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Receiver operating characteristic (ROC) analysis is the methodological framework of

choice for the assessment of diagnostic markers and classification procedures in

general, in both two‐class and multiple‐class classification problems. We focus on

the three‐class problem for which inference usually involves formal hypothesis test-

ing using a proxy metric such as the volume under the ROC surface (VUS). In this arti-

cle, we develop an existing approach from the two‐class ROC framework. We define

a hypothesis‐testing procedure that directly compares two ROC surfaces under the

assumption of the trinormal model. In the case of the assessment of a single marker,

the corresponding ROC surface is compared with the chance plane, that is, to an

uninformative marker. A simulation study investigating the proposed tests with

existing ones on the basis of the VUS metric follows. Finally, the proposed method-

ology is applied to a dataset of a panel of pancreatic cancer diagnostic markers. The

described testing procedures along with related graphical tools are supported in the

corresponding R‐package trinROC, which we have developed for this purpose.

KEYWORDS

Box–Cox transformation, Delta method, pancreatic cancer biomarkers, ROC analysis, trinormal
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1 | INTRODUCTION

In the general two‐class diagnostic problem, consider a set of individuals that belongs to one of two diagnostic classes, for example, either to the

nondiseased group, denoted by D−, or to the diseased group, D+. A (bio)marker or, in general, a classifier results in a measurement for each indi-

vidual on a single univariate continuum X=x. By convention, without loss of generality, higher marker values are considered to be associated with

higher disease risk. On the basis of a specific cut‐off point c (also referred to as a threshold value in the literature), on the continuum of marker

measurements, an individual with x≤ c is allocated to the nondiseased group; otherwise, (when x>c) to the diseased group. We assume that a ref-

erence standard is available that provides accurate information on the true status (i.e., diseased and nondiseased) of each individual in the study.

The receiver operating characteristic (ROC) curve depicts and summarizes the overlap of the distributions of the individuals from the two diag-

nostic classes. Based on the reference standard, the ROC curve is defined in the unit square as the curve connecting the points of the misclassi-

fication probability of a nondiseased individual (1 − specificity) on the x‐axis against the probability of a diseased individual being correctly

classified (sensitivity) on the y‐axis, for each cut‐off point c, as c varies in the diagnostic marker's measurements support. For an uninformative

marker, that is, distributions of the nondiseased and diseased individuals with quasicomplete overlap, we obtain a curve that is close to the main
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diagonal of the unit square (also called the chance diagonal). If a marker results in complete separation between the two distributions, we obtain an

ROC curve that passes through the point with coordinates (0,1) in the ROC space (i.e., the unit square). The area under the ROC curve (AUC) is an

overall index of the diagnostic accuracy of the marker under study and can be obtained by integrating the function of the ROC curve,

AUC ¼ ∫
1

0GþðF−1− ð1 − tÞÞdt, where Fℓ is the cumulative distribution function (cdf) of class Dℓ, where ℓ=−,+ and Gℓ=1− Fℓ is the corresponding sur-

vival function. It can be shown that the AUC is equal to the probability that a randomly chosen diseased individual attains a higher value than a

randomly chosen nondiseased individual (Krzanowski & Hand, 2009). Statistical inference on the discriminatory power of a marker can be based

on the ROC or the ROC curve.

Parametric and nonparametric approaches have been proposed in the literature for the assessment of the diagnostic accuracy of a marker or

for the comparison of the diagnostic accuracy of competing markers in two‐class problems. Specifically, widely used nonparametric approaches

(DeLong et al., 1988), where two or more markers are compared through their corresponding empirical AUC. A test that involves the empirical

ROC curve itself using a permutation testing procedure also exists (Venkatraman, 2000; Venkatraman & Begg, 1996). Notice that the empirical

AUC is equivalent to the Mann–Whitney U statistic (Bamber, 1975).

The binormal model is widely used in the parametric setting. It assumes that the i=1, … , nℓ, are independent and identically distributed mea-

surements from class Dℓ and are either normally distributed, that is, Xℓi ∼ Nðμℓ; σ2
ℓÞ for ℓ=−,+, or they can be transformed to normality through a

common, latent transformation procedure (Box & Cox, 1964) adapted to the ROC curve context (Molodianovitch et al., 2006). Under the binormal

model, the ROC curve has the form ROCðtÞ ¼ Φðμþ − μ−
σþ

þ σ−

σþ
Φ−1ðtÞÞ, t∈[0,1], with Φ being the cdf of the standard normal distribution. McClish

(1989) proposed an estimate for the variance of the AUC on the basis of the binormal model. Wieand et al. (1989) introduced a statistical test for

comparing two classifiers under the binormal model on the basis of the respective expression of the AUC. An approach for the comparison of two

classifiers using the binormal model assumptions and the corresponding ROC curve directly, without making use of the AUC, exists in the litera-

ture (Metz & Kronman, 1980; Metz et al., 1984). The corresponding parameters of the ROC curve are compared, resulting in an approximately chi‐

squared distributed test that makes use of the shape of the ROC curve directly, rather than its corresponding AUC, with the latter being a

proxy/summarizing function.

Whereas classification procedures to one of two classes have been investigated for over half a century, multiple‐class classification problems

have only recently acquired more attention (Nakas & Reiser, 2018; Liu et al., 2018). A detailed overview of the three‐class diagnostic setting is

provided in Nakas (2014). For the latter, an intermediate class D0 is considered, which can be a transitional or early‐stage disease class in practice.

Clinical examples involve dementia disease states in Alzheimer's disease, Parkinson's disease, or HIV, with patients belonging to classes with nor-

mal cognition, mild cognitive impairment, or dementia. The ROC surface was introduced as a generalization of the ROC curve, and the summariz-

ing index of the volume under the ROC surface (VUS) for the assessment of the diagnostic accuracy of a marker was used in a three‐class

classification task (Scurfield, 1996).

The three‐class diagnostic setting is briefly described as follows. A diagnostic marker yields measurements X=x on a continuous scale for all

three groups. Without loss of generality, we assume that higher values tend to be associated with increased severity of disease. We assume that

the true class membership for each individual is known (i.e., the reference standard is independently available). The i=1, … , nℓ, independent and

identically distributed measurements from class Dℓ are denoted by Xℓi for ℓ=−,0,+. We write fℓ as the probability density function in class Dℓ and

Fℓ as the corresponding cdf in group Dℓ. Gℓ=1− Fℓ is the survival function. An intuitive decision rule regarding the application of the

diagnostic marker for assigning subjects into three ordinal diagnostic groups is based on a pair of cut‐off points c− and c+, where c−<c+. Then,

assign individuals with x≤ c− to the healthy class D−, individuals with c−<x≤ c+ to D0, and x>c+ to the diseased group D+. We set t−= F−(c−) and

t+=G+(c+). The ROC surface is defined as the probability that a randomly selected subject from group D0 has a test result between c− and c+, which

can be written as

z ¼ ROCsðt−; tþÞ ¼ F0ðcþÞ−F0ðc−Þ ¼ F0ðG−1
þ ðtþÞÞ−F0ðF−1− ðt−ÞÞ; (1)

where G−1
þ and F−1− are the inverse functions of G+ and F−, respectively (Nakas & Yiannoutsos, 2004). The function z=ROCs(t−,t+) defines a surface

in the unit cube, which means (t−, t+, z) ∈ [0,1]×[0,1]×[0,1]. The assumption c−<c+ implies that the ROC surface is only defined on the domain

tþ < GþðF−1− ðt−ÞÞ. It follows that perfect discrimination is present if there is complete separation between the distributions of the three classes;

that is, if ROCs(1,1)=1. On the other hand, if the three distributions are congruent, that is, P(X−i≤ x)=P(X0i≤ x)=P(X+i≤ x) for each measurement

x, then the ROC surface is equivalent to the chance plane defined by the equation t−+t++z=1. Such a classifier will have no better discriminatory

power than a random allocation function and is deemed to be an uninformative classifier.

The VUS is defined as

VUS ¼ ∫
1

0
∫
GþðF−1− ðt−ÞÞ

0
F0ðG−1

þ ðtþÞÞ−F0ðF−1− ðt−ÞÞ
� �

dt−dtþ; (2)

which summarizes the global diagnostic accuracy for trichotomous tests. It holds that (Mossman, 1999; Xiong et al., 2006)
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VUS ¼ PðX− < X0 < XþÞ;

that is, the probability that the results of the diagnostic test from a randomly selected triple with one individual from each diagnostic group will be

ranked in the correct order. From the definition of the ROC surface and the convention of the ordered classes according to the disease state, it

follows that the boundaries of the VUS are given by 1/6 for an uninformative marker and 1 in the case of perfect separation between the corre-

sponding distributions of the three classes under study.

In what follows, we review the trinormal ROC surface model in Section 2 and existing VUS‐based testing approaches relevant to hypothesis

testing in the ROC surface analytical framework in Section 3. We then introduce in Section 4 a trinormal model‐based ROC testing framework

extending the ROC curve setting (Metz & Kronman, 1980; Metz et al., 1984). Section 5 presents a simulation study examining the proposed

approaches and comparing them with existing inferential procedures in the ROC surface framework. Section 6 offers an illustration using data

from a published study on pancreatic cancer diagnostic markers (Leichtle et al., 2013). We end with a discussion and refer to the use of the accom-

panying R‐package trinROC, which we have specifically built for ROC surface analysis applications.
2 | THE TRINORMAL ROC MODEL

Considering that the data from the three classes Dℓ, ℓ=−, 0, + are normally distributed, we write the i=1, … , nℓ, independent and identically dis-

tributed measurements from class Dℓ as Xℓi ∼ Nðμℓ; σ2
ℓÞ. Otherwise, transformation functions such as the Box–Cox approach may be applied in

order to obtain data that can reasonably be considered to be normally distributed. Bantis et al. (2015) have described a detailed implementation

of the Box–Cox approach in the ROC surface context.

We reformulate the functional form in Equation (1) as follows:

ROCsðt−; tþÞ ¼ Φ
Φ−1ð1 − tþÞ þ d

c

 !
−Φ

Φ−1ðt−Þ þ b
a

 !
; (3)

where the parameters a, b, c, and d are given by

a ¼ σ0

σ−
; b ¼ μ− − μ0

σ−
; c ¼ σ0

σþ
; d ¼ μþ − μ0

σþ
: (4)

Estimation of an ROC surface using the trinormal model can be performed by estimating the parameters a, b, c, and d with maximum likelihood

estimators of the means bμℓ ¼ ∑nℓ
i¼1Xℓi=nℓ and variances bσ2

ℓ ¼ ∑nℓ
i¼1ðXℓi−bμ iÞ2=nℓ for ℓ=−,0,+.

The corresponding VUS is then obtained by reformulating Equation (2), as follows (Xiong et al., 2006):

dVUS ¼ ∫∫
A
Φ

Φ−1ð1 − tþÞ þ bdbc
 !

−Φ
Φ−1ðt−Þ þ bbba
 !

dt− dtþ;

where A ¼ fðt−; tþÞj0 ≤ t− ≤ 1; 0 ≤ tþ ≤ Φððbμþ − bμ− þ bσ−Φ
−1ðt−ÞÞ=bσþÞg. A shorter expression for the VUS is given by

dVUS ¼ ∫
∞

−∞

Φðbas − bbÞΦð−bcsþ bdÞφðsÞds;
where φ is the density of the standard normal distribution.
3 | COMMON METHODS: HYPOTHESIS TESTING WITH THE VUS

The existing literature only involves testing procedures that use overall summary indices of the ROC surface for the assessment of the diagnostic

accuracy of markers in the three‐class setting (Krzanowski & Hand, 2009). As a result, the comparison of Classifier 1 with Classifier 2 will most

often involve testing H0:VUS1=VUS2 against H1:VUS1≠VUS2. When diagnostic markers that have been tested/applied to the same set of patients

are compared, there is an inherent correlation between marker measurements. This correlation is passed down to the corresponding estimated

VUSs and has to be taken into account in the respective hypothesis‐testing procedures. In the simple case where we investigate the performance

of a single marker, the null hypothesis of interest is H0:VUS1=1/6, where 1/6 is the VUS of the chance plane. Representative tests involving VUS

are presented in the sequel.
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3.1 | Trinormal VUS testing approaches

In the trinormal ROC model framework, one can use the following testing procedures for the comparison of paired diagnostic markers (statistic

Zpaired) and unpaired diagnostic markers (statistic Zunpaired) and for the assessment of a single marker, respectively (statistic Zsingle), assuming that

marker values are normally distributed in each class. The unpaired case arises when the two markers being compared have been tested indepen-

dently on different sets of individuals. The paired case is more frequent in practice when researchers compare a panel of markers whose data arise

from the same experiment on the same set of individuals.

Zpaired ¼
dVUS1 − dVUS2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffidVarðdVUS1Þ þdVarðdVUS2Þ−2dCovðdVUS1; dVUS2Þ

q ; (5)

Zunpaired ¼
dVUS1 − dVUS2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffidVarðdVUS1Þ þdVarðdVUS2Þ

q ; (6)

Zsingle ¼
dVUS1 −

1
6ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffidVarðdVUS1Þ

q : (7)

These statistics are considered to follow a standard normal distribution under the null hypothesis. Detailed formulae for the computation of the

variance and covariance estimates have been proposed (Xiong et al., 2006, 2007). We use “VUS test” to denote such an approach in the simulation

section.
3.2 | An empirical VUS test

Although the trinormal model assumes normality, the empirical nonparametric approach poses no parametric distributional assumptions on the

data but is based on the empirical cdf for each class. For each triplet (X−i, X0j, X+k) of measurements from the three classes, the function of correct

orderings (ratings) is as follows:

crðX−i; X0j; XþkÞ ¼

1; if X−i < X0j < Xþk;

1
2
; if X−i ¼ X0j < Xþk or X−i < X0j ¼ Xþk;

1
6
; if X−i ¼ X0j ¼ Xþk;

0; else:

8>>>>>>><>>>>>>>:

Then the empirical VUS can be estimated by

gVUS ¼ 1
n−n0nþ

∑
n−

i¼1
∑
n0

j¼1
∑
nþ

k¼1
crðX−i; X0j; XþkÞ: (8)

Nonparametric methods involving gVUS for the comparison of competing diagnostic markers and for the assessment of the diagnostic accuracy

of a single marker in discriminating between three diagnostic groups exist in the literature (Dreiseitl et al., 2000; Nakas & Yiannoutsos, 2004).

Hypothesis testing is based on the asymptotic normality of U statistics (Hoeffding, 1948) and utilize Equations (5), (6), and (7) by substitutingdVUS with gVUS. Bootstrap‐based testing in this setting, where the variances in Equations (5), (6), and (7) are estimated by bootstrapping, is feasible

(Nakas & Yiannoutsos, 2004). The bootstrap approach is computationally faster and to be preferred in practice instead of the fully empirical

approach given their similar performance (Nakas & Yiannoutsos, 2004). We use “Boot test” to denote the bootstrap approach.
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4 | HYPOTHESIS TESTING USING THE ROC SURFACE DIRECTLY: A TRINORMAL
MODEL‐BASED ROC TEST

4.1 | Comparing two markers

In the two‐class case, that is, under the ROC curve framework, Metz and Kronman (1980) and Metz et al. (1984) obtained testing procedures, for

the unpaired and paired cases, to compare two ROC curves in a binormal setting using only the parameters of the binormal model. We adapted this

concept in the three‐class setting (under the ROC surface framework) and propose a test statistic on the basis of the parameters of the trinormal

model‐based ROC surface given in Equation (3). Denote the two markers by Classifier k, for k=1,2, with their corresponding parameters indexed

accordingly. Estimates ðbak;bbk;bck;bdkÞT obtained from Equation (4) are asymptotically multivariate normally distributed (Dorfman & Alf, 1968). This

result holds for the binormal model‐based ROC curve, but it is trivial to extend for the ROC surface. Consequently, the null hypothesis of interest

is H0: a1=a2, b1=b2, c1=c2, d1=d2 against H1: a1≠a2 or b1≠b2 or c1≠c2 or d1≠d2. In order to assess the evidence against the hypothesis of equal-

ity of two ROC surfaces, we obtain the following test statistic, which is approximately chi‐squared distributed with four degrees of freedom:

X2 ¼ ba 1 − ba2 bb1 − bb2 bc1 −bc2 bd1 − bd2� � bW−1

ba1 − ba2bb1 − bb2bc1 −bc2bd1 − bd2

0BBBB@
1CCCCA; (9)

where for unpaired data,cW ¼ cW1 þcW2 is the sum of the covariance matrices of the trinormal model parameters estimates bak , bbk , bck , and bdk . The

single covariance matrices are

bWk ¼

bσ2
ak

bσakbk bσakck bσakdk

bσbkak bσ2
bk

bσ
bkck

bσbkdk

bσckak bσckbk
bσ2
ck

bσckdk

bσdkak bσdkbk
bσdkck bσ2

dk

0BBBBBBBB@

1CCCCCCCCA
with entries given by the Delta method as

bWk ¼

ba2k
2

1
n0

þ 1
n−

� � bakbbk
2n−

bakbck
2n0

0

bakbbk
2n−

bb2k
2n−

þ ba2k
n0

þ 1
n−

0
bakbck
n0

bakbck
2n0

0
bc2k
2

1
n0

þ 1
nþ

� � bckbdk
2nþ

0
bakbck
n0

bckbdk
2nþ

bd2k
2nþ

þ bc2k
n0

þ 1
nþ

0BBBBBBBBBBBBBBBB@

1CCCCCCCCCCCCCCCCA
; k ¼ 1; 2:

(10)

The null hypothesis will be rejected if X2 > X2
α , that is, if the test statistic exceeds the chi‐squared distribution with four degrees of freedom

quantile at a predefined significance level α.

When the marker measurements are unpaired, the estimated parameters ba1; bb1; bc1; bd1 are independent from ba2; bb2; bc2; bd2, and hence all

covariances for estimates between the two ROC surfaces are zero. As a consequence, cW can be written as the sum of the covariances of the

two sets of parameters. However, when the marker measurements are paired, in order to account for the correlation introduced, we definebW* ¼ bW1 þ bW2 − bC. The trinormal model‐based ROC test may then be written as

X2 ¼ ba 1 − ba2 bb1 − bb2 bc1 −bc2 bd1 − bd2� � bW∗−1

ba1 − ba2bb1 − bb2bc1 −bc2bd1 − bd2

0BBBB@
1CCCCA; (11)

which follows approximately a chi‐squared distribution with four degrees of freedom.
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The entries of bC are given by

bC ¼

2bσa1a2 bσa1b2
þ bσa2b1 bσa1c2 þ bσa2c1 bσa1d2 þ bσa2d1bσa1b2 þ bσa2b1 2bσb1b2 bσb1c2 þ bσb2c1 bσb1d2 þ bσb2d1bσa1c2 þ bσa2c1 bσb1c2 þ bσb2c1 2bσc1c2 bσc1d2 þ bσc2d1bσa1d2 þ bσa2d1 bσb1d2 þ bσb2d1 bσc1d2 þ bσc2d1 2bσd1d2

0BBBB@
1CCCCA

and are estimated similarly to the two‐class case. Repeated applications of the Delta method are used to show that the entries of the symmetric

cW *
entries are given by bw*

11 ¼ ba2
1

2
1
n0

þ 1
n−

� �
þ ba2

2

2
1
n0

þ 1
n−

� �
− 2

bρ2
0ba1
ba2

2n0
þ bρ2

−ba1
ba2

2n−

 !
;

bw*
12 ¼ ba1

bb1

2n−
þ ba2

bb2

2n−
−
ba1
bb2bρ−

2n−
−
ba2
bb1bρ−

2n−
;

bw*
13 ¼ ba1bc1

2n0
þ ba2bc2

2n0
−
ba1bc2bρ0

2n0
−
ba2bc1bρ0

2n0
;

bw*
22 ¼

bb2

1

2n−
þ ba2

1

n0
þ 1
n−

þ
bb2

2

2n−
þ ba2

2

n0
þ 1
n−

− 2
bρ2
−
bb1
bb2

2n0
þ bρ2

0ba1
ba2

n0
þ bρ−

n−

 !
;

bw*
24 ¼ ba1bc1

n0
þ ba2bc2

n0
−
ba1bc2 bρ0

n0
−
ba2bc1
n0

;

bw*
33 ¼ bc21

2
1
n0

þ 1
nþ

� �
þ bc22

2
1
n0

þ 1
nþ

� �
− 2

bρ2
0bc1bc2
2n0

þ
bρ2
þbc1bc2
2nþ

 !
;

bw*
34 ¼ bc1bd1

2nþ
þ bc2bd2

2nþ
−
bc1bd2bρþ
2nþ

−
bc2bd1bρþ
2nþ

;

bw*
44 ¼

bd2

1

2nþ
þ bc21
n0

þ 1
nþ

þ
bd2

2

2nþ
þ bc22
n0

þ 1
nþ

− 2
bρ2
þbd1

bd
2

2nþ
þ bρ2

0bc1bc2
n0

þ bρþ
nþ

 !
;

bw*
14 ¼ bw*

23 ¼ 0;

where bρℓ are the corresponding pairwise Pearson correlation coefficients. The above elements are sufficient to define this symmetric matrix. We

reject H0 if X2 > X2
α just as we did in the unpaired case. We use “ROC test” to denote such an approach in Section 5.

4.2 | Assessment of a single marker

In the previous section, we have seen how two ROC surfaces can be compared. It is also possible to asses a single marker using a similar strategy,

namely, by comparing an ROC surface with the chance plane (i.e., an uninformative ROC surface) leading to the null hypothesis H0: a1=0, b1=0,

c1=1, and d1=0. The corresponding test statistic is

X2 ¼ ba 1 − 1 bb1 bc1 − 1 bd1

� �cW−1
1

ba1 − 1bb1bc1 − 1bd1

0BBBB@
1CCCCA; (12)

withcW1 defined as in Equation (10). Under the null hypothesis, X2 follows approximately a chi‐squared distribution with four degrees of freedom.
5 | SIMULATION STUDY

The simulation study consists of three parts, where in the first two parts we investigate the performance of the proposed testing procedures given

in Sections 3 and 4. In the first part, we investigate tests that assess single markers in their deviation from the chance plane in order to evaluate

whether a classifier performs significantly better than a random allocation procedure. In the second part, we assess the tests relevant to the com-

parison of two diagnostic markers. In these first two simulation parts, we sampled the data from underlying normal distributions. The third part of

the simulation study evaluates the performance of the proposed procedures after applying the Box–Cox transformation for data normalization.

Log‐normal and gamma distributions were considered for the sampling scenarios. The simulation was carried out using R (RStudio Team, 2016)

and the R‐package trinROC (Noll, 2019) specifically developed for the implementation of the proposed and widely used competing methodolo-

gies in a ROC surface analysis.



FIGURE 1 ROC surfaces representing the general shape of the surface for each level of “crossing” in the single‐marker simulation study (based
on samples with a theoretical VUS=0.4 and nℓ=100). The effect of differences between variances of D−, D0, and D+ on the ROC surface is
apparent. The ROC surface crosses the chance plane in the “slight crossing” and “strong crossing” scenarios. ROC, receiver operating
characteristic; VUS, volume under the ROC surface
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The following scenarios were considered (for all three simulation parts): Three different sample size scenarios nℓ=25, 50, 100, for each class

(i.e., n−=n0=n+).

The factor stated as “crossing” flags the existence/importance of differences between variances of the three classes. Three “crossing” scenarios

were considered: “no crossing” (equal variance between the three classes), “slight crossing” (an intermediate situation), and “strong crossing” (sig-

nificant differences in variances between the three classes). Figure 1 displays the effect on the ROC surface for the three different scenarios of

differences in variances between the three groups. When differences between variances of the distributions of the three classes exist, the ROC

surface crosses the chance plane.

For the simulation on the comparison between markers, we also distinguish between unpaired and paired data by sampling from bivariate

normal distributions using ρ=0 and ρ=0.5 for each of D−, D0, and D+. Typically, paired data arise when marker measurements are obtained from

markers applied on the same set of individuals, whereas unpaired data are less frequent in practice considering cases where measurements arise

from independent studies for the markers under comparison. We considered the trinormal model‐based ROC test (ROC test), the trinormal VUS

test (VUS test), and the bootstrap‐based test (Boot test, with 500 bootstrap replications). Each result is based on 1000 iterations and an α level

of 5%.
FIGURE 2 Empirical power per 1,000 iterations and an α significance level of 5%, based on the simulation results of the tests that assess single
markers. The columns indicate the sample size, and the rows represent the three different assumptions of variability in D−, D0, and D+. Each dot
corresponds to a different scenario with increasing VUS. ROC, receiver operating characteristic; VUS, volume under the ROC surface



FIGURE 3 Empirical power per 1,000 iterations and an α significance level of 5%, based on the simulation results of the tests that assess
comparisons of two markers. The left panel represents the results of VUS2=1/6, whereas the right panel represents those for VUS2=0.3. The
paired data scenarios are shown. Rows represent the three different assumptions of variability for D−, D0, and D+. ROC, receiver operating
characteristic; VUS, volume under the ROC surface
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5.1 | Single‐marker assessment tests

Means and standard deviations for the distributions of D−, D0, and D+ were chosen so that the true VUS equals 1/6, 0.2, 0.25, 0.3, 0.35, and 0.4 for

each one of the six scenarios studied in this part of the simulation. These VUS scenarios cover cases with markers of increasing accuracy starting

from the case of a marker with uninformative corresponding VUS (equal to 1/6). For each one of the six different VUS scenarios, the factor “cross-

ing” was set at the following: “no crossing” implying (σ−, σ0, σ+)= (1, 1, 1), “slight crossing” with (σ−, σ0, σ+)= (1, 1.5, 2), and “strong crossing” with (σ−,
TABLE 1 Parameters used in the Box–Cox simulation

VUS Crossing
Gamma Log‐normal

D− D0 D+ D− D+ D+

α− β− s− α0 β0 s0 α+ β+ s+ μ− σ− μ0 σ0 μ+ σ+

1/6 No crossing 3 4 0.00 3 4 0.00 3 4 0.00 0.00 1.00 0.00 1.00 0.00 1.00

Slight crossing 4 5 0.00 5 6 −10.21 6 7 −20.42 0.00 1.00 0.00 1.50 0.00 2.00

Strong crossing 5 6 0.00 8 9 −46.87 11 12 −93.75 0.00 1.00 0.00 2.00 0.00 3.00

0.3 No crossing 3 4 0.00 3 4 2.55 3 4 5.11 0.00 1.00 0.40 1.00 0.81 1.00

Slight crossing 4 5 0.00 5 6 −4.75 6 7 −9.51 0.00 1.00 0.60 1.50 1.19 2.00

Strong crossing 5 6 0.00 8 9 −36.06 11 12 −72.11 0.00 1.00 0.79 2.00 1.57 3.00

Note. The shift parameter sℓ indicates how the samples from the classes were shifted in order to attain the desired VUS.

Abbreviation: VUS, volume under the receiver operating characteristic surface.



TABLE 2 Results of the Box–Cox simulation

Distribution Crossing nℓ
Original data Box–Cox transformed data

dVUS ROC test VUS test dVUS ROC test VUS test

VUS1

1/6 Log‐normal No crossing 25 0.162 0.602 0.198 0.166 0.081 0.079

50 0.168 0.694 0.208 0.167 0.052 0.060

100 0.166 0.747 0.246 0.167 0.052 0.065

Slight crossing 25 0.252 0.957 0.511 0.164 0.730 0.066

50 0.262 0.998 0.762 0.166 0.974 0.069

100 0.268 1.000 0.883 0.168 1.000 0.042

Strong crossing 25 0.303 0.998 0.822 0.168 0.985 0.062

50 0.309 1.000 0.916 0.166 1.000 0.054

100 0.309 1.000 0.956 0.167 1.000 0.051

Gamma No crossing 25 0.167 0.173 0.071 0.167 0.076 0.063

50 0.167 0.174 0.070 0.167 0.069 0.057

100 0.166 0.180 0.073 0.166 0.055 0.057

Slight crossing 25 0.180 0.518 0.061 0.160 0.621 0.062

50 0.179 0.808 0.050 0.159 0.926 0.057

100 0.182 0.985 0.088 0.161 1.000 0.072

Strong crossing 25 0.184 0.983 0.036 0.157 0.995 0.086

50 0.185 1.000 0.065 0.159 1.000 0.072

100 0.187 1.000 0.108 0.161 1.000 0.062

VUS1,VUS2

0.3,0.3 Log‐normal No crossing 25 0.267 0.572 0.157 0.293 0.036 0.046

50 0.274 0.692 0.185 0.297 0.037 0.049

100 0.271 0.780 0.195 0.299 0.052 0.053

Slight crossing 25 0.344 0.943 0.212 0.289 0.351 0.041

50 0.344 0.994 0.276 0.296 0.766 0.061

100 0.340 1.000 0.429 0.300 0.982 0.051

Strong crossing 25 0.363 0.998 0.231 0.295 0.831 0.046

50 0.354 1.000 0.320 0.296 0.996 0.059

100 0.343 1.000 0.427 0.299 1.000 0.043

Gamma No crossing 25 0.283 0.119 0.056 0.313 0.033 0.046

50 0.286 0.138 0.065 0.316 0.034 0.046

100 0.287 0.153 0.060 0.317 0.035 0.042

Slight crossing 25 0.314 0.277 0.068 0.302 0.317 0.039

50 0.316 0.531 0.084 0.303 0.716 0.043

100 0.320 0.836 0.133 0.306 0.981 0.070

Strong crossing 25 0.328 0.820 0.077 0.293 0.958 0.056

50 0.333 0.982 0.118 0.299 0.999 0.057

100 0.336 1.000 0.206 0.303 1.000 0.061

Note. The upper half depicts a single‐marker assessment simulation with a theoretical VUS1=1/6. The lower half displays a simulation study of comparison

of two markers under H0: VUS1=VUS2=0.3.

Abbreviations: ROC, receiver operating characteristic; VUS, volume under the ROC surface.
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σ0, σ+)= (1, 2, 3). Equidistant means between the three classes were used for fulfilling the VUS scenario assumptions. Figure 2 summarizes the first

part of the simulation.

For the “no crossing” scenarios, we find that the three tests have a similar empirical power, with the trinormal model‐based VUS test only very

slightly dominating the others. As the sample size nℓ increases, the empirical power also increases for VUS≠1/6 in all the tests. The cases of dif-

ferent variances between D−, D0, and D+ are reflected on the second and third rows of Figure 2. The proposed trinormal model‐based ROC test

has consistently higher power than its competitors. As it is designed to detect differences in the parameters of the ROC surface, it rejects the null

hypothesis much faster than the VUS‐based tests. It correctly rejects when VUS=1/6 given that the shape of the ROC surface deviates from the

chance plane. For a standard deviation ratio of 1:2:3 between D−, D0, and D+ and sample size of 50 or bigger for each class, the trinormal model‐

based ROC test will virtually always reject the null hypothesis, whereas VUS‐based tests remain invariant for such differences relative to the

VUS=1/6 scenario. This result was expected, given that VUS is just a proxy metric that does not capture the shape of the ROC surface per se.
5.2 | Comparison of two classifiers

In the second part of the simulation study, two marker comparisons were performed. We chose to investigate two main scenarios: in the first, a set

of increasing VUS1=0.2, 0.25, 0.3, 0.35, 0.4, 0.45 is compared with an uninformative marker with VUS2=0.2. In the second, VUS1=0.6, 0.65, 0.7,

0.75, 0.8, 0.85, whereas VUS2=0.6. As in the first part of the simulation, samples were drawn from normal distributions with equidistant means

and standard deviations depending on the factor “crossing,” such that the scenarios' VUS assumptions were fulfilled. For the two marker compar-

ison simulations, we defined “no crossing” as (σ−1, σ01, σ+1, σ−2, σ02, σ+2)= (1, 1, 1, 1, 1, 1), “slight crossing” as (1, 1.25, 1.5, 1, 1.5, 2), and “strong

crossing” as (1, 1.5, 2, 1, 2, 3), in analogy to the single‐marker assessment simulation.

Figure 3 depicts the simulation results for the paired data case where, for each class, measurements were drawn from bivariate normal distri-

butions with ρ=0.5. As the simulation results for the unpaired data scenarios turned out to be very similar to those obtained from the paired set-

ting, they are not presented here but can be found in the Supporting Information. The following two scenarios can be found also in the Supporting

Information: VUS1=1/6, 0.2, 0.25, 0.3, 0.35, 0.4, which is compared with an uninformative marker VUS2=1/6, and VUS1=0.3, 0.35, 0.4, 0.45, 0.5,

0.6, which is compared with VUS2=0.3.

Similarly to the first part of the simulation, we find that for an increasing sample size nℓ, all the tests result in higher power. In the case of equal

variances, the rejection ratios of the trinormal model‐based ROC test are slightly weaker than the rejection ratios of the bootstrap test and the

trinormal VUS test. The VUS test slightly dominates the bootstrap test. When the variances of the classes differ, the trinormal model‐based

ROC test starts to dominate the other tests at the latest from a sample size nℓ=50.
5.3 | A simulation study involving the Box–Cox transformation

In the third part of the simulation, we sample from distributions other than normal. We calculated the performance of the VUS test and the ROC

test introduced above before and after the application of the Box–Cox transformation (Bantis et al., 2015) with the nonnormally distributed data

for single‐marker assessment and for the comparison of two markers. As the results of the boot test are invariant under monotone transforma-

tions, we excluded this test from this simulation part.

We sampled from log‐normal and gamma distributions. We set nℓ=25, 50, 100. For the control of the “crossing” factor, as there exists no

closed formula to compute the theoretical VUS of nonnormal data, we had to numerically calculate suitable parameters of the distributions in

order to obtain the desired VUS and variability among the three classes. The parameters considered are given in Table 1. Each result is based

on 1,000 iterations and an α significance level of 5%.
TABLE 3 Overview of the 12 pancreatic cancer diagnostic markers

Markers

WBC TSH CEAE HCT ALBP ALB CRP HGB A1GL ALBU A1GLP CA‐199

Emp. VUS 0.18 0.18 0.37 0.37 0.44 0.49 0.43 0.4 0.47 0.46 0.53 0.58

Trin. VUS 0.18 0.21 0.37 0.39 0.4 0.41 0.41 0.41 0.44 0.44 0.49 0.6

p values

Trin. ROC test .12 5.1e−08 4.2e−07 6.3e−10 4.7e−07 6.7e−10 3.6e−05 3.9e−10 2.7e−10 1.2e−11 2.0e−13 0

Trin. VUS test .63 .31 8.8e−05 2.1e−05 1.5e−05 9.4e−06 6.1e−05 6.8e−06 5.1e−07 5.6e−07 1.2e−08 5.6e−13

Boot test .7 .75 9.7e−04 6.8e−04 8.3e−06 3.6e−07 6.6e−05 1.0e−04 7.3e−07 3.1e−06 2.8e−08 3.3e−10

Abbreviations: ROC, receiver operating characteristic; VUS, volume under the ROC surface.



FIGURE 4 Pairwise comparisons of the 12 markers displayed in Table 3. The three heat matrices display the FDR‐adjusted p values obtained by
the empirical VUS test, the trinormal model VUS‐based test, and the trinormal model ROC‐based test after a Box–Cox transformation. FDR, false
discovery rate; ROC, receiver operating characteristic; VUS, volume under the ROC surface
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Table 2 shows the results of the Box–Cox simulation in the single marker and comparison of two marker cases. The results are consistent with

those of the first two simulations. In the single‐marker assessment part, we observe a strong increase in the simulated power of the trinormal‐

based ROC test due to the variability among the three classes. The results of the VUS test stay invariant around the significance level. The same

behaviour is observable in the case of comparing VUS1=VUS2=0.3.
6 | APPLICATION TO A PANCREATIC CANCER DATASET

We investigate a panel of 12 diagnostic markers on the basis of measurements from 106 individuals who underwent a complete assessment for

pancreatic cancer. The dataset used was first described in (Leichtle et al., 2013). The three classes under study consisted of pancreatic cancer

patients (D+), pancreatitis patients (D0), and healthy controls (D−).

Table 3 shows the empirical VUS and the corresponding trinormal VUS of the Box–Cox transformed data as well as the p values of the single‐

marker assessment of the three tests introduced above.

A single‐marker investigation yielded highly significant p values (<.001) for most markers for all three tests. Only marker WBC was not signif-

icant for any test, whereas marker TSH was only significant for the proposed test but not for the VUS‐based ones. The VUS for the markers

deemed significant through the VUS‐based tests varies between 0.18 and 0.6. False discovery rate‐adjusted p values for pairwise comparisons

are shown as heat maps in Figure 4.

Marker CA‐199 is consistently the best among the markers under consideration for differentiating between the three classes. However, this

result is more pronounced using the trinormal model ROC‐based test, because the distributions of marker measurements are highly variable,

negatively affecting VUS‐based tests only. The utility of marker CA‐199 in pancreatic cancer assessment is well documented in the literature

(Leichtle et al., 2013).
7 | DISCUSSION

In this article, we have introduced a trinormal model ROC‐based test that can be used to assess diagnostic markers in a three‐class setting, both

for the assessment of a single marker and for the comparison of two competing markers arising from the same set of data or from independent

measurements. Application of the Box–Cox transformation in the ROC surface framework (Bantis et al., 2015), prior to the use of the proposed

test, can be considered when significant departures from normality assumptions exist for marker measurements.

Typically, in omics applications, thousands of biomarkers may be assessed simultaneously through computational procedures that involve ROC

analysis techniques. A metric such as the VUS may fail to recognize significant biomarkers in cases where the corresponding VUS has a low value;

however, the corresponding biomarker is informative. In these cases, the ROC surface crosses the chance plane leading to a low VUS. Modelling

the surface per se for hypothesis testing may reveal valuable diagnostic markers in cases where the VUS would fail.
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The R‐package trinROC that accompanies this article is available on CRAN, involves testing and plotting options, and can be used as a

general‐purpose package for three‐class diagnostic testing in the ROC framework. Description of its use is offered in the relevant vignette and

reference manual.
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