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Abstract

We study electronic properties and adsorption geometries of the molecular charge-transfer-

complex tetrathiafulvalene-dipyrazine on Ag(110). Using a combination of angle-resolved photoe-

mission and electron diffraction, supported by DFT-based simulations, renders a comprehensive

picture of this interesting system. We find low interaction between the substrate and the molecule

and thus little changes of the molecular geometry upon adsorption, as compared to the free gas

phase molecule. Five electronic valence states can be unambiguously assigned owing to their dis-

tinctive photoemission patterns. The molecules adsorb aligned with the Ag rows in the first layer,

while they are slightly rotated in the second layer. Additional intensity of the molecular photoe-

mission signal near the Fermi energy indicates partial charge-transfer into formerly unoccupied

states, most likely of intermolecular origin.
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I. INTRODUCTION

Charge-transfer complexes (CTC) have been widely studied since the discovery of the first

organic metal TTF-TCNQ (tetrathiofulvalene-tetracyanoquinodimethane) in 1973 [1] and

even superconductivity in a similar compound [2]. Such materials are made up by crystal

structures combining electron donating (D) and electron accepting (A) molecules. The

electronic coupling between the molecules leads to partial charge transfer between the highest

occupied molecular orbital (HOMO) of the donor and the lowest unoccupied molecular

orbital (LUMO) of the acceptor. The CTCs can exhibit properties very different from their

parent compounds, such as photoconductivity, field emission, rectification, photo-switch or

memory function and are thus of high technological interest [3–6].

Fused D-A systems, where the electron donating and accepting entities are part of the

same molecule, have attracted special attention during the past decades [7] due to their

potential application in photovoltaic devices [8] and organic semiconductors and conduc-

tors [9]. Tetrathiafulvalene-dipyrazine (TTF-PYZ2) is a compactly fused ambipolar CTC

which was first synthesized in 2011 [10]. The covalently linked A-D-A array leads to an

interesting electronic structure. The main characteristics displayed in Fig.1 are the HOMO

located on the TTF center and the LUMO on the PYZ wings of the molecule. These states

are separated by a relatively small band gap of 2.39 eV [10]. Such compactly fused D-A

systems are known to show photoinduced charge-transfer and long-lived charge-separated

states [11–13].

Schuler et al. studied the adsorption of TTF-PYZ2 on a NaCl-bilayer on Cu(111) by

means of Kelvin-probe-force microscopy [14]. They found two different adsorption structures

(conformations) on the NaCl surface. In the first conformation, the TTF part is close to

the substrate while the PYZ wings are bent away from the surface plane (compare Fig 1(a)

bottom). In the second structure the wings are bent towards the surface. In their DFT

simulation of the free molecule, they found a bending angle of 12◦, which is very close to

the angle of 13.5◦ measured in bare TTF by electron diffraction. The symmetry of the bent

molecular geometry is reduced from a D2h to a C2v point group symmetry.

In this work, we study TTF-PYZ2 adsorbed on an Ag(110) substrate. We employ a combi-

nation of orbital tomography based on angle-resolved photoelectron spectroscopy (ARPES)

[15–18], low-energy electron diffraction (LEED) and DFT simulations to determine adsorp-
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tion geometry and the molecular electronic structure. In the absence of final state scattering,

when the photoemission signal is recorded from a well-ordered monolayer or multilayer of or-

ganic molecules consisting of light atoms (H, C, N, O), a plane wave can be used to describe

the photoemission final state [15, 19, 20]. In this case, the photoelectron momentum distri-

bution corresponds to the Fourier transform of the initial state, i. e. the molecular orbital,

which can be directly reconstructed via iterative phase-retrieval algorithms [15, 17, 21, 22].

To overcome the limitations of the plane-wave approximation, we simulate the experimental

photoelectron momentum distributions based on the independent-atomic-centre (IAC) ap-

proximation. This approximation is a versatile and generally applicable theory to calculate

angular photoemission from molecules [23, 24]. In contrast to the plane wave approximation,

the IAC approximation is not restricted to any molecular geometry nor orbital character.

FIG. 1. Geometry and molecular orbitals of TTF-PYZ2. (a) Enforced planar D2h symmetry (top)

and the fully relaxed, bent C2v configuration (bottom). The central TTF part with donor (D)

functionality is surrounded by two PYZ moieties with acceptor (A) functionality. (b) Frontier

molecular orbitals in D2h symmetry. The bent geometry has almost the same electronic structure

and is thus not shown.
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II. METHODS

A. Sample preparation, LEED and ARPES measurements

All experiments were carried out in an ultra-high vacuum (UHV) system consisting of a

preparation chamber and an analysis chamber with a base pressure < 10−10 mbar [25]. The

Ag(110) single crystal was prepared by repeated cycles of Ar+ sputtering and annealing.

Highly-ordered molecular films on Ag(110) were grown by effusing TTF-PYZ2 molecules

from home-built Knudsen cell-type evaporators. Both substrate surface cleanliness and

quality of the molecular films were verified by LEED and x-ray photoelectron spectroscopy

(XPS). Coverage was estimated from LEED and further verified by XPS, which was also used

to confirm the stoichiometry and thus structural integrity of the adsorbed molecules. The

angle-resolved photoemission data was collected by a two-dimensional wide-angle electron

energy analyzer with He Iα radiation (21.2 eV) from a discharge lamp as excitation source.

The sample is attached to a rotatable manipulator, while the light source and the electron

analyzer are mounted to the UHV chamber. By rotating the sample around the polar angle

θ (range: 0◦-90◦) and the azimuthal angle ϕ (range: 0◦-360◦) the full hemisphere above the

sample can be scanned. The measurement geometry including the definition of a coordinate

system and the angles is depicted in Fig 2. The single detector images were processed

to complete photoelectron momentum maps (PMM) according to our previously published

routines [25]. ARPES data for PMMs is typically integrated over an energy range of 0.2 eV.

B. Photoemission calculations

The photoemission intensity is derived from Fermi’s Golden Rule that describes the prob-

ability for a transition from an initial state into a final state which is characterised by its

momentum k . Accordingly, the total photoemission intensity measured as a function of Ekin

at a polar angle θ and an azimuthal angle ϕ is proportional to the sum over all occupied

electronic initial states:

I(θ, ϕ;Ekin) ∝
∑
i

|〈ψf (θ, ϕ;Ekin)|ε · r |ψi〉|2 × δ(Ei + φ+ Ekin − hν) (1)

Within the plane wave approximation where ψf is represented by a plane wave, the mea-
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FIG. 2. Geometry of the ARPES experiment. The incidence angle of the light, Ω, changes during

the measurement. The orientation of the sample surface with respect to the detection axis of the

electron analyzer is given by the polar and azimuthal angles, θ and ϕ, respectively

sured photoemission intensity becomes proportional to the squared modulus of the Fourier

transform of the initial state wave function ψi [15]. In the independent-atomic-centre (IAC)

approximation [26–28] the initial state is decomposed into the atomic orbitals

ψi(r) =
∑
α

∑
nlm

Cα,nlmφα,nlm(r −Rα) (2)

positioned at Rα and the final state is expressed as Coulomb waves ∝ Rkl(R)YLM(R̂) with

energy Ekin, where YLM is the angular part given by the spherical harmonics. Computing

the resulting sum leads to the IAC expression for the final state wave function, ψIAC, at the

detector position R:

ψIAC(R, Ekin) =
∑
α

∑
nlm

Cα,nlme
ikRα

∑
LM

MLM
nlm(Ekin)YLM(R̂) (3)

The square of the wave function is proportional to the intensity at the detector position.

MLM
nlm is the matrix element and L,M the angular momentum quantum numbers of the

Coulomb waves. The IAC code that was used in previous work [29] has been adapted to

account for the different experimental geometry. The refraction of the photoelectron wave

at the solid vacuum interface can be described by the change in kinetic energy, which is

quantified by the so-called inner potential, V0, representing the zero of the kinetic energy

5
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inside the solid. This value V0 was used as a fitting parameter and was found to be ∼7 eV.

The initial state wave functions, ψi, and other molecular properties of TTF-PYZ2 were

obtained from DFT calculations using Gaussian 09 [30] at the B3LYP/6-31G+ level of

theory.

III. RESULTS AND DISCUSSION

A. LEED analysis and surfaces lattices of TTF-PYZ2 on Ag(110)

TTF-PYZ2 forms a long-range ordered superstructure on Ag(110). The LEED data is

shown in Fig. 3 together with the deduced real space structures. For one monolayer (ML,

Fig. 3(a)), the superstructure is commensurate and the relation between the Ag(110) lattice

vectors a1 and a2 and the superstructure lattice vectors b1 and b2 can be expressed by a

matrix GML and the following relation:b1

b2

 =
1

2

13 2

1 4


︸ ︷︷ ︸

GML

a1

a2


. (4)

There are two equivalent mirror-symmetric domains with the mirror axis parallel to the Ag

rows ([110]-direction). The densely packed structure and size of the molecule suggest single

orientation. The fact that the distance along [110] is so short suggests a bent adsorption

geometry, which reduces the overlap between adjacent molecules.

The work function of the surface decreases from 4.2 eV to 3.7 eV upon adsorption of

1.0 monolayer (ML). This decrease is probably caused by the molecular dipole reducing the

surface dipole and thereby also the work function, a common effect of molecules adsorbed

on surfaces [31].

Upon further evaporation onto the ML an additional structure becomes visible in the

LEED images. This structure is assigned to the ordering of the second TTF-PYZ2 layer and

is indicated in Fig. 3(b). No further shift of the work function is observed.

The second layer structure (Fig. 3(c)) can be described in real space by the Matrix GBL

and the relation c1

c2

 =
1

18

−69 −18

124 −18


︸ ︷︷ ︸

GBL

a1

a2


(5)
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between the substrate unit cell vectors a1 and a2 and the second layer unit cell vectors c1

and c2.

The molecules in the second layer are even more densely packed than in the first layer

(det(GBL) = 10.9 compared to det(GML) = 12.5). From the close packing and the size of

the TTF-PYZ2 molecule it is assumed, that the long axis is rotated relative to the first layer

molecules and to the Ag rows by ideally 11.6◦ around azimuthal. This rotation minimizes

the overlap and is shown in Fig. 3(e). As in the first layer, there are two mirror symmetric

domains. In the following, we will verify our assumptions on the molecular geometry by

taking a closer look at the ARPES data of the molecular valence states.

FIG. 3. LEED analysis. (a) LEED image of a monolayer (ML) with reciprocal 2d lattice vectors

of Ag(110) surface (blue) and superstructure (red). (b) LEED image of intermediate coverage

(≈ 1.5 ML) with spots of the first and second adlayers. (c) LEED image of a bilayer with reciprocal

2d lattice vectors of the 2nd layer superstructure (green). (d-e) Real space structures of the first

and second layer along with the real space 2d lattice vectors. The azimuthal rotation of the second

layer molecules, facilitating interaction between A and D functionalities of neighbouring molecules,

is indicated in (e).
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B. ARPES data

Figure 4(a) shows the ultraviolet photoelectron spectrum (UPS) of a monolayer (ML)

and a bilayer (BL) of TTF-PYZ2 on Ag(110). We note that the energetic positions of the

main molecular features (2.2 eV and 3.6 eV) are the same for the ML and BL. While there is

no peak discernible at 3.0 eV, we observe distinctive features in the complete photoelectron

momentum map (PMM) that resemble molecular features in this binding energy range (see

Fig. 5). We assume the energetically highest occupied state to be the HOMO. The PMMs

of this state are shown in Figs. 4(c) and (c) for the ML and BL, respectively. We now

focus on the intensity maxima at kx = ± 1.5 Å−1 ( ky = 0). This feature seems slightly

wider in case of the BL. This becomes more evident looking at the intensity profiles from a

horizontal cut through the feature (Fig. 4(d)). The observed widening in case of the BL can

be rationalised by considering the azimuthal rotation of the molecules in the second layer,

as already suggested from the LEED data. The observed PMM can then be considered

the incoherent sum of HOMO emission from the two rotational domains in the BL and

some attenuated contribution of the first layer (ML) beneath. A PMM of the clean Ag(110)

substrate at the same binding energy is shown for comparison (Fig. 4(e)). In all shown

PMMs, the vertical mirror symmetry is broken due to the oblique incidence angle of the

light, which is not in the symmetry planes of the experiment (xy and yz, cf. Fig. 2).

We employ simulations based on the independent-atomic-centre (IAC) approximation to

compare our electronic structure calculations of TTF-PYZ2 with the ARPES data. Figure

5 shows a comparison of the PMMs of all observed valence states with IAC simulations.

The lowest observable feature before the onset of the Ag substrate d-bands at 3.6 eV can be

assigned to the TTF-PYZ2 HOMO-3 (Fig. 5(a)). The PMM at 3.0 eV in Fig. 5(b) contains

contributions from two energetically close-lying states, the HOMO-2 and HOMO-1. The

real space wave functions are depicted next to the simulations. The experimental PMM can

be well reproduced by the incoherent sum of those two states. Finally, the HOMO data is

shown in Fig. 5(c). The additional features in the HOMO-3 experimental data that are not

present in the simulations can be attributed to some residual overlap with HOMO-2. Both

HOMO-3 and HOMO exhibit the same parity (i. e. the same irreducible representation) and

thus also have a similar PMMs. The main difference lies in the kx value of the main feature

due to the different periodicity of the wave functions along the x-axis. This is highlighted in
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FIG. 4. Valence spectra and molecular orientation. (a) UPS of TTF-PYZ2 ML and BL on Ag(110)

and of the clean substrate. All spectra were measured at θ=50◦ and ϕ=0◦. (b,c) PMM at HOMO

binding energy (2.2 eV) of ML and BL with indication of molecular orientations (left). (d) Nor-

malised intensity profile along the main feature in (b,c) at kx=1.5 Å−1. The broader BL profile

(blue) can be attributed to the azimuthal rotation of the molecules in the second layer. The

dashed lines indicate the theoretical maxima of the feature for the 3 orientations. (e) PMM of

clean Ag(110) at 2.2 eV. The slight asymmetry with respect to the substrate mirror planes appar-

ent in all PMMs is due to photoemission matrix element effects reflecting the orientation of the

He-lamp outside the measurement-plane in the experiment.

Fig. 5(d) where vertical profiles along ky = 0 are shown for both the experimental PMMs

and the simulations.

Since there is no energy shift between molecules in the first and second layer, the BL

signal always contains attenuated contributions from the first layer (ML). The effect of

azimuthal rotation of the molecules already discussed for the HOMO PMM is also visible

in case of the other states where it leads to a similar broadening of the features along this

rotation. Interestingly, the seemingly very similar wave functions of HOMO-1 and HOMO-

2 lead to quite different momentum distributions. This can easily be rationalised using

symmetry arguments. The additional nodal plane perpendicular to the x-axis through the

molecular centre changes the parity with respect to this plane. In this case, this leads to
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FIG. 5. Identification of molecular states. (a-c) Comparison between the measured PMM and

simulations. The corresponding real space molecular orbitals are also shown. The measured PMM

in (b) is the sum of two energetically close states (HOMO-2 and HOMO-1) that cannot be resolved

in the experiment. All PMMs were normalized to the respective maximum intensities. The absolute

intensities at all three energies are comparable, leading to similar contrast. (d) Normalised intensity

profile for HOMO and HOMO-3 at ky=0 Å−1.

the additional features along kx in the simulated momentum distributions. It has been

shown before, that even in case of limited agreement between simulations and experiment,

the molecular symmetry is always reproduced in the momentum distributions [20] and thus

serves as reliable identifier of molecular states. The apparent node at ky = 0 in the PMMs

of HOMO-1/HOMO-2 (Fig. 5(b)) explains the absence of a peak for these states in the UPS

spectrum (Fig. 4(a)) that was taken at this azimuthal orientation. The minimum along

ky = 0 is a direct consequence of the nodal plane along the long axis of the molecule in

HOMO-1 and HOMO-2. Such nodal plane is not present in HOMO or HOMO-3 and thus

there is no minimum at ky = 0. For this reason, it is evident that the feature at 3.0 eV is

an additional molecular state that cannot be explained by an overlap of the neighbouring

HOMO-3 and HOMO states.

The lack of any discernible energy difference between corresponding states in the first

and second layer indicates little interaction between the Ag substrate and the TTF-PYZ2

molecules in terms of hybridisation or net charge transfer. The comparison further verifies

the validity of the DFT-predicted orbital hierarchy and corroborates our earlier finding of
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FIG. 6. (a-e) Simulated TTF-PYZ2 HOMO PMM for different bending angles α. In (c) the main

HOMO features are labeled. (f) Experimental HOMO PMM of the ML. (g) Normalized intensity

profile of the simulations and experiment along the features a and b of the HOMO at ky = 0 Å−1

(dashed lines). (h) Estimation of bending angle α.

weak interaction between the molecules and the substrate since all DFT calculations were

performed on an isolated gas phase molecule.

C. Molecular geometry

One reason for the limited agreement between the experimental PMMs and the simula-

tions is the bent geometry of the molecule as shown in Fig. 1(a.) The bending angle α is

likely to change upon adsorption of the molecule due to interaction with the substrate. The

IAC simulations depend strongly on the molecular geometry and we thus varied this bending

angle to find the best match with the experiment. To do so, we employed the HOMO data

as before for the verification of the azimuthal rotation in the second layer. The HOMO is

most suitable for this purpose because its spectral features are well separated in energy from

those of neighbouring molecular states.

Figure 6 shows simulated PMMs for different values of the bending angle α. This angle has

a big influence on the ratios between the main HOMO feature a and the two features b and

c indicated in Fig. 6(c). The increase of feature b relative to a can be seen in the intensity

profiles shown in Fig. 6(g). We focus on the ML data because for higher coverage, the signal

always contains contributions from both, first and second layer, since the HOMO level does

not shift. Different substrate background intensities at these positions in k-space make the
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FIG. 7. (a) Experimental PMM of the BL at the Fermi energy. (b) Simulation of the 12◦ bent

LUMO PMM along with the real space orbital. (c) Normalized intensity profile of the simulation

and experiment along the LUMO at ky = 0 Å−1 (dashed lines).

ratio coverage-dependent and lead to some uncertainty in the determination of the angle.

Nevertheless, the experimental ratios can be estimated as b/a = 0.63 and c/a = 0.78.

Based on these ratios, the bending angle is estimated by the interpolation shown in Fig.

6(h) to be α = 12.5 ± 2◦ in the ML. This is similar to the bending found for TTF-PYZ2

on NaCl [14]. Comparing the ML and BL data shown in Fig. 4(b/c), it can be seen that

the b/a and c/a ratios are larger in the BL, indicating that the second layer molecules are

bent slightly stronger, but still less than the free gas phase molecule in our DFT calculations

(α = 17◦).

D. Electronic structure: charge-transfer and interactions

Naturally, when studying charge-transfer-complex molecules, the question of charge trans-

fer comes to mind. Looking at the ML valence spectrum in Fig. 4(a), no distinct peak can

be found between the TTF-PYZ2 HOMO and EF , which would be indicative of partial

LUMO occupation. We notice though enhanced intensity in this region in the BL data. The

PMM of a BL of TTF-PYZ2 at the Fermi energy in Fig. 7, shows an angular distribution

that closely resembles the simulation of the molecular LUMO. Interestingly, the intensity of

LUMO features is stronger in the BL data than in the ML data. The lowering of the work

function could be rationalised by charge transfer of the molecular HOMO to the substrate,

which would be the opposite direction of transfer from the substrate into the LUMO. The
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fact though that we see more pronounced charge transfer in the second layer hints towards

intermolecular charge transfer, either between adjacent molecules in the same layer, or be-

tween the first and second molecular layer. The azimuthal rotation of the molecules in the

second layer brings the acceptor and donor moieties of adjacent molecules in close prox-

imity (see Fig. 3(e)). In the first layer, the molecules are oriented such that acceptor and

donor functionalities are aligned and thus further apart from each other. The only slight

modification of the molecular geometry upon adsorption indicates little interaction with the

substrate and thus also supports the picture of intermolecular charge transfer.

IV. CONCLUSION

We investigated the charge-transfer-complex TTF-PYZ2 on Ag(110) in a combined or-

bital tomography and LEED study. The molecules form a long-range ordered superstructure

which is densely packed in the first and second layer. In the first layer, the long axis of the

molecules is aligned with the Ag rows. In the second layer, the molecules are azimuthally

rotated by ∼ 11.6◦. Four molecular states could be identified between EF and the onset

of the silver substrate d-bands. Detailed analysis of the photoelectron momentum maps

(PMM) of these states confirms the molecular orientation deduced from the LEED data. A

detailed simulation of the PMMs also enabled us to derive the bending angle of TTF-PYZ2

on Ag(110). The found angle of 12.5◦ is slightly smaller than in the free molecule and com-

parable to findings of an earlier study for TTF-PYZ2 adsorbed on NaCl [14]. Interestingly,

while the latter study found two bent conformations of the molecules on Ag(110), we found

only one boat (down) conformation with the TTF centre closer to the substrate. The PMM

of a bilayer of TTF-PYZ2 on Ag(110) at EF indicates partial occupation of the molecular

LUMO. Since this effect is more pronounced in the second layer, we conclude charge-transfer

to occur between neighbouring molecules in the same layer (in-plane). Interaction between

TTF-PYZ2 and the Ag(110) substrate seems rather limited since no energy shift between

molecular states in the first and second layer was observed and because the molecular geom-

etry closely resembles the one of the free molecule. The observed high degree of long-range

order in the LEED data can be largely attributed to intermolecular interactions. Yet the

influence of the substrate is large enough to guide the molecules to adsorb along the Ag rows.

The combination of orbital tomography with LEED is a powerful and efficient technique to

13

Page 13 of 16 AUTHOR SUBMITTED MANUSCRIPT - NJP-112576.R1

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

A
cc

ep
te

d 
M

an
us

cr
ip

t



study both the adsorption geometry and the electronic structure of this interesting system.
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