (〈xEi(x)〉), (A6)

where the expectation 〈·〉 is w.r.t. p(x) = β(x; a, b) and the
function Ei(x) is given by

Ei(x) = e−ρxR(τi ), (A7)

and R(τi ) is given by

R(τi ) :=
∫ τi

0
r(t )dt = τi +

n∑
k=1

γk

αk
(1 − e−αkτi ). (A8)
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By noting that

∂ log[p(x)]

∂a
= log(x) − 〈log(x)〉, (A9)

we can compute the log-likelihood gradient w.r.t. a:

∂L

∂a
=

N∑
i=1

cov[xEi(x), log(x)]

〈xEi(x)〉 . (A10)

By symmetry, the gradient of L w.r.t. to b yields

∂L

∂b
=

N∑
i=1

cov[xEi(x), log(1 − x)]

〈xEi(x)〉 . (A11)

The gradient of L w.r.t. c is given by

∂L

∂c
= N − ρ

N∑
i=1

〈x2Ei(x)〉
〈xEi(x)〉 R(τi ), (A12)

Finally, the gradient of L w.r.t. γk can be expressed as

∂L

∂γk
=

N∑
i=1

∂r(τi )/∂γk

r(τi )
− ρ

〈x2Ei(x)〉
〈xEi(x)〉

∂R(τi )

∂γk

=
N∑

i=1

e−αkτi

r(τi )
− ρ

〈x2Ei(x)〉
〈xEi(x)〉

(1 − e−αkτi )

αk
. (A13)

For the models with hard refractoriness, the integral over
the refractory kernel is given by

R(τi ) = τi − � (A14)

when 0 � � < τmin where τmin = mini τi is the minimal inter-
tap interval. Under this condition, the log-likelihood gradient
yields

∂L

∂�
= ρ

〈x2Ei(x)〉
〈xEi(x)〉 , (A15)

which is positive as long as � � τmin. When � > τmin, the
log-likelihood goes to −∞. Therefore, the optimal refractory
time constant is �∗ = τmin.

3. Computing the integrals

Both the log-likelihood L as well its gradient w.r.t. to the
parameters θ contain integrals that are delicate to evaluate.
Indeed, the integrand of all those integrals depend on the beta
distribution β(x; a, b) which can diverge at x = 0 or x = 1
depending on the parameters a and b. So whenever possible,
we compute those integrals analytically. This can be done for
the following integrals:

〈log(x)〉a,b = d

da
B(a, b) = ψ (a) − ψ (a + b), (A16)

where ψ (z) = d log �(z)/dz is the digamma function and
B(a, b) = �(a)�(b)/�(a + b) is the beta function. By sym-
metry, we have

〈log(1 − x)〉a,b = ψ (b) − ψ (a + b). (A17)

By Taylor expanding the exponential in the expression of
Ei(x), the integral 〈xEi(x)〉a,b can be expressed as

〈xEi(x)〉a,b = a

a + b
〈Ei(x)〉a+1,b

= a

a + b
1F1[a + 1, a + b + 1; −ρR(τi )], (A18)

where 1F1 is the hypergeometric function defined as

1F1(a, b; z) =
∞∑

k=0

zk

k!

(a)k

(b)k
(A19)

and (a)k = ∏k−1
i=0 (a + k) for k � 1 [and (a)0 = 1] is the ris-

ing factorial (also called Pochhammer function). Similarly,
〈x2Ei(x)〉a,b can be expressed as

〈x2Ei(x)〉a,b = B(a + 2, b)

B(a, b)
1F1[a + 2, a + b + 2; −ρR(τi )].

(A20)

When it is not possible to compute the integrals analytically,
the idea is to express the integral as a sum of two integrals
where the first one is well suited for a numerical integration
and the second one can be performed analytically. For exam-
ple, 〈xEi(x) log(1 − x)〉a,b can be computed as

〈xEi(x) log(1 − x)〉a,b

= a

a + b
{〈(Ei(x) − Ei(1)) log(1 − x)〉a+1,b

+ Ei(1)〈log(1 − x)〉a+1,b}, (A21)

where the first term of the r.h.s can be computed numerically
and the second term can be computed with Eq. (A17).

Finally, it should be noted that the integral 〈xEi(x)
log(x)〉a,b can be computed numerically straightforwardly
since the integrand does not diverges when x = 0 nor when
x = 1.

4. Benchmark distributions

We benchmarked the generalized priority-based model is
benchmarked with three simple models: the gamma distribu-
tion, the Weibull distribution, and the log-normal distribution.
The gamma distribution is given by

p(τ ) = e−τ/ϑτ κ−1

�(κ )ϑκ
, (A22)

where κ is the shape parameter and ϑ is the scale parameter.
The log-likelihood is therefore expressed as a function of a
two-dimensional parameter θ = (κ, ϑ ) and is given by

L(θ ) = N

(
(κ − 1)〈log(τ )〉τ − 〈τ 〉τ

ϑ
− κ log(ϑ ) − log(�(κ ))

)
,

(A23)

where the the expectation symbol here denotes the average
over the data points, i.e., 〈 f (τ )〉τ ≡ N−1 ∑N

i=1 f (τi ). The
maximum-likelihood parameters θ∗ can be found by maximis-
ing Eq. (A23). This can be done easily by taking advantage of
the fact that the optimal scale parameter has to obey ϑ∗ =
〈τ 〉τ /κ . So the shape parameter can be found by evaluating
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the gradient of the log-likelihood w.r.t. to κ at ϑ∗ and setting
the gradient to zero. This amounts to finding the root of

〈log(τ )〉τ − log

( 〈τ 〉τ
κ

)
− ψ (k) = 0, (A24)

where ψ (k) is the digamma function. The Weibull distribution
is given by

p(τ ) = κ

λ

(τ

λ

)κ−1
e−( τ

λ
)κ , (A25)

where κ is the shape parameter and λ is the scale parameter.
The log-likelihood is therefore given by

L(θ ) = N

(
log

κ

λ
+ (κ − 1)

〈
log

(τ

λ

)〉
τ
− 〈τ κ〉τ

λκ

)
, (A26)

with θ = (κ, λ). By observing that the maximising scale
parameter is given by λ∗ = k

√〈τ κ〉τ , we can obtain the shape
parameter k by computing the root of

〈τ κ log(τ )〉τ
〈τ κ〉τ − 〈log(τ )〉τ − 1

κ
= 0. (A27)

Finally, the log-normal distribution is given by

p(τ ) = 1

τ
√

2πσ 2
exp

{
− [log(τ ) − μ]2

2σ 2

}
, (A28)

where the maximum likelihood parameters are simply
given by

μ∗ = 〈log(τ )〉τ , (A29)

(σ ∗)2 = 〈(log(τ ) − μ∗)2〉τ . (A30)

APPENDIX B

1. Smartphone data collection

A custom-designed software application called Touchome-
ter (now available as TapCounter, QuantActions, Lausanne)
that could record the touchscreen events with a maximum
error of 5 ms [39] was installed on each participant’s phone.
To determine this accuracy, controlled test touches were done
at precisely 150, 300, and 600 ms while the Touchometer
recorded at 147, 301, and 600 ms, respectively, with stan-
dard deviations less than 15 ms (interquartile range less than
5 ms). The app posed as a service to gather the timestamps of
touchscreen events that were generated when the screen was
in an unlocked state. The operation was verified in a subset of
phones by using visually monitored tactile events. The data
were stored locally and transmitted by the user at the end
of the study via secure email. One subject was eliminated
as the app intermittently crashed after a software update.
The smartphone data were processed by using MATLAB
(MathWorks, USA).
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