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Abstract

Activin/myostatin signaling has a critical role not only in cachexia but also in tumor angiogen-

esis. Cachexia is a frequent complication among patients with advanced cancer and heavily

pretreated patients. We aimed to evaluate the prognostic significance of cachexia-associ-

ated genetic variants in refractory metastatic colorectal cancer (mCRC) patients treated

with regorafenib. Associations between twelve single nucleotide polymorphisms in 8 genes

(INHBA, MSTN, ALK4, TGFBR1, ALK7, ACVR2B, SMAD2, FOXO3) and clinical outcome

were evaluated in mCRC patients of three cohorts: a discovery cohort of 150 patients receiv-

ing regorafenib, a validation cohort of 80 patients receiving regorafenib and a control cohort

of 128 receiving TAS-102. In the discovery cohort, patients with any G variant in FOXO3

rs12212067 had a significantly lower response rate (P = 0.031) and overall survival (OS)

than those with a T/T in univariate analysis (4.5 vs. 7.6 months, hazard ratio [HR] = 1.63,

95% confidence interval [CI] = 1.09–2.46, P = 0.012). Among female patients, those with

any G variant in INHBA rs2237432 had a significantly longer OS than those with an A/A in

both univariate (7.6 vs. 4.3 months, HR = 0.57, 95%CI = 0.34–0.95, P = 0.021) and multivar-

iable (HR = 0.53, 95%CI = 0.29–0.94, adjusted P = 0.031) analysis. This association was

confirmed in female patients of the validation cohort, though without statistical significance

(P = 0.059). Conversely, female patients with any G allele in the control group receiving

TAS-102 did not show a longer OS. This was the first study evaluating the associations

between polymorphisms in cachexia-associated genes and outcomes in refractory mCRC
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patients treated with regorafenib. Further studies should be conducted to confirm these

associations.

Introduction

Regorafenib is a small molecule multikinase inhibitor that blocks protein kinases involved in

tumor angiogenesis, oncogenesis and the tumor microenvironment [1]. The benefit of regora-

fenib on overall survival (OS) in patients with metastatic colorectal cancer (mCRC) was dem-

onstrated in two phase III randomized controlled trials, the CORRECT [2] and CONCUR [3]

trials. Therefore, regorafenib is now established as an additional line of therapy for patients

with mCRC refractory to previous chemotherapy as well as for best supportive care [4, 5]. Sev-

eral investigators have attempted to identify molecular markers that predict the activity of

regorafenib for the individualized treatment of patients with mCRC. For example, expression

levels of biomarkers such as VEGF and CCL5 [6] or plasma circulating cell-free DNA [7] may

represent potential predictive biomarkers of regorafenib treatment, although these results have

not been sufficiently validated.

Cancer cachexia is defined as an ongoing loss of skeletal muscle mass and is a more com-

mon complication in heavily pretreated cancer patients [8], leading to progressive impairment

of physical function and quality of life as well as resistance to chemotherapy or radiotherapy

[9, 10]. Skeletal muscle mass is dynamically regulated by various extracellular signals, which

activate distinct intracellular signaling processes [11]. In particular, INHBA and MSTN are

potent negative regulators of muscle mass [12]. The binding of INHBA and MSTN to mem-

brane receptors (ACVR1B, C, and ACVR2B) leads to the activation of SMAD-mediated signal

transduction, promoting muscle protein degradation [13]. INHBA or MSTN expression is

associated with several types of human cancers, and CRC patients with high INHBA expres-

sion showed poorer OS than those with low INHBA expression [14]. In addition, accumulat-

ing evidence suggests that activin/myostatin signaling, like other members of the TGF-beta
superfamily, can regulate angiogenesis. MSTN blockade reduced the tumor expression of

genes involved in angiogenesis (e.g. VEGF-A, HIF-1α) [15]. Similarly, INHBA demonstrated

both pro- [16] and anti-angiogenic [17] properties in different systems. Recently, we reported

that germline variants within the cancer cachexia pathway are associated with outcome in

mCRC patients treated with bevacizumab-based chemotherapy [18].

Based on the clinical importance of cachexia signaling being potentially involved in angio-

genesis, we evaluated the prognostic and predictive significance of cachexia-associated genetic

variants in refractory mCRC patients treated with regorafenib chemotherapy. A previous

report indicated that gender differences may influence skeletal muscle changes after chemo-

therapy [19]. We therefore determined whether such associations were influenced by gender.

Materials and methods

Study design and patients

This study was a retrospective exploratory study in three independent cohorts of patients with

refractory mCRC: a discovery cohort of 150 patients receiving regorafenib at Azienda Ospeda-

liero-Universitaria Pisana, Istituto Oncologico Veneto (Padova, Italy); a validation cohort of

80 patients receiving regorafenib at the Cancer Institute Hospital of the Japanese Foundation

for Cancer Research (Japan); and a control cohort of 128 patients receiving TAS-102 at

Azienda Ospedaliero-Universitaria Pisana, Istituto Oncologico Veneto (Padova, Italy) and
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Istituto Nazionale Tumori (Milano, Italy). Patients with histologically verified colorectal ade-

nocarcinoma, measurable metastatic disease according to Response Evaluation Criteria in

Solid Tumors (RECIST) v1.1, and a history of previous standard chemotherapy with 5-FU,

L-OHP, CPT-11, bevacizumab, and cetuximab or panitumumab were eligible. Patients

received regorafenib 160 mg per body once daily from days 1–21, every 4 weeks, or TAS-102

35 mg per m2 twice daily on days 1–5 and 8–12, every 4 weeks. Treatment was administered

until disease progression, intolerable toxicities, or patient withdrawal occurred. All patients

provided written informed consent, including consent for all medical record which were fully

anonymized before we assessed, blood or tumor tissue to be used to explore relevant molecular

parameters. This study was conducted according to the REporting recommendations for

tumor MARKer prognostic studies (REMARK) [20]. The tissue analysis protocol was

approved by the University of Southern California (USC) Institutional Review Board of Medi-

cal Sciences and conducted at the USC/Norris Comprehensive Cancer Center in accordance

with the Declaration of Helsinki and Good Clinical Practice guidelines.

Selection of candidate single-nucleotide polymorphisms

The 12 candidate single nucleotide polymorphisms (SNPs) in the cachexia pathway examined

in this study were INHBA, MSTN, ALK4, TGFBR1, ALK7, ACVR2B, SMAD2, and FOXO3,

which were selected using one of the following criteria: i) SNP with potential biological signifi-

cance based on the published literature or F-SNP database� (http://compbio.cs.queensu.ca/

F-SNP/); or ii) minor allele frequency�10% in both white and East Asians in the Ensembl

Genome Browser. The characteristics of the selected polymorphisms are shown in S1 Table.

DNA extraction and genotyping

Genomic DNA was extracted from patients’ peripheral blood using a QIAmp Kit (Qiagen,

Valencia, CA, USA) according to the manufacturer’s protocol. The candidate SNPs were

examined by PCR-based direct DNA sequence analysis using an ABI 3100A Capillary Genetic

Analyzer and Sequencing Scanner v1.0 (Applied Biosystems, Foster City, CA, USA). The prim-

ers for amplification of extracted DNA are listed in S1 Table. For quality control purposes,

10% of samples were randomly selected and analyzed by direct DNA sequencing for each SNP.

The genotype concordance rate was found to be�99%. The investigators analyzing SNPs were

blinded to the clinical data.

Statistical analysis

The primary endpoint in this study was progression-free survival (PFS), and the secondary

endpoints were OS and disease control rate (DCR). PFS was defined as the period between the

date of starting treatment and the date of confirmed disease progression or death. OS was cal-

culated from the date of starting treatment until the date of death from any cause. If the event

was not observed by the last follow up date, the patient was recorded as censored. In patients

lost to follow-up, data were censored at the date of last follow up. According to RECIST v1.1,

DCR was defined as the proportion of patients who achieved stable disease (SD), partial

response (PR), or progressive disease (PD). Chi-square tests were used to examine the differ-

ence in baseline patient characteristics between the three cohorts. Allelic distribution of poly-

morphisms was tested for deviation from the Hardy–Weinberg equilibrium using the exact

test. Linkage disequilibrium among SNPs was evaluated using D’ and r2 values and haplotype

frequencies of genes were inferred using HaploView version 4.2 (http://www.broad.mit.edu/

mpg/haploview). High linkage disequilibrium was defined as r2> 0.7. Fisher’s exact test was

applied to examine the associations between SNPs and DCR. Associations between candidate
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SNPs and PFS or OS were analyzed by the Kaplan–Meier method and log-rank test in the uni-

variable analysis and reevaluated using a Cox proportional hazards model and Wald test with

predictive or prognostic baseline factors included. The baseline demographic and clinical char-

acteristics statistically significantly associated with PFS and OS in multivariable analyses were

included in the final models. We used codominant, dominant, or recessive genetic models

where appropriate for the candidate SNPs, because the true modes were not yet established in

the analyses. The minimum detectable hazard ratios of 1.61–1.82 corresponded to the minor

allele frequency of 0.1–0.4 in the association between an SNP and PFS in the discovery cohort

(n = 150, PFS events = 149), considering a dominant model and using a two-sided 0.05-level

log-rank test with 80% power. In the validation cohort (n = 80, PFS events = 79), the power

was 54% using the same model. All analyses were carried out with SAS 9.4 (SAS Institute,

Cary, NC, USA). All tests were two-sided at a significance level of 0.050. P-act method, a modi-

fied multiple testing method, was applied for adjusting the P values for all SNPs when the link-

age disequilibrium between candidate SNPs and different modes of inheritance was

considered.

Results

Baseline characteristics

The baseline characteristics of enrolled cohorts are summarized in Table 1. Gender, perfor-

mance status, adjuvant treatment history, and the number of prior chemotherapy regimens

were distributed differently between the cohorts. The median PFS, OS, and follow-up time

were 2.1, 6.0, and 36.4 months in the discovery cohort; 2.0, 8.0, and 15.3 months in the valida-

tion cohort; and 2.0, 5.4, and 5.3 months in the control cohort. Genotyping was successful in

at least 90% of cases for each polymorphism analyzed. The allelic frequencies for all SNPs were

within the probability limits of the Hardy–Weinberg equilibrium (P>0.050). High linkage dis-

equilibrium was observed between ACVR2B rs13072731 and ACVR2B rs2268753 in the dis-

covery cohort, with D’ = 0.98 and r2 = 0.70. No other high linkage disequilibrium was

observed between the SNPs found in each cohort.

Associations between cachexia SNPs and outcome in the discovery and

validation cohorts

Associations between candidate SNPs and clinical outcome were examined in the regorafenib

discovery cohort. Patients with any G allele in FOXO3 rs12212067 had significantly shorter

PFS and OS and worse DCR than those with a T/T variant in univariate analysis (PFS: 1.8 vs.

2.1 months, hazard ratio [HR] 1.44, 95% confidence interval [CI] 0.98–2.12, P = 0.056; OS: 4.5

vs. 7.6 months, HR 1.63, 95% CI 1.09–2.46, P = 0.012; DCR: P = 0.031) (Table 2). However, in

the validation cohort, patients with any G allele in FOXO3 rs12212067 had longer PFS and OS

than those with a T/T variant in univariate analysis (PFS: 2.0 vs. 2.5 months, HR 0.56, 95% CI

0.32–0.97, P = 0.027; OS: 7.6 vs. 15.3 months, HR 0.49, 95% CI 0.23–1.04, P = 0.054) (S2

Table). However, these effects were not significant in the multivariable model and after multi-

ple testing.

Associations between cachexia SNPs and outcome stratified by sex in the

discovery and validation cohorts

Among female patients in the discovery cohort, patients with any G allele in INHBA rs2237432

showed a significantly longer OS than those with the A/A allele in both univariate (7.6 vs. 4.3

months, HR 0.57, 95% CI 0.34–0.95, P = 0.021) and multivariable analysis (HR 0.53, 95% CI
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Table 1. Baseline clinical characteristics of patients in the discovery, validation, and control cohorts.

Characteristics Discovery cohort

(n = 150)

Validation cohort

(n = 80)

Control cohort

(n = 128)

P value a

N (%) N (%) N (%)

Age (years) 0.97

�65 94 (63) 49 (61) 79 (62)

>65 56 (37) 31 (39) 49 (38)

Gender 0.49

Male 81 (54) 38 (48) 61 (48)

Female 69 (46) 42 (53) 67 (52)

Primary tumor site 0.80

Right 49 (33) 23 (29) 39 (30)

Left 99 (66) 57 (71) 85 (66)

Unknown b 4 (3)

Primary tumor resected 0.52

Yes 127 (85) 70 (88) 109 (85)

No 23 (15) 10 (12) 13 (10)

Unknown b 6 (5)

Adjuvant treatment 0.087

Yes 37 (25) 27 (34) 47 (37)

No 112 (75) 53 (66) 81 (63)

Unknown b 1 (0)

Liver metastasis 0.11

Yes 120 (80) 54 (68) 96 (75)

No 30 (20) 26 (33) 32 (25)

Lung metastasis 0.096

Yes 109 (73) 47 (59) 88 (69)

No 41 (27) 33 (41) 40 (31)

LN metastasis 0.47

Yes 75 (50) 41 (51) 56 (44)

No 75 (50) 39 (49) 72 (56)

Peritoneal involvement 0.67

Yes 43 (29) 20 (25) 31 (24)

No 107 (71) 60 (75) 97 (76)

Number of metastases 0.001

1 16 (11) 24 (30) 21 (16)

> 1 134 (89) 56 (70) 107 (84)

Number of treatment regimens < 0.001

� 3 108 (72) 72 (90) 80 (63)

> 3 42 (28) 8 (10) 48 (38)

Performance status < 0.001

ECOG 0 117 (78) 45 (56) 72 (56)

ECOG 1 33 (22) 35 (44) 56 (44)

RAS status 0.41

Wild 52 (35) - 47 (37)

Mutant 93 (62) - 68 (53)

Unknown b 5 (3) - 13 (10)

Abbreviations: LN, lymph node; ECOG, Eastern Cooperative Oncology Group.
a Based on the χ2 test.
b Not included in the test.

https://doi.org/10.1371/journal.pone.0239439.t001
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Table 2. Association between cachexia-related gene polymorphism and clinical outcomes in the discovery cohort.

Genotype N Tumor response Progression-free survival Overall survival

PR+SD PD P
value�

Median,

months

(95%CI)

HR (95%CI)

†

P
value�

HR (95%CI)

‡

P
value�

Median,

months

(95%CI)

HR (95%CI)

†

P
value�

HR (95%CI)

‡

P
value�

INHBA
rs2237432

0.91 0.92 0.41 0.59 0.87

A/A 78 27

(37%)

46

(63%)

2.1 (1.8,

2.8)

1

(Reference)

1

(Reference)

6.5 (4.5,

8.7)

1

(Reference)

1

(Reference)

A/G 56 18

(33%)

37

(67%)

2.1 (1.8,

2.3)

0.94 (0.66,

1.34)

0.99 (0.68,

1.43)

5.6 (4.3,

7.6)

0.91 (0.63,

1.31)

1.00 (0.68,

1.48)

G/G 16 5

(33%)

10

(67%)

2.1 (1.7,

4.0)

1.02 (0.59,

1.74)

1.44 (0.82,

2.54)

9.5 (2.2,

13.9)

0.75 (0.42,

1.34)

1.17 (0.64,

2.12)

INHBA
rs17776182

1.00 0.78 0.68 0.21 0.47

G/G 122 41

(35%)

76

(65%)

2.1 (1.9,

2.3)

1

(Reference)

1

(Reference)

5.9 (4.5,

7.8)

1

(Reference)

1

(Reference)

G/A a 25 8

(35%)

15

(65%)

1.9 (1.8,

3.6)

0.94 (0.62,

1.43)

1.09 (0.71,

1.69)

8.7 (5.5,

12.4)

0.77 (0.50,

1.18)

0.85 (0.54,

1.33)

A/A a 3 1

(33%)

2

(67%)

MSTN
rs7570532

0.46 0.67 0.73 0.96 0.98

A/A 89 33

(39%)

51

(61%)

2.3 (1.9,

3.0)

1

(Reference)

1

(Reference)

7.8 (5.7,

9.4)

1

(Reference)

1

(Reference)

A/G a 54 15

(29%)

37

(71%)

1.9 (1.8,

2.1)

1.07 (0.77,

1.49)

1.06 (0.76,

1.48)

5.3 (3.6,

7.6)

1.01 (0.71,

1.42)

1.00 (0.70,

1.41)

G/G a 7 2

(29%)

5

(71%)

ALK4
rs2854464

0.90 0.95 0.77 0.48 0.17

A/A 78 25

(34%)

49

(66%)

2.1 (1.8,

2.8)

1

(Reference)

1

(Reference)

6.0 (5.0,

8.9)

1

(Reference)

1

(Reference)

A/G 56 18

(34%)

35

(66%)

2.1 (1.8,

2.3)

1.05 (0.74,

1.49)

1.13 (0.79,

1.61)

6.3 (4.4,

8.0)

1.09 (0.76,

1.57)

1.14 (0.78,

1.66)

G/G 15 6

(40%)

9

(60%)

2.2 (1.4,

3.8)

1.06 (0.61,

1.85)

1.14 (0.65,

2.02)

5.7 (2.0,

10.0)

1.41 (0.80,

2.47)

1.74 (0.97,

3.10)

TGFBR1
rs10760673

0.57 0.60 0.053 0.72 0.28

G/G 92 32

(37%)

54

(63%)

2.0 (1.8,

2.8)

1

(Reference)

1

(Reference)

7.7 (5.4,

9.1)

1

(Reference)

1

(Reference)

G/A a 48 17

(35%)

31

(65%)

2.1 (1.9,

2.4)

0.92 (0.65,

1.29)

0.70 (0.49,

1.00)

5.6 (4.4,

7.8)

1.06 (0.75,

1.51)

0.82 (0.57,

1.18)

A/A a 8 1

(14%)

6

(86%)

ALK7
rs13010956

0.94 0.62 0.52 0.95 0.68

T/T 45 15

(34%)

29

(66%)

1.9 (1.8,

2.3)

1

(Reference)

1

(Reference)

5.4 (3.5,

7.9)

1

(Reference)

1

(Reference)

T/C 80 26

(34%)

51

(66%)

2.1 (1.9,

2.3)

0.84 (0.58,

1.22)

0.83 (0.57,

1.20)

6.5 (5.5,

8.9)

0.99 (0.67,

1.46)

0.93 (0.62,

1.38)

C/C 24 8

(38%)

13

(62%)

1.9 (1.8,

4.1)

0.84 (0.51,

1.39)

1.02 (0.60,

1.71)

7.4 (3.5,

9.7)

1.07 (0.64,

1.79)

1.16 (0.68,

1.97)

ACVR2B
rs13072731

0.30 0.89 0.64 0.49 0.33

(Continued)
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Table 2. (Continued)

Genotype N Tumor response Progression-free survival Overall survival

PR+SD PD P
value�

Median,

months

(95%CI)

HR (95%CI)

†

P
value�

HR (95%CI)

‡

P
value�

Median,

months

(95%CI)

HR (95%CI)

†

P
value�

HR (95%CI)

‡

P
value�

C/C 52 20

(40%)

30

(60%)

2.1 (1.8,

3.1)

1

(Reference)

1

(Reference)

6.0 (4.4,

10.5)

1

(Reference)

1

(Reference)

C/A 73 25

(37%)

43

(63%)

2.2 (1.9,

2.8)

1.03 (0.72,

1.47)

1.12 (0.78,

1.62)

6.4 (4.7,

8.0)

1.24 (0.85,

1.81)

1.35 (0.91,

1.99)

A/A 23 5

(22%)

18

(78%)

1.8 (1.8,

2.1)

0.92 (0.55,

1.55)

0.89 (0.52,

1.53)

7.6 (2.7,

9.7)

1.05 (0.63,

1.76)

1.15 (0.68,

1.93)

ACVR2B
rs2268753

0.56 0.80 0.70 0.85 0.67

T/T 38 15

(41%)

22

(59%)

2.1 (1.8,

3.1)

1

(Reference)

1

(Reference)

6.2 (4.4,

10.1)

1

(Reference)

1

(Reference)

T/C 81 27

(35%)

50

(65%)

2.2 (1.9,

2.7)

0.88 (0.60,

1.30)

0.96 (0.65,

1.43)

6.0 (4.7,

8.0)

1.12 (0.74,

1.69)

1.21 (0.80,

1.84)

C/C 31 8

(28%)

21

(72%)

2.0 (1.8,

2.3)

0.89 (0.54,

1.46)

0.81 (0.49,

1.35)

7.6 (3.3,

9.1)

1.13 (0.69,

1.85)

1.15 (0.70,

1.89)

SMAD2
rs1792671

0.52 0.18 0.44 0.15 0.58

G/G 55 18

(34%)

35

(66%)

2.1 (1.8,

2.5)

1

(Reference)

1

(Reference)

7.6 (5.1,

9.4)

1

(Reference)

1

(Reference)

G/A 64 24

(40%)

36

(60%)

2.3 (1.8,

3.7)

0.78 (0.54,

1.13)

0.80 (0.54,

1.16)

7.0 (4.5,

9.6)

0.88 (0.60,

1.28)

0.93 (0.63,

1.37)

A/A 30 8

(28%)

21

(72%)

1.9 (1.8,

2.2)

1.12 (0.71,

1.76)

0.99 (0.62,

1.59)

4.9 (3.1,

8.0)

1.36 (0.85,

2.16)

1.21 (0.75,

1.97)

SMAD2
rs1792689

0.49 0.49 0.80 0.58 0.50

C/C 109 35

(34%)

69

(66%)

2.0 (1.8,

2.3)

1

(Reference)

1

(Reference)

6.5 (5.3,

8.7)

1

(Reference)

1

(Reference)

C/T a 38 13

(36%)

23

(64%)

2.2 (1.8,

3.4)

0.88 (0.62,

1.27)

0.95 (0.66,

1.38)

5.9 (3.7,

8.9)

1.11 (0.76,

1.61)

1.14 (0.78,

1.68)

T/T a 3 2

(67%)

1

(33%)

FOXO3
rs12212067

0.031 0.056 0.19 0.012 0.094

T/T 114 42

(38%)

68

(62%)

2.1 (1.9,

2.5)

1

(Reference)

1

(Reference)

7.6 (5.9,

9.0)

1

(Reference)

1

(Reference)

T/G a 34 6

(19%)

25

(81%)

1.8 (1.8,

2.3)

1.44 (0.98,

2.12)

1.31 (0.87,

1.96)

4.5 (2.7,

5.5)

1.63 (1.09,

2.46)

1.43 (0.94,

2.17)

G/G a 1 1

(100%)

0

(0%)

FOXO3
rs4946935

0.051 0.29 0.26 0.30 0.36

G/G 87 31

(38%)

51

(62%)

2.1 (1.9,

2.4)

1

(Reference)

1

(Reference)

6.5 (5.5,

9.1)

1

(Reference)

1

(Reference)

G/A a 55 15

(28%)

39

(72%)

2.1 (1.8,

2.7)

1.19 (0.85,

1.66)

1.21 (0.87,

1.69)

5.4 (3.6,

8.7)

1.20 (0.85,

1.69)

1.18 (0.83,

1.67)

(Continued)
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0.29–0.94, adjusted P = 0.031) (Table 3 and Fig 1A); in addition, SMAD2 rs1792671 showed

significant association with PFS in both univariate and multivariable analyses (P = 0.025,

adjusted P = 0.047) (Table 3). Similarly, female patients in the validation cohort with any G

allele in INHBA rs2237432 showed longer OS which was marginally significant in multivari-

able analysis (adjusted P = 0.059) (Table 4 and Fig 1B). After P-act multiple testing, the effects

were not significant.

In the discovery cohort, male patients with any G allele in FOXO3 rs12212067 had a signifi-

cantly shorter PFS and OS than those with T/T allele in both univariate and multivariable

model (PFS: P = 0.025, adjusted P = 0.009; OS: P = 0.015, adjusted P = 0.006) (Table 3 and Fig

2A). After P-act multiple testing, the effects remained significant for both PFS and OS (P-

act = 0.035 and 0.024, respectively). In the validation cohort, male patients carrying a FOXO3
rs12212067 T/G allele had a significant longer OS (P = 0.040, adjusted P = 0.069) (Table 4 and

Fig 2B).

Associations between cachexia SNPs and outcome in the control cohort

Within the control cohort, no significant associations were observed between the cachexia

SNPs and outcome in female patients (Table 5).

Discussion

Our findings present the first evidence that germline variations in the cancer cachexia pathway

are associated with outcome in chemorefractory mCRC patients treated with regorafenib. Fur-

thermore, these associations may depend on gender. We analyzed data from 230 patients

receiving regorafenib treatment in two cohorts. Among female patients in the Italian regorafe-

nib discovery cohort, those with any G allele in INHBA rs2237432 had significantly better OS

than those with an A/A variant. A similar association was confirmed in the Japanese regorafe-

nib validation cohort.

Activin A (INHBA), a member of the TGF-beta superfamily, is a homodimer formed from

two inhibin betaA chains [21] which is produced by several cell types and is involved in several

physiologic functions, including embryogenesis, cell growth, differentiation, immune response,

and angiogenesis [22]. Activins act via heteromeric complexes of two related transmembrane

type I (ACVR1B, C) and type II (ACVR2B) serine/threonine kinase receptors to activate the

downstream SMAD signaling pathway [13]. Circulating activin A level is associated with

cachexia syndrome, and increased concentrations in cancer cachectic patients may contribute

to the development of this condition [12]. In addition, a model of activin A overexpression in

Table 2. (Continued)

Genotype N Tumor response Progression-free survival Overall survival

PR+SD PD P
value�

Median,

months

(95%CI)

HR (95%CI)

†

P
value�

HR (95%CI)

‡

P
value�

Median,

months

(95%CI)

HR (95%CI)

†

P
value�

HR (95%CI)

‡

P
value�

A/A a 6 4

(80%)

1

(20%)

Abbreviations: PR, partial response; SD, stable disease; PD, progressive disease; HR, hazard ratio; CI, confidence interval.

� P value based on Fisher’s exact test for tumor response; log-rank test for progression-free survival (PFS) and overall survival (OS) in the univariate analysis (†); and

Wald test for PFS and OS in the multivariable Cox regression model adjusted for time to start of regorafenib treatment (<18 vs. �18 months), ECOG performance

status (0 vs. 1 or 2), primary tumor resection (yes vs. no), and Kohne score (low-intermediate vs. high) (‡). P values < 0.050 are shown in bold text.
a In the dominant model. + Estimates not yet reached.

https://doi.org/10.1371/journal.pone.0239439.t002
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Table 3. Association between cachexia-related gene polymorphism and clinical outcome by gender subgroup in the discovery cohort.

Genotype N Tumor response Progression-free survival Overall survival

PR+SD PD P
value�

Median,

months

(95%CI)

HR (95%CI)

†

P
value�

HR (95%CI)

‡

P
value�

Median,

months

(95%CI)

HR (95%CI)

†

P
value�

HR (95%CI)

‡

P
value�

Female

INHBA
rs2237432

0.79 0.77 0.59 0.021 0.031

A/A 37 9

(27%)

24

(73%)

1.8 (1.7, 2.3) 1

(Reference)

1

(Reference)

4.3 (2.9, 6.5) 1

(Reference)

1

(Reference)

A/G a 24 7

(29%)

17

(71%)

2.0 (1.8, 2.3) 0.93 (0.57,

1.51)

1.16 (0.67,

2.02)

7.6 (5.4,

10.2)

0.57 (0.34,

0.95)

0.53 (0.29,

0.94)

G/G a 8 1

(13%)

7

(88%)

MSTN
rs7570532

0.82 0.29 0.59 0.51 0.74

A/A 41 11

(30%)

26

(70%)

2.1 (1.8, 2.3) 1

(Reference)

1

(Reference)

6.0 (4.3, 9.0) 1

(Reference)

1

(Reference)

A/G a 23 5

(22%)

18

(78%)

1.8 (1.7, 1.9) 1.29 (0.79,

2.11)

1.17 (0.67,

2.03)

4.7 (2.6, 7.6) 1.18 (0.71,

1.96)

1.10 (0.62,

1.97)

G/G a 5 1

(20%)

4

(80%)

SMAD2
rs1792671

0.39 0.025 0.047 0.98 0.95

G/G 29 5

(18%)

23

(82%)

1.9 (1.7, 2.1) 1

(Reference)

1

(Reference)

5.9 (3.7, 9.0) 1

(Reference)

1

(Reference)

G/A a 30 9

(33%)

18

(67%)

1.9 (1.8, 3.0) 0.61 (0.35,

1.03)

0.56 (0.32,

0.99)

5.6 (3.4, 7.9) 0.99 (0.60,

1.64)

0.98 (0.59,

1.64)

A/A a 10 3

(30%)

7

(70%)

FOXO3
rs12212067

0.71 0.62 0.71 0.32 0.82

T/T 56 15

(28%)

39

(72%)

1.9 (1.8, 2.1) 1

(Reference)

1

(Reference)

6.0 (4.1, 8.0) 1

(Reference)

1

(Reference)

T/G 13 2

(18%)

9

(82%)

1.8 (1.0, 3.0) 1.17 (0.62,

2.20)

0.87 (0.40,

1.86)

4.5 (2.6, 5.8) 1.38 (0.71,

2.70)

1.09 (0.51,

2.33)

Male

INHBA
rs2237432

0.48 0.93 0.84 0.43 0.21

A/A 41 18

(45%)

22

(55%)

2.3 (2.0, 3.8) 1

(Reference)

1

(Reference)

9.4 (6.4,

12.0)

1

(Reference)

1

(Reference)

A/G a 32 11

(35%)

20

(65%)

2.2 (1.8, 3.1) 0.98 (0.63,

1.53)

0.95 (0.60,

1.51)

5.4 (3.1, 8.9) 1.19 (0.75,

1.90)

1.37 (0.84,

2.24)

G/G a 8 4

(57%)

3

(43%)

MSTN
rs7570532

0.56 0.87 0.51 0.62 0.55

A/A 48 22

(47%)

25

(53%)

2.5 (1.9, 3.8) 1

(Reference)

1

(Reference)

8.7 (5.6,

10.7)

1

(Reference)

1

(Reference)

A/G a 31 10

(34%)

19

(66%)

2.1 (1.8, 2.8) 0.97 (0.61,

1.52)

1.18 (0.72,

1.94)

5.3 (3.6, 9.6) 0.89 (0.56,

1.44)

1.17 (0.70,

1.95)

G/G a 2 1

(50%)

1

(50%)

SMAD2
rs1792671

0.22 0.17 0.61 0.19 0.39

(Continued)
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muscle showed upregulation of muscle Fn14 during muscle wasting [23]. Furthermore, almost

all patients with stage IV CRC (93%) have enhanced tumor expression of activin compared with

only 40% of patients with stage I CRC [24]. These data indicate that activin expression is higher

in more advanced CRC. INHBA rs2237432 is reported to have a significant association with fer-

tility [25], although the clinical significance in cancer remains unknown.

Table 3. (Continued)

Genotype N Tumor response Progression-free survival Overall survival

PR+SD PD P
value�

Median,

months

(95%CI)

HR (95%CI)

†

P
value�

HR (95%CI)

‡

P
value�

Median,

months

(95%CI)

HR (95%CI)

†

P
value�

HR (95%CI)

‡

P
value�

G/G 26 13

(52%)

12

(48%)

2.8 (1.9, 3.8) 1

(Reference)

1

(Reference)

9.1 (4.4,

11.9)

1

(Reference)

1

(Reference)

G/A 34 15

(45%)

18

(55%)

2.8 (1.8, 3.9) 1.04 (0.62,

1.75)

1.07 (0.63,

1.83)

8.3 (5.0,

13.9)

0.88 (0.51,

1.50)

0.85 (0.49,

1.48)

A/A 20 5

(26%)

14

(74%)

1.9 (1.8, 2.3) 1.63 (0.89,

2.99)

1.40 (0.71,

2.76)

4.9 (2.3,

10.1)

1.46 (0.79,

2.68)

1.35 (0.70,

2.58)

FOXO3
rs12212067

0.026 0.025 0.009 0.015 0.006

T/T 58 27

(48%)

29

(52%)

2.6 (2.1, 3.9) 1

(Reference)

1

(Reference)

9.1 (6.3,

10.7)

1

(Reference)

1

(Reference)

T/G a 21 4

(20%)

16

(80%)

2.0 (1.6, 2.3) 1.71 (1.03,

2.84)

1.99 (1.19,

3.34)

4.3 (2.3, 8.7) 1.83 (1.08,

3.09)

2.17 (1.25,

3.75)

G/G a 1 1

(100%)

0

(0%)

Abbreviations: PR, partial response; SD, stable disease; PD, progressive disease; HR, hazard ratio; CI, confidence interval.

� P value based on Fisher’s exact test for tumor response; log-rank test for progression-free survival (PFS) and overall survival (OS) in the univariate analysis (†); and

Wald test for PFS and OS in the multivariable Cox regression model adjusted for time to start of regorafenib treatment (<18 vs. �18 months), ECOG performance

status (0 vs. 1 or 2), primary tumor resection (yes vs. no), and Kohne score (low-intermediate vs. high) (‡). P values < 0.050 are shown in bold text.
a In the dominant model.

+ Estimates not yet reached.

https://doi.org/10.1371/journal.pone.0239439.t003

Fig 1. Kaplan–Meier cumulative overall survival probability curves stratified by INHBA rs2237432 in female patients in (A) the discovery cohort and (B) the

validation cohort.

https://doi.org/10.1371/journal.pone.0239439.g001
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Table 4. Association between cachexia-related gene polymorphism and clinical outcome by gender subgroup in the validation cohort.

Genotype N Tumor response Progression-free survival Overall survival

SD PD P
value�

Median,

months

(95%CI)

HR (95%CI)

†

P
value�

HR (95%CI)

‡

P
value�

Median,

months

(95%CI)

HR (95%CI)

†

P
value�

HR (95%CI)

‡

P
value�

Female

INHBA
rs2237432

0.51 0.55 0.84 0.15 0.059

A/A 23 7

(39%)

11

(61%)

1.8 (1.8,

3.3)

1

(Reference)

1

(Reference)

8.1 (4.0,

12.6)

1

(Reference)

1

(Reference)

A/G a 15 5

(50%)

5

(50%)

1.8 (1.1,

2.5)

1.20 (0.64,

2.25)

1.07 (0.55,

2.08)

9.6 (5.2,

29.9+)

0.58 (0.27,

1.25)

0.46 (0.21,

1.03)

G/G a 3 0 (0%) 2

(100%)

MSTN
rs7570532

0.56 0.42 0.83 0.81 0.46

A/A 22 6

(40%)

9

(60%)

1.8 (1.1,

3.3)

1

(Reference)

1

(Reference)

9.6 (4.0,

13.9)

1

(Reference)

1

(Reference)

A/G a 18 5

(36%)

9

(64%)

2.0 (1.6,

3.3)

0.79 (0.42,

1.49)

0.93 (0.48,

1.82)

8.1 (3.6,

12.9)

1.09 (0.53,

2.28)

1.32 (0.62,

2.81)

G/G a 1 1

(100%)

0 (0%)

SMAD2
rs1792671

1.00 0.81 0.68 0.91 0.68

G/G 31 8

(38%)

13

(62%)

1.8 (1.5,

2.5)

1

(Reference)

1

(Reference)

9.6 (4.0,

12.9)

1

(Reference)

1

(Reference)

G/A 10 4

(44%)

5

(56%)

1.9 (0.9,

3.7)

1.09 (0.51,

2.29)

0.84 (0.36,

1.93)

7.8 (4.0,

15.3)

1.05 (0.46,

2.37)

0.83 (0.33,

2.04)

FOXO3
rs12212067

0.61 0.072 0.30 0.56 0.83

T/T 35 9

(36%)

16

(64%)

1.8 (1.7,

2.0)

1

(Reference)

1

(Reference)

8.1 (5.8,

12.0)

1

(Reference)

1

(Reference)

T/G a 6 2

(40%)

3

(60%)

3.3 (0.5,

11.9)

0.53 (0.21,

1.30)

0.58 (0.21,

1.62)

13.9 (1.7,

16.9+)

0.76 (0.28,

2.02)

0.90 (0.33,

2.44)

G/G a 1 1

(100%)

0 (0%)

Male

INHBA
rs2237432

0.52 0.43 0.24 0.73 0.62

A/A 16 8

(53%)

7

(47%)

2.3 (1.7,

4.2)

1

(Reference)

1

(Reference)

7.6 (4.1,

27.7+)

1

(Reference)

1

(Reference)

A/G a 14 9

(69%)

4

(31%)

2.8 (1.7,

4.6)

0.77 (0.39,

1.51)

0.66 (0.33,

1.33)

10.3 (4.0,

27.2+)

0.86 (0.36,

2.08)

1.27 (0.50,

3.23)

G/G a 6 2

(40%)

3

(60%)

MSTN
rs7570532

0.45 0.091 0.61 0.023 0.13

A/A 19 8

(47%)

9

(53%)

2.0 (1.3,

3.0)

1

(Reference)

1

(Reference)

6.3 (4.0,

12.9)

1

(Reference)

1

(Reference)

A/G a 12 7

(64%)

4

(36%)

3.3 (2.0,

6.2)

0.58 (0.29,

1.14)

0.83 (0.41,

1.70)

26.7+ (6.5,

26.7+)

0.37 (0.15,

0.92)

0.47 (0.18,

1.24)

G/G a 5 4

(80%)

1

(20%)

SMAD2
rs1792671

0.35 0.38 0.19 0.82 0.18

(Continued)
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Activin has been associated with angiogenesis, but unlike the positive correlation between

activin overexpression and cancer cachexia, several studies have reported conflicting data on

the relationship of activin overexpression with angiogenesis in various tissue types. Activin A

increases VEGF expression via the physical interaction of SMAD2 with the MAPK-regulated

transcription factor SP1 in hepatocellular carcinoma [26]. In contrast, activin A acts as a

tumor suppressor in neuroblastoma [27] and gastric cancer [28] cells via the inhibition of

Table 4. (Continued)

Genotype N Tumor response Progression-free survival Overall survival

SD PD P
value�

Median,

months

(95%CI)

HR (95%CI)

†

P
value�

HR (95%CI)

‡

P
value�

Median,

months

(95%CI)

HR (95%CI)

†

P
value�

HR (95%CI)

‡

P
value�

G/G 26 14

(61%)

9

(39%)

2.3 (1.8,

3.2)

1

(Reference)

1

(Reference)

11.8 (5.1,

27.7+)

1

(Reference)

1

(Reference)

G/A a 8 5

(63%)

3

(38%)

3.8 (1.7,

4.7)

0.72 (0.33,

1.54)

0.58 (0.26,

1.30)

8.7 (3.1,

27.2+)

1.11 (0.43,

2.88)

2.09 (0.71,

6.16)

A/A a 2 0 (0%) 2

(100%)

FOXO3
rs12212067

0.24 0.18 0.47 0.040 0.069

T/T 28 12

(48%)

13

(52%)

2.3 (1.7,

3.0)

1

(Reference)

1

(Reference)

6.3 (4.0,

10.3)

1

(Reference)

1

(Reference)

T/G 10 7

(78%)

2

(22%)

3.7 (1.9,

7.2)

0.61 (0.29,

1.29)

0.75 (0.34,

1.65)

27.2+ (1.9,

27.2+)

0.30 (0.09,

1.02)

0.30 (0.08,

1.10)

Abbreviations: SD, stable disease; PD, progressive disease; HR, hazard ratio; CI, confidence interval.

� P value based on Fisher’s exact test for tumor response, log-rank test for progression-free survival (PFS) and overall survival (OS) in the univariate analysis (†), and

Wald test for PFS and OS in the multivariable Cox regression model adjusted for liver metastasis and lymph node involvement (‡). P values < 0.1 are shown in bold

text.
a In the dominant model.

+ Estimates not yet reached.

https://doi.org/10.1371/journal.pone.0239439.t004

Fig 2. Kaplan–Meier cumulative overall survival probability curves stratified by FOXO3 rs12212067 in male patients in (A) the discovery cohort and (B) the

validation cohort.

https://doi.org/10.1371/journal.pone.0239439.g002
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VEGF mediated-angiogenesis. These findings suggest that activin has dual proinflammatory

and anti-inflammatory roles, depending on the cell type and stage of cancer development.

Another potential activin-related mechanism is CCL/CCR-dependent angiogenesis. CCL2
binds its receptor CCR2 to promote angiogenesis by recruiting macrophages [29, 30]. Activin

has a critical role in controlling the expression of CCL2/CCR2 in macrophages by increasing

CCR2 expression while inhibiting CCL2 expression [31]. Regorafenib is a small molecule that

inhibits various intracellular kinases involved in tumor angiogenesis, metastasis, oncogenesis,

and tumor immunity. Our results especially found a correlation with tumor angiogenesis.

Regorafenib inhibits tumor angiogenesis through inhibiting VEGFR1-3 and TIE2. A preclini-

cal study indicated that INHBA exerts diverse effects on the VEGF pathway, including upregu-

lation of the ligand, VEGF, as well as VEGF receptors [16]. Considering these data together,

INHBA polymorphism may be associated with the effect of regorafenib through exerting its

actions via VEGFR.

INHBA rs2237432 is an intronic SNP that is classified as a synonymous SNP. Generally,

non-synonymous SNPs are considered to affect gene behavior even more considerably than

synonymous SNPs. However, some intronic SNPs may affect gene splicing or expression, and

such SNPs may have an effect on the function of a gene [32, 33]. Indeed, prediction tools

revealed that INHBA rs2237432 might have a role as a strong enhancer of INHBA expression

[33]. These suggest that rs2237432 is associated with the expression of INHBA.

In this study, the association between INHBA rs2237432 and clinical outcome was demon-

strated only in female patients. Activin is an important modulator of follicle-stimulating syn-

thesis and secretion of hormones such as estrogen and progesterone [34, 35]. Several studies

have demonstrated the importance of activin and estrogen crosstalk during cancer initiation

[36–38]. In addition, estrogen is reported to suppress activin subunit gene promoter activities

[39], suggesting that activin activities differ by gender. These results may explain why the asso-

ciation between activin polymorphism and clinical outcome was dependent on gender. Unfor-

tunately, however, because of the lack of samples we were unable to evaluate estrogen levels.

We included 128 patients who were treated with TAS-102 as the control cohort. TAS-102 is

an oral drug that combines trifluridine and thymidine phosphorylase inhibitor [40]. The main

antitumor effect of TAS-102 is due to DNA dysfunction by trifluridine incorporation into DNA

Table 5. Association between INHBA rs2237432 and clinical outcome in female patients in the control cohort (Italian TAS-102 cohort).

Genotype N Tumor response Progression-free survival Overall survival

SD PD P
value�

Median,

months

(95%CI)

HR (95%CI)

†

P
value�

HR (95%CI)

‡

P
value�

Median,

months

(95%CI)

HR (95%CI)

†

P
value�

HR (95%CI)

‡

P
value�

INHBA
rs2237432

1.00 0.28 0.85 0.097 0.24

A/A 26 7

(27%)

19

(73%)

2.3 (1.9, 2.6) 1

(Reference)

1

(Reference)

7.3+ (3.7,

7.3+)

1

(Reference)

1

(Reference)

A/G a 22 6

(27%)

16

(73%)

2.0 (1.7, 2.4) 1.38 (0.73,

2.60)

1.07 (0.55,

2.06)

4.1 (2.7, 5.5

+)

2.03 (0.85,

4.86)

1.77 (0.69,

4.56)

G/G a 1 0

(0%)

1

(100%)

Abbreviation: SD, stable disease; PD, progressive disease; HR, hazard ratio; CI, confidence interval.

� P value based on Fisher’s exact test for response; log-rank test in the univariate analysis (†); and Wald test in the multivariate analysis within Cox regression model

adjusted for age group (<61 vs�61), liver metastasis, ECOG performance status, previous anti-EGFR therapy (‡). P values < 0.050 are shown in bold text.
a In the dominant model.

+ Estimates not yet reached.

https://doi.org/10.1371/journal.pone.0239439.t005
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[41]. In the TAS-102 cohort, contrary to the regorafenib cohort, INHBA rs2237432 at any G

allele showed a trend toward worse PFS and OS compared with that at the A/A allele. However,

these differences did not reach statistical significance, indicating that INHBA rs2237432 has a

specific association with regorafenib efficacy. A recent retrospective study showed comparable

efficacy between regorafenib and TAS-102 [42]. However, a systemic review demonstrated that

regorafenib was associated with more toxicity compared with TAS-102 [43]. On the basis of

these results, female patients with the INHBA rs2237432 A/A allele should avoid regorafenib

treatment and be treated with TAS-102 or best supportive care. Such a biomarker-based strategy

will identify patients who are eligible for regorafenib treatment, resulting in improved clinical

outcomes and quality of life for all patients treated with regorafenib.

Our study also indicated that the impact of FOXO3 rs12212067 on OS different significantly

between the discovery and validation cohorts. This finding may result from etiological differ-

ences between Japanese and Italian populations. Several studies have shown that FOXO3
rs12212067 is associated with the clinical course of inflammatory diseases such as Crohn’s dis-

ease or rheumatoid arthritis [44, 45]. FOXO3 has also been linked to the regulation of immune

responses using systems biology [46] and knockout mouse models [47]. Furthermore, the

FOXO3 rs12212067 T/T allele is significantly associated with increased inflammatory cytokine

production by monocytes (IL-6, IL-8, IL-1beta and TNF-alfa) compared with the G/G variant

[48]. The pathogenesis of cachexia may be influenced by various factors, including genetic pre-

disposition, inflammatory cytokines, and hormonal aspects. Especially, SNPs within inflam-

matory cytokine genes can affect cytokine levels and the degree of inflammation, and these

SNP functions are reported to differ according to ethnicity [49].

This study had some limitations, such as the sample size and the retrospective design. In

addition, we were unable to correlate the INHBA and FOXO3 polymorphisms with intratu-

moral or serum expression levels, which may have clarified the mechanisms of regorafenib

resistance. We were also unable to determine the relationship between the polymorphisms and

skeletal muscle mass. In addition, this study presents no information on RAS mutation status

in the Japanese cohort. We did not confirm our previous results showing that the ACVR2B
rs2268753 genotype was associated with survival in RAS mutant mCRC patients receiving

first-line anti-VEGF therapy, which warrants further investigation.

In conclusion, we evaluated for the first time the association of genetic variations in cancer

cachexia-associated genes with clinical outcome in mCRC patients treated with regorafenib.

We found that INHBA rs2237432 was significantly associated with clinical outcomes in female

mCRC patients treated with regorafenib. Our findings may contribute to the identification of

predictive or prognostic biomarkers of regorafenib therapy and potential drug targets in

mCRC patients with cancer cachexia. Further studies are required, however, to fully elucidate

the underlying biological mechanisms of the cachexia disease pathway.
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