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Air pollution causing oxidative stress
Zaira Leni, Lisa Künzi and Marianne Geiser
Abstract
Air pollution remains a major factor for adverse health effects
and premature death worldwide. Particulate matter with aero-
dynamic diameter �2.5 mm (PM2.5), mainly originating from
combustion processes, is considered most toxic. The respira-
tory and cardiovascular system are particularly affected.
Despite all research efforts, the causative relations of air pol-
lutants and exposure-associated health effects are not yet fully
established. Recent studies using different methodologies
have consistently shown peroxides and reactive oxygen spe-
cies (ROS) to be crucial mediators of particle toxicity. This
review is an excerpt of results from experimental studies and
methodological developments of the past 2 years that
enhanced our understanding of oxidative molecules in parti-
cles, their transmission to the target organ, and the molecular
pathways generating ROS in physiological and pathological
processes. Further multidisciplinary research towards predict-
ing toxicology from particle-related ROS transmitted to the
target organ is required.
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Air pollution adversely affects human health and is
considered the world’s largest environmental health
threat [1e3]. Accelerated urban development and rapid
population growth contribute significantly to poor air
quality. Because of this, developing countries are
generally most affected [4]. However, the association
between air pollution and mortality is still evident in
countries, where pollution levels are well below target
standards [5]. Traditional classification of air pollution
www.sciencedirect.com
based primarily on particle size and mass concentrations
will require complementation concerning the chemical
composition and nanostructures of air pollutants [6,7].
Animal inhalation studies have demonstrated adverse

effects related to reactive oxygen species (ROS) activity
to vary depending on the composition and emission
sources of the particles [8]. These have changed over
the last few decades, with anthropogenic, combustion-
derived air pollutants being the main concern for
public health today [9]. Thus, clarification of the caus-
ative relation of air pollutants and adverse effects, as
well as deciphering the associated molecular mecha-
nisms has become a pressing research topic [10e12].
Air pollution is a heterogeneous, complex mixture of
gaseous and particulate components, differing based on

the emission source and varying with time and atmo-
spheric conditions. The critical constituents with regard
to health are particulate matter with aerodynamic
diameter �10 mm (PM10) and the gaseous pollutants
nitrogen dioxide, sulfur dioxide, ozone, volatile organic
compounds and carbon monoxide. Epidemiological
studies generally show the fine particle fraction, PM2.5,
to have a greater impact on health than the coarse PM10

fraction [5]. PM2.5 mainly derives from combustion
processes and consists of carbonaceous particles with
associated adsorbed organic molecules like nitrates,

sulfates, and polycyclic aromatic hydrocarbons, as well as
reactive metals such as iron, copper, nickel, zinc, and
vanadium [13]. Physicochemical properties of the par-
ticles (i.e. size, structure, chemical composition, reac-
tivity, and solubility) determine their impact on health
and the mechanisms by which PM induces adverse ef-
fects [8]. Furthermore, primary particles (i.e. those
emitted directly from a source) and secondary particles
formed by gas-to-particle conversion in the atmosphere
may exhibit different toxicity.
Epidemiological and experimental studies have consis-

tently shown the association between PM2.5 exposure
and a wide range of health effects, mainly on the car-
diovascular and respiratory system. Increased mortality
from ischemic heart disease, heart failure, thrombotic
stroke, and lung diseases, like respiratory infections,
asthma, chronic obstructive pulmonary disease
(COPD), lung cancer, as well as impaired lung devel-
opment in children, have been reported [14e16]. PM2.5

has also been shown to exert endocrine activity pro-
moting the development of metabolic diseases such as
obesity and diabetes, which themselves are well estab-

lished cardiovascular risk factors [17e20].
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2 Oxidative Toxicology
In environmental health research, ROS are generally
considered important. Experimental studies have iden-
tified ROS as crucial mediators of particle toxicity, with a
particular association to respiratory and cardiovascular
disease [21e25]. PM itself contains ROS as well as
redox-active components that can lead to ROS genera-
tion upon interaction with specimens of biological
origin. The capacity of inhaled PM to elicit cellular

damage via oxidative reactions is termed oxidative po-
tential (OP) and can be measured using cell-free assays
(Table 1A, Figure 1). These have the advantage of being
fast, inexpensive, easy to perform and suitable for
automation [26]. The most common tests mimic the
depletion of endogenous antioxidants like ascorbic acid
(AA, OPAA) and glutathione (GSH, OPGSH), or of a
surrogate for cellular reductants, such as dithiothreitol
(DTT, OPDTT). The values obtained are proportional to
the concentration of redox-active species in the
analyzed PM sample. Among the above mentioned tests,

OPDTT is currently the preferred method to evaluate
the OP of PM2.5, because of its sensitivity to tracers of
combustion derived transition metals and aromatic
organic compounds, which largely accumulate in the
fine PM fraction [15,27e30]. The OPAA and OPGSH

assays mainly capture metals from nontraffic exhaust
emissions collected in the coarse PM10 fraction. In
addition, the horseradish peroxidase/2070-dichloro-
fluorescin (HRP/DCFH) assay, primarily used to eval-
uate oxidative stress in cells, was adapted to quantify
oxidative components of PM [31e34]. The most widely

used cell-free assay measures peroxides as indicator of
free-radical formation, which is central for oxidative
stress. Thereby, the total aerosol peroxide in its three
forms (H2O2, ROOH and ROOR) is quantified using
iodometry-assisted liquid chromatography electrospray
ionization tandem mass spectrometry (LC-ESI-MS)
[30,35]. In addition, there have been substantial efforts
to quantify the radical content of PM by electron spin
resonance (ESR) spectroscopy [36], and to assess the
radical generation upon interaction of particles and
aqueous media, like the respiratory tract lining fluid
(RTLF) [23,37,38]. The latter is a more complex cell-

free assay [38,39]. The liquid lung-lining layer is the
first structure a pollutant interacts with upon deposition
in the respiratory tract. It consists of the lipid- and
protein-containing surfactant film at the air-liquid
interface and the underlying aqueous phase containing
lipids, proteins and a variety of antioxidants. The lung-
lining layer constitutes the first detoxifying environ-
ment deposited particles encounter. Thus, its interac-
tion with deposited particles is decisive for the
development of adverse effects from particle-associated
ROS. In RTLF assays, mixtures of varying composition

of antioxidant molecules mimicking the first phase of
particleelung interaction are used to unravel their
implication on the oxidative response. This approach
allows to study the role of the liquid lung-lining layer as
a protective barrier in vitro and to discriminate highly
Current Opinion in Toxicology 2020, 20-21:1–8
reactive compounds (e.g. copper and quinones)
responsible for changes in the oxidative response
[38,39]. Measurements of the OP of particles also serve
as a more refined exposure metric of PM toxicity than
mass or number concentrations alone [40,41]. Eluci-
dating the mechanisms underlying particle toxicity re-
mains difficult. Previously, the OP solely described the
particles’ ROS content. The main challenge is to

discriminate cellular damage by the particles’ intrinsic
OP and that from particle-induced ROS formation
[15,42e46]. Further, the term ROS lacks precision, as it
covers a variety of reactive species with considerable
variability in terms of reactivity, longevity and biological
effects.
ROS production is inherent in all aerobic species, pri-
marily as a byproduct of mitochondrial electron trans-
port. At physiological levels, ROS are essential for the
regulation of critical signaling pathways involved in cell
growth, proliferation, differentiation, and survival [47].

They further contribute to the regulation of blood
pressure, cognitive function, immunity and antioxidant
defense [48,49]. Excess ROS, mainly resulting from
imbalanced antioxidant defense and detoxification, can
lead to harmful (i.e. pathological) oxidative stress. The
latter has been associated with the development of
atherosclerosis, stroke, hypertension, acute respiratory
distress syndrome, idiopathic pulmonary fibrosis,
COPD, asthma, diabetes, cancer, and even neurode-
generative disorders such as Parkinson and Alzheimer
disease [15,17,20,21]. Meanwhile, the simplistic para-

digm that low levels of ROS mediate physiological pro-
cesses and high levels induce toxicity has been gradually
replaced by a more refined understanding of redox
mechanisms (Figure 2). Redox-active molecules
including ROS have been shown to act as both site-
specific mediators of cell signaling and central regula-
tors of inflammatory responses [31]. Thus, oxidative
stress affecting cellular signaling is likely to cause
mitochondrial dysfunction and activation of transcrip-
tion factors. Of particular importance are the nuclear
factor erythroid-derived 2-related factor 2 (Nrf2),
regulating antioxidant defense, and the nuclear factor

kappa-light-chain-enhancer of activated B cells (NF-
kB), a master regulator of immune response. Activation
of these transcription factors may result in the expres-
sion of several hundred genes involved in inflammation,
endothelial dysfunction, and cell death [50,51].
The large surface of our respiratory tract is the first
structure the inhaled pollutants interact with and cause
oxidative damage to. Pulmonary oxidative stress by air
pollution depends on the composition of inhaled pol-
lutants, PM deposition efficiency, regional distribution
in the respiratory tract, clearance mechanisms at the site

of deposition, possible dislocation into or beyond pul-
monary cells (systemic and secondary organ distribu-
tion), as well as on the susceptibility of the host. All
those aspects have to be considered to select appro-
priate assays and models, when studying health effects
www.sciencedirect.com
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Table 1 Examples of (A) studies with cell-free assays elucidating the association of the oxidative potential (OP) with the chemical
composition of ambient particulate matter (PM) and (B, C) in-vitro and in-vivo studies measuring oxidative stress from exposure to air
pollution.

Particles Targets Assay Main findings Ref.

A) Cell-free assays
Urban PM2.5 (Urbana, Illinois, USA)

and quinones
2-OHTA generated by OH DTT Additive effects of individual quinone species.

Antagonistic and synergistic interactions
depending on combination of quinones.

[27]

Urban PM2.5 (Atlanta, USA) OH, H2O2 DTT High efficiency of the ambient PM to convert
H2O2 to OH.

[28]

Secondary organic aerosols (SOA)
generated from naphthalene or
phenanthrene

OP of SOA DTT OP of SOA depends on primary precursor
identity. Oxygenated derivatives show high
OP. No significant contributions from
peroxides.

[30]

Dust from different emission sources,
varying in chemical composition

OP AA, DTT, DCFH Different sensitivities of assays to PM
components. High sensitivity of: (1) DTT
assay to road dust, influenced by water-
soluble organic carbon (WSOC); (2) AA
assay to metal enriched dust (brake wear);
and (3) DCFH assay to crustal components
like titanium or aluminum.

[31]

Urban and rural PM10 & PM2.5 filter
samples (Milan, I; San Vittore, CH)

ROS Online & offline DCFH Linear relationship between DCFH and
increasing PM concentrations.

[32]

SOA generated from a-pinene in
smog chamber

OOH content of SOA
during ozonolysis

AMS, iodometry Model simulations provide evidence that
photolysis products are highly oxygenated
and not more volatile than their precursors,
independently of chamber conditions.

[34]

Urban and rural PM2.5 filter samples
(Po Valley, I)

OPAA in six artificial RTLF AA Assay depends on composition of synthetic
RTLF used. RTLF containing GSH strongly
promotes AA oxidation. Among all
surrogates, AA solution generates highest
OPAA.

[39]

Water-soluble organic carbon
(WSOC) of a-pinene

Organic peroxide
discrimination in
complex chemical
matrix

Iodometry-assisted LC-
ESI-MS

Multifunctional organic peroxides decompose
to smaller peroxides detectable with
iodometry-assisted LC-ESI-MS. Labile
organic peroxides can be lost during
sample collection and/or after extraction.

[35]

PM10 filter samples (Chamonix, F) OP DTT, AA, GSH, ESR Higher OPv values during winter in DTT, GSH
and AA assays. Strong correlation between
OPDTTv and OPAAv. The ESRv did not show
seasonal variation. Combination of
different assays essential to capture the
wide range of OP determinants.

[25]

B) In-vitro studies (cell cultures)
Non-volatile (nv) PM from aircraft

engine at climb-out and ground-idle
conditions, conventional Jet A-1 or
alternative (HEFA) fuel.

Cytotoxicity, oxidative
stress and pro-
inflammatory response
in human bronchial
epithelial cell line
BEAS-2B

Colorimetric LDH test,
qPCR (HMOX-1),
BioPlex assay (IL-6, IL-
8, MCP-1)

Toxicity dependent on engine operating
conditions and fuel type. Limited
correlation between deposited particle
dose (number and mass per surface area)
and cell damage. Influence of particle size
and nanostructures on cell damage.

[6]

PM2.5 samples (Beijing, PRC) Cellular mechanisms of
cardiovascular toxicity
in human endothelial
cell line EA.hy926 and
human monocytic
leukemia cell line THP-
1

Cell viability (MTS),
Western Blotting.

Induction of ROS generation and decrease of
cell viability. Phosphorylation of JNK, ERK,
p38 MAPK, AKT, and activation of NF-kB.
Significant time- and dose-dependent
increase in expressions of ICAM-1 and
VCAM-1.

[50]

Diesel exhaust particles (NIST®
Standard Reference Material
SRM®2975)

Intra- and extracellular
ROS content in human
umbilical vein
endothelial cells
(HUVEC)

DCFH No extracellular ROS induction in cell-free
assay. Intracellular, dose-dependent ROS
generation. Substantial changes in cellular
antioxidant/oxidant parameters.

[51]

(continued on next page)
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Table 1 (continued )

Particles Targets Assay Main findings Ref.

C) In-vivo studies (human)
Metal-rich PM2.5 (welding in

boilermaker union), personal
background PM2.5 measurements

mtDNA methylation in
blood and heart rate
variability in normal
male subjects

Bisulfite pyrosequencing Negative association of mtDNA methylation
with PM2.5 exposure. mtDNA methylation
modified the negative relationship between
PM2.5 exposure and heart rate variability.

[52]

PM2.5 filter samples (Taipei, PRC) 8-oxodG, N7-MeG, 1-OHP
and creatinine in urine,
GPX-1 and SOD in
blood from normal
subjects

Questionnaire,
LC-MS/MS

No association of PM exposure with urinary 1-
OHP. Significant relation between markers
for DNA damage (8-oxodG, 1-OHP) and
lipid peroxidation (N7-MeG). No
association of SOD and GPX-1 in blood
with 8-oxodG or N7-MeG in urine.

[54]

PM10 and PM2.5 filter samples
(London, UK)

OP in artificial RTLF Daily number of
nonaccidental,
cardiovascular or
respiratory deaths from
registry, AA and GSH

Positive associations of OPAA and OPGSH

with all-cause and cardiovascular mortality
in adults (15–64 years) and of OP PM10

with respiratory mortality in children
(0–14 years). Negative associations of
OPAA and OPGSH with cardiovascular and
respiratory mortality in adults >65 years.

[43]

Ambient PM10, PM2.5, PM10-2.5 and
NO2 (NL)

OPDTT, OPESR, diabetes
prevalence

Cross sectional analysis of
national health survey
for diabetes diagnosis
and annual
concentration of
multiple pollutants.

Correlation of all pollutants except PM2.5 with
diabetes prevalence. Most consistent
associations between NO2 and OPDTT.
Particle composition may be more
important than size.

[44]

PM2.5 filter samples (Atlanta, GA,
USA)

OP Poisson log-linear
regression of
emergency admissions
for cardiovascular and
respiratory events; DTT

Positive association of OPDTT with respiratory
admissions and ischemic heart disease.

[15]

City-level PM2.5 (ON, CDN) OP Random-effect meta-
analysis evaluating the
association of prenatal
PM2.5 exposure and risk
of preterm birth
(retrospective cohort
study); AA, GSH

Positive association of PM2.5 exposure (high
OPGSH) during first trimester of pregnancy
with preterm birth. No association between
city differences of OPAA and preterm birth.

[45]

Abbreviations: 1-OHP: 1-hydroxypyrene; 15-F2t-IsoP: 15-F2t-isoprostane; 2-OHTA: 2-hydroxyterephthalic acid; 8-oxodG: 8-oxo-7,8-dihydro-20-
deoxyguanosine; 8-oxodGuo: 8-oxo-7,8-dihydcro-20-deoxyguanosine; 8-oxoGua: 8-oxoguanine; 8-oxoGuo: 8-oxo-7,8-dihydroguanosine; AA: ascorbic acid;
�OH: Hydroxide; AKT: protein kinase B; AMS: aerosol mass spectrometry; Cox-4: Cyclo-oxygenase 4; Cox-5A: cyclo-oxygenase 5a; DCFH: dichloro-
dihydro-fluorescein diacetate; DTT: dithiothreitol; EA.hy926: human endothelial cell line; ERK: extracellular signal-regulated kinase; ESR: electron spin
resonance; GPX-1: glutathione peroxidase-1; GSH: glutathione; H2O2: hydrogen peroxide; HEFA: hydroprocessed esters and fatty acid base/fuel; HMOX-
1: heme oxygenase 1; HUVEC: human umbilical vein endothelial cells; ICAM-1: intercellular adhesion molecule-1; IL: interleukin; JNK: c-Jun N-terminal
kinase; LC-ESI-MS: liquid chromatography electrospray ionization tandem mass spectrometry; LDH: lactate dehydrogenase; MAPK: p38 mitogen-activated
protein kinase; MCP-1: monocyte chemotactic protein-1; mtDNA: mitochondrial DNA; MTS: 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-
sulfophenyl)-2H-tetrazolium; NF-kb: nuclear factor kappa B; Nrf1: nuclear respiratory factor 1; Nrf2: nuclear respiratory factor 2; nvPM: nonvolatile PM;
OOH: hydroperoxyl radical; OP: oxidative potential; PM: particulate matter; qPCR: quantitative polymerase chain reaction; ROS: reactive oxygen species;
RTLF: respiratory tract lining fluid; SOA: secondary organic aerosol; SOD: copper-zinc superoxide dismutase; THP-1: human monocytic leukemia cell line;
VCAM-1: vascular adhesion molecule-1; WSOC: water-soluble organic carbon.
OPxx with xx specifying the type of cell free assay used. OP per mg PM normalized to the corresponding air volume is annotated v for volume (mg m−3) to
represent human exposure.

4 Oxidative Toxicology
from particle-induced ROS. Despite the benefits of cell-
free assays, experimental cell-culture and animal studies
are indispensable to investigate adverse effects of air

pollution (Table 1B). The caveat is that the experi-
mental setups used differ considerably, which hampers
comparability and evaluation of the significance of the
results obtained. The respective experimental variables
include: (1) the source and composition of particles; (2)
the route of particle application (e.g. suspended in
Current Opinion in Toxicology 2020, 20-21:1–8
liquids or as aerosols, out of a continuous air stream); (3)
the number and duration of exposures as well as the
time point of analysis to discriminate between acute and

chronic exposure; and (4) the cell or animal models used
and their susceptibility (e.g. pre-existing diseases, sex
and age differences) [42,52,53].
Experimental studies to evaluate air pollution-induced
oxidative stress in humans are difficult to perform for
ethical and population heterogeneity reasons. There
www.sciencedirect.com

www.sciencedirect.com/science/journal/24682020


Figure 1

Oxida ve poten al (OP) 
of ROS radicals 

DTT, HRP/DCFH, ERS

Oxida ve damage

DNA
Deoxyguanosine

modifica on

Lipids
Peroxida on 

level

Proteins
Oxida on 

level

An oxidant defense

SOD1,  SOD2, GPx, NOX,  XO

Detoxifying proteins

Nrf2, MAPK , PI3K, PTEN

State of the art oxida ve-stress assays

Methods and biomarkers employed to assess oxidative stress. Current methods quantify the OP of air pollution either directly or by means of
surrogate markers. Abbreviations: CAT: catalase, CytP450: cytochrome P450; DNA: deoxyribonucleic acid; DTT: dithiothreitol; ERS: electron spin
resonance; GPx: glutathione peroxidase; HPRT/DCFH: horseradish peroxidase/2070-dichlorodihydrofluorescein; MAPK: mitogen-activated protein kinase;
NADPH: nicotinamide adenine dinucleotide phosphate; NOX: nitric oxidase; Nrf2: nuclear factor erythroid 2-related factor 2; PI3K: phosphoinositide 3-
kinase; PTEN: phosphatase and tensin homolog protein; SOD1: superoxide dismutase 1; SOD2: superoxide dismutase 2; XO: xanthine oxidase.

Figure 2

Cellular responses to physiological and pathological levels of reactive oxygen species (ROS). Low, physiological ROS levels are vital for cell and
organ function and homeostasis, while high ROS levels are harmful and induce diverse pathological processes. Organisms evolved interactive and
synergistic antioxidant defense mechanisms neutralizing free radicals to protect from high ROS levels. Dietary antioxidants, enzymes in various cell
compartments and detoxifying gene products are of fundamental importance. Abbreviations: CAT: catalase; CoQ10: coenzyme Q10; CytP450: cyto-
chrome P450; GPx: glutathione peroxidase; MAPK: mitogen-activated protein kinase; NADPH: nicotinamide adenine dinucleotide phosphate; NOX: nitric
oxidase; Nrf2: nuclear factor erythroid 2-related factor 2; PI3K: phosphoinositide 3-kinase; PTEN: phosphatase and tensin homolog protein; SOD1:
superoxide dismutase 1; SOD2: superoxide dismutase 2; XO: xanthine oxidase.
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have been efforts to develop and establish non- or
minimally invasive methods applicable in humans
(Table 1C). A study on mechanisms linking PM2.5

exposure to the development of atherosclerosis, respi-
ratory disease and cancer, has demonstrated a statisti-
cally significant relationship between both biomarkers

for urinary oxidative stress and PM2.5 exposure level
with DNA methylation [54]. Thus, measurements of
methylated DNA in urine samples appear suitable to
estimate DNA damage in humans [52,53]. In addition,
some studies employed blood samples to investigate the
association of mitochondrial DNA methylation [53] and
www.sciencedirect.com
antioxidant enzyme concentration [52,54] with PM2.5

exposure levels. Nevertheless, these new and promising
methods in human urine or blood samples require
further validation regarding reliability and accurate
assessment of oxidative stress.
The growing literature unequivocally indicates a corre-

lation between oxidative stress from exposure to air
pollution and adverse health outcomes, even at levels
below current air quality standards. During the past few
years, methodological refinements of assays and in-
depth understanding of their readouts have enhanced
our comprehension of particle-ROS induced health
Current Opinion in Toxicology 2020, 20-21:1–8
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6 Oxidative Toxicology
effects. The cell-free assays measuring the OP of par-
ticles have the potential to fill the gap between atmo-
spheric chemistry and biology with regard to the
allocation of particle characteristics to specific adverse
effects. The different sensitivities and readouts of the
OP-assays bear not only difficulties regarding compara-
bility and interpretation of results. When used in com-
bination, they allow a finer distinction of harmful

particle types and characteristics. Experiments using
RTLF are an important pillar towards biological models
mimicking the inner lung surface, the primary target of
inhaled particles upon deposition. Further, the
biochemistry- and molecular biology-assisted untangling
of the complex redox mechanisms allow a better un-
derstanding of direct adverse effects from PM and of
oxidative stress-associated development and progression
of disease. Because of this, clarification of the dual ac-
tivity of redox-active molecules, including ROS, in cell
signaling and as master regulator of inflammatory pro-

cesses has been essential for progress in research of air
pollution and health effects. Finally, advances in the
development of minimal-invasive methods to assess
oxidative stress-related cellular damage in humans have
opened the possibility for otherwise not feasible studies.
Ongoing efforts to establish the causal link between
particle properties and specific health impacts are
needed. Thereby, cooperation of all disciplines (i.e.
multidisciplinary research) is indispensable. In-depth
knowledge on mechanisms of particle-ROS induced
health effects and the relevance of individual emission

sources are required to better regulate ROS emission
and increase the effectiveness of efforts towards
reducing the risk of air-pollution related health effects.

Acknowledgements
This work was supported by the Swiss National Science Foundation
(SNSF), Switzerland, grant CR32I3_166325.

References
Papers of particular interest, published within the period of review,
have been highlighted as:

* of special interest
* * of outstanding interest

1. Lelieveld J: Clean air in the anthropocene. Faraday Discuss
2017, 200:693–703. https://doi.org/10.1039/c7fd90032e.

2. Finlayson-Pitts BJ: Introductory lecture: atmospheric chemis-
try in the Anthropocene. Faraday Discuss 2017, 200:11–58.
https://doi.org/10.1039/C7FD00161D.

3. Cohen AJ, Brauer M, Burnett R, Anderson HR, Frostad J,
Estep K, Balakrishnan K, Brunekreef B, Dandona L, Dandona R,
Feigin V, Freedman G, Hubbell B, Jobling A, Kan H, Knibbs L,
Liu Y, Martin R, Morawska L, Pope CA, Shin H, Straif K,
Shaddick G, Thomas M, van Dingenen R, van Donkelaar A,
Vos T, Murray CJL, Forouzanfar MH: Estimates and 25-year
trends of the global burden of disease attributable to ambient
air pollution: an analysis of data from the Global Burden of
Diseases Study 2015. Lancet (London, England) 2017, vol. 389:
1907–1918. https://doi.org/10.1016/S0140-6736(17)30505-6.

4. Rafaj P, Kiesewetter G, Gül T, Schöpp W, Cofala J, Klimont Z,
Purohit P, Heyes C, Amann M, Borken-Kleefeld J, Cozzi L:
Outlook for clean air in the context of sustainable
Current Opinion in Toxicology 2020, 20-21:1–8
development goals. Global Environ Change 2018, 53:1–11.
https://doi.org/10.1016/J.GLOENVCHA.2018.08.008.

5. Hamanaka RB, Mutlu GM: Particulate matter air pollution: ef-
fects on the cardiovascular system. Front Endocrinol
(Lausanne) 2018, 9:680. https://doi.org/10.3389/
fendo.2018.00680.

6
* *
. Jonsdottir HR, Delaval M, Leni Z, Keller A, Brem BT, Siegerist F,

Schönenberger D, Durdina L, Elser M, Burtscher H, Liati A,
Geiser M: Non-volatile particle emissions from aircraft turbine
engines at ground-idle induce oxidative stress in bronchial
cells. Commun Biol 2019, 2:90. https://doi.org/10.1038/s42003-
019-0332-7.

7
*
. Krapf M, Künzi L, Allenbach S, Bruns EA, Gavarini I, El-Haddad I,

Slowik JG, Prévôt ASH, Drinovec L, Mo�cnik G, Dümbgen L,
Salathe M, Baumlin N, Sioutas C, Baltensperger U, Dommen J,
Geiser M: Wood combustion particles induce adverse effects
to normal and diseased airway epithelia. Environ Sci Process
Impact 2017, 19:538–548. https://doi.org/10.1039/c6em00586a.

8. Cho C-C, Hsieh W-Y, Tsai C-H, Chen C-Y, Chang H-F, Lin C-S:
In vitro and in vivo experimental studies of PM2.5 on disease
progression. Int J Environ Res Publ Health 2018, 15. https://
doi.org/10.3390/ijerph15071380.

9. Kelly FJ, Fussell JC: Air pollution and public health: emerging
hazards and improved understanding of risk. Environ
Geochem Health 2015, 37:631–649. https://doi.org/10.1007/
s10653-015-9720-1.

10. Rajper SA, Ullah S, Li Z: Exposure to air pollution and self-
reported effects on Chinese students: a case study of 13
megacities. PLoS One 2018, 13, e0194364. https://doi.org/
10.1371/journal.pone.0194364.

11. Lelieveld J, Evans JS, Fnais M, Giannadaki D, Pozzer A: The
contribution of outdoor air pollution sources to premature
mortality on a global scale. Nature 2015, 525:367–371. https://
doi.org/10.1038/nature15371.

12. Brook RD, Newby DE, Rajagopalan S: The global threat of
outdoor ambient air pollution to cardiovascular health. JAMA
Cardiol 2017, 2:353. https://doi.org/10.1001/
jamacardio.2017.0032.

13. Weinstein JR, Asteria-Peñaloza R, Diaz-Artiga A, Davila G,
Hammond SK, Ryde IT, Meyer JN, Benowitz N, Thompson LM:
Exposure to polycyclic aromatic hydrocarbons and volatile
organic compounds among recently pregnant rural Guate-
malan women cooking and heating with solid fuels. Int J Hyg
Environ Health 2017, 220:726–735. https://doi.org/10.1016/
j.ijheh.2017.03.002.

14. Falcon-Rodriguez CI, Osornio-Vargas AR, Sada-Ovalle I, Segura-
Medina P: Aeroparticles, composition, and lung diseases.
Front Immunol 2016, 7:3. https://doi.org/10.3389/
fimmu.2016.00003.

15
* *
. Abrams JY, Weber RJ, Klein M, Samat SE, Chang HH,

Strickland MJ, Verma V, Fang T, Bates JT, Mulholland JA,
Russell AG, Tolbert PE: Associations between ambient fine
particulate oxidative potential and cardiorespiratory emer-
gency department visits. Environ Health Perspect 2017, 125:
107008. https://doi.org/10.1289/EHP1545.

16. Schultz ES, Litonjua AA, Melén E: Effects of long-term expo-
sure to traffic-related air pollution on lung function in chil-
dren. Curr Allergy Asthma Rep 2017, 17:41. https://doi.org/
10.1007/s11882-017-0709-y.

17. Darbre P: Overview of air pollution and endocrine disorders.
Int J Gen Med 2018, 11:191–207. https://doi.org/10.2147/
IJGM.S102230.

18. Chen M, Liang S, Qin X, Zhang L, Qiu L, Chen S, Hu Z, Xu Y,
Wang W, Zhang Y, Cao Q, Ying Z: Prenatal exposure to diesel
exhaust PM 2.5 causes offspring b cell dysfunction in adult-
hood. Am J Physiol Metab 2018, 315:E72–E80. https://doi.org/
10.1152/ajpendo.00336.2017.

19. Newby DE, Mannucci PM, Tell GS, Baccarelli AA, Brook RD,
Donaldson K, Forastiere F, Franchini M, Franco OH, Graham I,
Hoek G, Hoffmann B, Hoylaerts MF, Künzli N, Mills N,
Pekkanen J, Peters A, Piepoli MF, Rajagopalan S, Storey RF:
www.sciencedirect.com

https://doi.org/10.1039/c7fd90032e
https://doi.org/10.1039/C7FD00161D
https://doi.org/10.1016/S0140-6736(17)30505-6
https://doi.org/10.1016/J.GLOENVCHA.2018.08.008
https://doi.org/10.3389/fendo.2018.00680
https://doi.org/10.3389/fendo.2018.00680
https://doi.org/10.1038/s42003-019-0332-7
https://doi.org/10.1038/s42003-019-0332-7
https://doi.org/10.1039/c6em00586a
https://doi.org/10.3390/ijerph15071380
https://doi.org/10.3390/ijerph15071380
https://doi.org/10.1007/s10653-015-9720-1
https://doi.org/10.1007/s10653-015-9720-1
https://doi.org/10.1371/journal.pone.0194364
https://doi.org/10.1371/journal.pone.0194364
https://doi.org/10.1038/nature15371
https://doi.org/10.1038/nature15371
https://doi.org/10.1001/jamacardio.2017.0032
https://doi.org/10.1001/jamacardio.2017.0032
https://doi.org/10.1016/j.ijheh.2017.03.002
https://doi.org/10.1016/j.ijheh.2017.03.002
https://doi.org/10.3389/fimmu.2016.00003
https://doi.org/10.3389/fimmu.2016.00003
https://doi.org/10.1289/EHP1545
https://doi.org/10.1007/s11882-017-0709-y
https://doi.org/10.1007/s11882-017-0709-y
https://doi.org/10.2147/IJGM.S102230
https://doi.org/10.2147/IJGM.S102230
https://doi.org/10.1152/ajpendo.00336.2017
https://doi.org/10.1152/ajpendo.00336.2017
www.sciencedirect.com/science/journal/24682020


Air pollution causing oxidative stress Leni et al. 7
ESC working group on thrombosis, European association for
cardiovascular prevention and rehabilitation, ESC heart fail-
ure association, expert position paper on air pollution and
cardiovascular disease. Eur Heart J 2015, 36:83–93b. https://
doi.org/10.1093/eurheartj/ehu458.

20. Lim CC, Thurston GD: Air pollution, oxidative stress, and dia-
betes: a life course epidemiologic perspective. Curr Diabetes
Rep 2019, 19:58. https://doi.org/10.1007/s11892-019-1181-y.

21. Jin X, Xue B, Zhou Q, Su R, Li Z: Mitochondrial damage
mediated by ROS incurs bronchial epithelial cell apoptosis
upon ambient PM2.5 exposure. J Toxicol Sci 2018, 43:
101–111. https://doi.org/10.2131/jts.43.101.

22. Hong Z, Guo Z, Zhang R, Xu J, Dong W, Zhuang G, Deng C:
Airborne fine particulate matter induces oxidative stress and
inflammation in human nasal epithelial cells. Tohoku J Exp
Med 2016, 239:117–125. https://doi.org/10.1620/tjem.239.117.

23. Weber S, Uzu G, Calas A, Chevrier F, Besombes J-L, Charron A,
Salameh D, Je�zek I, Mo�cnik G, Jaffrezo J-L: An apportionment
method for the oxidative potential of atmospheric particulate
matter sources: application to a one-year study in Chamonix,
France. Atmos Chem Phys 2018, 18:9617–9629. https://doi.org/
10.5194/acp-18-9617-2018.

24. Choi J, Oh JY, Lee YS, Min KH, Hur GY, Lee SY, Kang KH,
Shim JJ: Harmful impact of air pollution on severe acute
exacerbation of chronic obstructive pulmonary disease:
particulate matter is hazardous. Int J Chronic Obstr Pulm Dis
2018, 13:1053–1059. https://doi.org/10.2147/COPD.S156617.

25
* *
. Calas A, Uzu G, Kelly FJ, Houdier S, Martins JMF, Thomas F,

Molton F, Charron A, Dunster C, Oliete A, Jacob V, Besombes J-
L, Chevrier F, Jaffrezo J-L: Comparison between five acellular
oxidative potential measurement assays performed with
detailed chemistry on PM<sub>10</sub> samples from the
city of Chamonix (France). Atmos Chem Phys 2018, 18:
7863–7875. https://doi.org/10.5194/acp-18-7863-2018.

26. Pietrogrande MC, Russo M, Zagatti E: Review of PM oxidative
potential measured with acellular assays in urban and rural
sites across Italy. Atmosphere (Basel) 2019, 10:626. https://
doi.org/10.3390/atmos10100626.

27. Xiong Q, Yu H, Wang R, Wei J, Verma V: Rethinking
dithiothreitol-based particulate matter oxidative potential:
measuring dithiothreitol consumption versus reactive
oxygen species generation. Environ Sci Technol 2017, 51:
6507–6514. https://doi.org/10.1021/acs.est.7b01272.

28. Bates JT, Weber RJ, Abrams J, Verma V, Fang T, Klein M,
Strickland MJ, Sarnat SE, Chang HH, Mulholland JA, Tolbert PE,
Russell AG: Reactive oxygen species generation linked to
sources of atmospheric particulate matter and cardiorespi-
ratory effects. Environ Sci Technol 2015, 49:13605–13612.
https://doi.org/10.1021/acs.est.5b02967.

29. Yu H, Wei J, Cheng Y, Subedi K, Verma V: Synergistic and
antagonistic interactions among the particulate matter com-
ponents in generating reactive oxygen species based on the
dithiothreitol assay. Environ Sci Technol 2018, 52:2261–2270.
https://doi.org/10.1021/acs.est.7b04261.

30. Wang S, Ye J, Soong R, Wu B, Yu L, Simpson AJ, Chan AWH:
Relationship between chemical composition and oxidative
potential of secondary organic aerosol from polycyclic aro-
matic hydrocarbons. Atmos Chem Phys 2018, 18:3987–4003.
https://doi.org/10.5194/acp-18-3987-2018.

31. Simonetti G, Conte E, Massimi L, Frasca D, Perrino C,
Canepari S: Oxidative potential of particulate matter compo-
nents generated by specific emission sources. J Aerosol Sci
2018, 126:99–109. https://doi.org/10.1016/
J.JAEROSCI.2018.08.011.

32
*
. Zhou J, Bruns EA, Zotter P, Stefenelli G, Prévôt ASH,

Baltensperger U, El-Haddad I, Dommen J: Development, char-
acterization and first deployment of an improved online
reactive oxygen species analyzer. Atmos. Meas. Tech. 2018,
11:65–80. https://doi.org/10.5194/amt-11-65-2018.

33. Bruns EA, Slowik JG, El Haddad I, Kilic D, Klein F, Dommen J,
Temime-Roussel B, Marchand N, Baltensperger U, Prévôt ASH:
Characterization of gas-phase organics using proton transfer
www.sciencedirect.com
reaction time-of-flight mass spectrometry: fresh and aged
residential wood combustion emissions. Atmos Chem Phys
2017, 17:705–720. https://doi.org/10.5194/acp-17-705-2017.

34. Bruns EA, El Haddad I, Keller A, Klein F, Kumar NK, Pieber SM,
Corbin JC, Slowik JG, Brune WH, Baltensperger U, Prévôt ASH:
Inter-comparison of laboratory smog chamber and flow
reactor systems on organic aerosol yield and composition.
Atmos. Meas. Tech. 2015, 8:2315–2332. https://doi.org/10.5194/
amt-8-2315-2015.

35. Zhao R, Kenseth CM, Huang Y, Dalleska NF, Seinfeld JH:
Iodometry-assisted liquid chromatography electrospray
ionization mass spectrometry for analysis of organic perox-
ides: an application to atmospheric secondary organic
aerosol. Environ Sci Technol 2018, 52:2108–2117. https://
doi.org/10.1021/acs.est.7b04863.

36. He W, Liu Y, Wamer WG, Yin J-J: Electron spin resonance
spectroscopy for the study of nanomaterial-mediated gener-
ation of reactive oxygen species. J Food Drug Anal 2014, 22:
49–63. https://doi.org/10.1016/J.JFDA.2014.01.004.

37. Tong H, Arangio AM, Lakey PSJ, Berkemeier T, Liu F, Kampf CJ,
Brune WH, Pöschl U, Shiraiwa M: Hydroxyl radicals from sec-
ondary organic aerosol decomposition in water. Atmos Chem
Phys 2016, 16:1761–1771. https://doi.org/10.5194/acp-16-1761-
2016.

38
* *
. Calas A, Uzu G, Martins JMF, Voisin D, Spadini L, Lacroix T,

Jaffrezo J-L: The importance of simulated lung fluid (SLF)
extractions for a more relevant evaluation of the oxidative
potential of particulate matter. Sci Rep 2017, 7:11617. https://
doi.org/10.1038/s41598-017-11979-3.

39
* *
. Pietrogrande MC, Bertoli I, Manarini F, Russo M: Ascorbate

assay as a measure of oxidative potential for ambient parti-
cles: evidence for the importance of cell-free surrogate lung
fluid composition. Atmos Environ 2019, 211:103–112. https://
doi.org/10.1016/J.ATMOSENV.2019.05.012.

40. Yang A, Wang M, Eeftens M, Beelen R, Dons E, Leseman DLAC,
Brunekreef B, Cassee FR, Janssen NAH, Hoek G: Spatial vari-
ation and land use regression modeling of the oxidative po-
tential of fine particles. Environ Health Perspect 2015, 123:
1187–1192. https://doi.org/10.1289/ehp.1408916.

41. Zhang X, Staimer N, Gillen DL, Tjoa T, Schauer JJ, Shafer MM,
Hasheminassab S, Pakbin P, Vaziri ND, Sioutas C, Delfino RJ:
Associations of oxidative stress and inflammatory bio-
markers with chemically-characterized air pollutant expo-
sures in an elderly cohort. Environ Res 2016, 150:306–319.
https://doi.org/10.1016/j.envres.2016.06.019.

42. Rao X, Zhong J, Brook RD, Rajagopalan S: Effect of particulate
matter air pollution on cardiovascular oxidative stress path-
ways. Antioxidants Redox Signal 2018, 28:797–818. https://
doi.org/10.1089/ars.2017.7394.

43. Atkinson RW, Samoli E, Analitis A, Fuller GW, Green DC,
Anderson HR, Purdie E, Dunster C, Aitlhadj L, Kelly FJ,
Mudway IS: Short-term associations between particle oxida-
tive potential and daily mortality and hospital admissions in
London. Int J Hyg Environ Health 2016, 219:566–572. https://
doi.org/10.1016/J.IJHEH.2016.06.004.

44. Strak M, Janssen N, Beelen R, Schmitz O, Vaartjes I,
Karssenberg D, van den Brink C, Bots ML, Dijst M, Brunekreef B,
Hoek G: Long-term exposure to particulate matter, NO2 and
the oxidative potential of particulates and diabetes preva-
lence in a large national health survey. Environ Int 2017, 108:
228–236. https://doi.org/10.1016/j.envint.2017.08.017.

45. Lavigne É, Burnett RT, Stieb DM, Evans GJ, Godri Pollitt KJ,
Chen H, van Rijswijk D, Weichenthal S: Fine particulate air
pollution and adverse birth outcomes: effect modification by
regional nonvolatile oxidative potential. Environ Health
Perspect 2018, 126. https://doi.org/10.1289/EHP2535. 077012.

46. Øvrevik J: Oxidative potential versus biological effects: a
review on the relevance of cell-free/abiotic assays as pre-
dictors of toxicity from airborne particulate matter. Int J Mol
Sci 2019, 20. https://doi.org/10.3390/ijms20194772.

47. Sánchez-de-Diego C, Valer JA, Pimenta-Lopes C, Rosa JL,
Ventura F: Interplay between BMPs and reactive oxygen
Current Opinion in Toxicology 2020, 20-21:1–8

https://doi.org/10.1093/eurheartj/ehu458
https://doi.org/10.1093/eurheartj/ehu458
https://doi.org/10.1007/s11892-019-1181-y
https://doi.org/10.2131/jts.43.101
https://doi.org/10.1620/tjem.239.117
https://doi.org/10.5194/acp-18-9617-2018
https://doi.org/10.5194/acp-18-9617-2018
https://doi.org/10.2147/COPD.S156617
https://doi.org/10.5194/acp-18-7863-2018
https://doi.org/10.3390/atmos10100626
https://doi.org/10.3390/atmos10100626
https://doi.org/10.1021/acs.est.7b01272
https://doi.org/10.1021/acs.est.5b02967
https://doi.org/10.1021/acs.est.7b04261
https://doi.org/10.5194/acp-18-3987-2018
https://doi.org/10.1016/J.JAEROSCI.2018.08.011
https://doi.org/10.1016/J.JAEROSCI.2018.08.011
https://doi.org/10.5194/amt-11-65-2018
https://doi.org/10.5194/acp-17-705-2017
https://doi.org/10.5194/amt-8-2315-2015
https://doi.org/10.5194/amt-8-2315-2015
https://doi.org/10.1021/acs.est.7b04863
https://doi.org/10.1021/acs.est.7b04863
https://doi.org/10.1016/J.JFDA.2014.01.004
https://doi.org/10.5194/acp-16-1761-2016
https://doi.org/10.5194/acp-16-1761-2016
https://doi.org/10.1038/s41598-017-11979-3
https://doi.org/10.1038/s41598-017-11979-3
https://doi.org/10.1016/J.ATMOSENV.2019.05.012
https://doi.org/10.1016/J.ATMOSENV.2019.05.012
https://doi.org/10.1289/ehp.1408916
https://doi.org/10.1016/j.envres.2016.06.019
https://doi.org/10.1089/ars.2017.7394
https://doi.org/10.1089/ars.2017.7394
https://doi.org/10.1016/J.IJHEH.2016.06.004
https://doi.org/10.1016/J.IJHEH.2016.06.004
https://doi.org/10.1016/j.envint.2017.08.017
https://doi.org/10.1289/EHP2535
https://doi.org/10.3390/ijms20194772
www.sciencedirect.com/science/journal/24682020


8 Oxidative Toxicology
species in cell signaling and pathology. Biomolecules 2019, 9:
534. https://doi.org/10.3390/biom9100534.

48. Di Meo S, Reed TT, Venditti P, Victor VM: Role of ROS and RNS
sources in physiological and pathological conditions.OxidMed
Cell Longev 2016. https://doi.org/10.1155/2016/1245049. 1245049.

49. Wende AR, Young ME, Chatham J, Zhang J, Rajasekaran NS,
Darley-Usmar VM: Redox biology and the interface between
bioenergetics, autophagy and circadian control of meta-
bolism. Free Radic Biol Med 2016, 100:94–107. https://doi.org/
10.1016/j.freeradbiomed.2016.05.022.

50. Rui W, Guan L, Zhang F, Zhang W, Ding W: PM 2.5 -induced
oxidative stress increases adhesion molecules expression in
human endothelial cells through the ERK/AKT/NF-kB-
dependent pathway. J Appl Toxicol 2016, 36:48–59. https://
doi.org/10.1002/jat.3143.

51. Tseng C-Y, Chang J-F, Wang J-S, Chang Y-J, Gordon MK,
Chao M-W: Protective effects of N-acetyl cysteine against
diesel exhaust particles-induced intracellular ROS generates
pro-inflammatory cytokines to mediate the vascular
Current Opinion in Toxicology 2020, 20-21:1–8
permeability of capillary-like endothelial tubes. PLoS One
2015, 10, e0131911. https://doi.org/10.1371/
journal.pone.0131911.

52. Byun H, Colicino E, Trevisi L, Fan T, Christiani DC,
Baccarelli AA: Effects of air pollution and blood mitochon-
drial DNA methylation on markers of heart rate variability.
J Am Heart Assoc 2016, 5. https://doi.org/10.1161/
JAHA.116.003218.

53. Ambroz A, Vlkova V, Rossner P, Rossnerova A, Svecova V,
Milcova A, Pulkrabova J, Hajslova J, Veleminsky M, Solansky I,
Sram RJ: Impact of air pollution on oxidative DNA damage
and lipid peroxidation in mothers and their newborns. Int J
Hyg Environ Health 2016, 219:545–556. https://doi.org/10.1016/
j.ijheh.2016.05.010.

54
*
. Lai C-H, Huang H-B, Chang Y-C, Su T-Y, Wang Y-C, Wang G-

C, Chen J-E, Tang C-S, Wu T-N, Liou S-H: Exposure to fine
particulate matter causes oxidative and methylated DNA
damage in young adults: a longitudinal study. Sci Total
Environ 2017, 598:289–296. https://doi.org/10.1016/
j.scitotenv.2017.04.079.
www.sciencedirect.com

https://doi.org/10.3390/biom9100534
https://doi.org/10.1155/2016/1245049
https://doi.org/10.1016/j.freeradbiomed.2016.05.022
https://doi.org/10.1016/j.freeradbiomed.2016.05.022
https://doi.org/10.1002/jat.3143
https://doi.org/10.1002/jat.3143
https://doi.org/10.1371/journal.pone.0131911
https://doi.org/10.1371/journal.pone.0131911
https://doi.org/10.1161/JAHA.116.003218
https://doi.org/10.1161/JAHA.116.003218
https://doi.org/10.1016/j.ijheh.2016.05.010
https://doi.org/10.1016/j.ijheh.2016.05.010
https://doi.org/10.1016/j.scitotenv.2017.04.079
https://doi.org/10.1016/j.scitotenv.2017.04.079
www.sciencedirect.com/science/journal/24682020

