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Automatic segmentation of brain tumors has the potential to enable volumetric measures

and high-throughput analysis in the clinical setting. Reaching this potential seems almost

achieved, considering the steady increase in segmentation accuracy. However, despite

segmentation accuracy, the current methods still do not meet the robustness levels

required for patient-centered clinical use. In this regard, uncertainty estimates are a

promising direction to improve the robustness of automated segmentation systems.

Different uncertainty estimation methods have been proposed, but little is known about

their usefulness and limitations for brain tumor segmentation. In this study, we present

an analysis of the most commonly used uncertainty estimation methods in regards to

benefits and challenges for brain tumor segmentation. We evaluated their quality in terms

of calibration, segmentation error localization, and segmentation failure detection. Our

results show that the uncertainty methods are typically well-calibrated when evaluated

at the dataset level. Evaluated at the subject level, we found notable miscalibrations

and limited segmentation error localization (e.g., for correcting segmentations), which

hinder the direct use of the voxel-wise uncertainties. Nevertheless, voxel-wise uncertainty

showed value to detect failed segmentations when uncertainty estimates are aggregated

at the subject level. Therefore, we suggest a careful usage of voxel-wise uncertainty

measures and highlight the importance of developing solutions that address the

subject-level requirements on calibration and segmentation error localization.

Keywords: segmentation, brain tumor, uncertainty estimation, quality, deep learning

1. INTRODUCTION

Automated segmentation holds promise to improve the treatment of brain tumors by providing
more reliable volumetric measures for treatment response assessment (Reuter et al., 2014) or by
establishing new possibilities for high-throughput analysis, such as radiomics (Gillies et al., 2015).
Over the past years, the improvements in automated brain tumor segmentation methods led to a
steady increase in performance. This increase has two main reasons. First, the amount of annotated
data has increased, leading to larger and more diverse datasets. Second, the available segmentation
methods have evolved rapidly, especially with deep neural networks, which can leverage vast
amounts of data. Although the results are reported to be close or on par with human performance
(Meier et al., 2016; Bakas et al., 2018), there are still concerns about the clinical acceptability due to
lower levels of robustness when compared to humans (Bakas et al., 2018). Possible reasons of this
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lack of robustness comprise the large variability of the imaging
properties (e.g., different vendors, magnetic field strength,
artifacts), and the intrinsic heterogeneity of brain tumors itself.

One promising direction to alleviate the problem of
robustness is using uncertainty estimates of automated
segmentation results. In segmentation, where a class label
is assigned to each voxel, the uncertainty typically reflects
the confidence level of the predicted class label. In that sense,
uncertainty estimates provide additional information on a
method’s prediction and might be employed in various ways,
e.g., as visual feedback, to guide or automate corrections via
segmentation error localization, or for segmentation failure
detection at the patient level (i.e., systems outputting a single
estimate reflecting the quality of the automated segmentation).
Methods producing uncertainty estimates for neural networks
exist for over 20 years (MacKay, 1992; Neal, 1995) and evolved
steadily (Blundell et al., 2015; Hernández-Lobato and Adams,
2015) but have only recently been adapted for large and
complex deep models, such as those employed for brain tumor
segmentation. The most popular methods are: (a) Monte-Carlo
(MC) dropout proposed by Gal and Ghahramani (2016), (b)
aleatoric uncertainty estimation introduced by Kendall and
Gal (2017), and (c) uncertainty from ensembles as shown by
Lakshminarayanan et al. (2017). Their popularity is mainly due
to their ability to be used with state-of-the-art segmentation
methods, requiring only minor modifications to architecture
and training.

The additional information provided through the uncertainty
estimates might be employed to quantify the segmentation
performance or as a post-processing step to correct automatic
segmentations. Being able to reliably quantify the segmentation
performance is crucial when using uncertainty estimates in
clinical applications. Roy et al. (2019) and Wang et al.
(2019) quantified the segmentation performance at structure
level by using structure-wise uncertainty estimates as a proxy
to predict the Dice coefficient of automated segmentation
results. Similarly, Eaton-Rosen et al. (2018) obtained improved
calibration accuracy and more reliable confidence intervals of
brain tumor volume estimates from structure-wise uncertainty.
The segmentation quality can also be assessed at subject
level, which is of interest in clinical applications to flag
possible failure cases for expert review. For brain tumor cavity
segmentation (Jungo et al., 2018b) did so by aggregating voxel-
wise uncertainty. In skin lesion segmentation (DeVries and
Taylor, 2018) proposed to train a separate model predicting the
segmentation’s Dice coefficient based on the input image, the
automated segmentation result, and the voxel-wise uncertainty
estimates. Further, the uncertainty estimates can be used to
correct automated segmentations. Nair et al. (2018) and Graham
et al. (2019) showed improved results by using uncertainty
estimates to exclude highly uncertain multiple sclerosis lesions
and glands, respectively. Both works exclude structures based
on uncertainty and thus use task-related knowledge (e.g.,
multi-lesion segmentation). Directly correcting voxel predictions
based on uncertainty is not suggested since this requires
to overrule the segmentation model that was optimized to
perform the segmentation task. This is especially true when

segmentation and uncertainty estimates are provided by the
same model.

Although uncertainty estimation methods have been applied
to different segmentation tasks, little is known on their usefulness
and limitations, nor a common evaluation of their quality
has been reported for medical image segmentation. Therefore,
we analyzed the most commonly used uncertainty estimation
methods in regards to benefits and challenges for brain tumor
segmentation, which is one promising clinical application for
computer-assisted medical image segmentation. We considered
the methods’ calibration, their segmentation error localization,
and their segmentation failure detection ability (see Figure 1 for
an overview). This work builds on our previous work on the
quality of uncertainties in medical image segmentation (Jungo
and Reyes, 2019) and it is extended here in three aspects. First,
based on our findings on observed deficiencies of voxel-wise
uncertainty estimation approaches, we extend the work with
experiments focusing on subject-level aggregation of uncertainty
estimates. Second, to increase the clinical relevance of the
analyses, we built and evaluated all methods for all three brain
tumor labels (contrary to a simplified whole-tumor segmentation
approach). Third, based on our previous work on the links
between segmentation performance and quality of uncertainty
estimates (Jungo et al., 2018a), we performed an experiment
analyzing the effect of the training dataset size on the quality of
uncertainty estimates.

2. MATERIALS AND METHODS

2.1. Data
We used the BraTS 2018 training dataset (Menze et al., 2015;
Bakas et al., 2017a,b,c, 2018) consisting of 285 subjects with
high- and low-grade brain tumors. Each subject comprises
images of the four standard brain tumor magnetic resonance
(MR) sequences: T1-weighted (T1), T1-weighted post-contrast
(T1c), T2-weighted (T2), and fluid-attenuated inversion recovery
(FLAIR). Additionally, each subject holds a manual expert
segmentation of three tumor sub-compartments: edema (ED),
enhancing tumor (ET), and necrotic tissue combined with non-
enhancing tumor (NCR/NET). In the official BraTS evaluation,
these sub-compartments are combined into three hierarchical
labels: whole tumor, tumor core, and enhancing tumor. Whole
tumor (WT) is a combination of all tumor sub-compartments
(i.e., ED, ET, NCR/NET), tumor core (TC) combines ET and
NCR/NET, and enhancing tumor (ET) is defined by the ET
sub-compartment. Aiming at yielding uncertainty estimates
for these hierarchical tumor regions, we combined the tumor
sub-compartment labels into the hierarchical labels before the
training of the automated segmentation models.

The BraTS 2018 dataset comes pre-processed; the subjects and
MR images are co-registered to the same anatomical template,
resampled to unit voxel size (1×1×1 mm3), and skull-stripped.
We additionally normalized each MR image subject-wise to zero
mean and unit variance. For all our experiments, we subdivided
the BraTS training dataset into a split of 100 training, 25
validation, and 160 testing subjects, stratified by the tumor grade.
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FIGURE 1 | Overview of the analysis performed for the uncertainties produced by different uncertainty estimation methods. The red color indicates additions

introduced by these methods with respect to the baseline.

2.2. Experimental Setup
We used U-Net-like (Ronneberger et al., 2015) architectures
to asses uncertainty estimation methods. The reason for using
U-Net-like architectures is twofold. First, the widely used U-
Net-like architectures are still state-of-the-art in brain tumor
segmentation (Isensee et al., 2018; Myronenko, 2018) and,
second, their simplicity minimizes architectural influences in the
uncertainty estimates. Inspired by Nikolov et al. (2018), our U-
Net processes anisotropic subvolumes of five consecutive axial
slices to predict the corresponding center slices. As in Nikolov
et al. (2018), we adopted a full-slice view which motivated us to
use 2D+1D convolutions (i.e., 2D in-plane convolution followed
by 1D out-plane convolution) instead of using 3D convolutions.
By considering only the valid part of the convolution, each 1D
convolution in the encoder part thereby reduces the off-plane size
by two, leading to a fully 2D decoder. The architecture consists
of four pooling/upsampling steps with two convolutions for each
encoder and decoder level. Every convolution is followed by
dropout (p = 0.05) (Srivastava et al., 2014), batch normalization
(Ioffe and Szegedy, 2015), and ReLU activation (Glorot et al.,
2011). The architecture has four input channels corresponding
to the four MR images (i.e., T1, T1c, T2, FLAIR) and three
sigmoid outputs, one for each of the three tumor regions (i.e.,
WT, TC, ET). We note that a single softmax output that includes
all labels is prohibited by the hierarchy of the tumor regions. A
detailed description of the network architecture can be found
in the Supplementary Section 1.1. Adaptations of the presented
architecture to the individual uncertainty estimationmethods are
described in section 2.3).

We used a common training scheme for all uncertainty
estimationmethods. This scheme consists of training the network
for 50 epochs, from where we selected the best performing
models based on the mean Dice coefficient across labels on the

validation set. Furthermore, we used Adam optimizer (Kingma
and Ba, 2015) (learning rate: 10−4, β1: 0.9, β2: 0.999, ε: 10

−8) to
optimize the cross-entropy loss in mini-batches of 24. Extensive
fine-tuning of the individual methods might introduce large
differences in segmentation performance. Therefore, in order
to minimize the influence of the segmentation performance on
the uncertainty estimates, we purposely omitted extensive fine-
tuning of the individual methods. Likewise, we did not perform
any data augmentation to reduce possible influences on the
uncertainty estimates.

2.3. Uncertainty Estimation Methods
For our experiments, we considered five methods (Figure 1A)
producing voxel-wise uncertainty estimates: one baseline, three
common methods, and one auxiliary approach. The three
common methods were selected due to their popularity in
medical image segmentation, stemming from their simple
integration into state-of-the-art segmentation methods.

2.3.1. Baseline: Softmax/Sigmoid Uncertainty
Although the softmax/sigmoid output is arguably a probability
measure (Gal and Ghahramani, 2016), it is implicitly produced
by classification networks. Therefore, we considered it as a
reference comparison and named it baseline. We used the
normalized entropy

H = −
[

prlog
(

pr
)

+ (1− pr)log
(

1− pr
)] 1

log(2)
∈ [0, 1] (1)

as a measure of uncertainty, with pr being the sigmoid output of
the network (see section 2.2) for tumor region r.
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2.3.2. MC Dropout
As shown by Gal and Ghahramani (2016), test-time dropout
can be interpreted as an approximation of a Bayesian neural
network. If applied during test time, dropout creates stochastic
network samples that can be viewed as Monte-Carlo samples
drawn from the posterior distribution of the network’s weights.
The foreground probability pr of the tumor region r can be
obtained by

pr =
1

T

T
∑

t=1

pr,t ,

where T is the number of samples. We used the normalized
entropy (Equation 1) as a measure of uncertainty.

We considered four different dropout strategies. The first
strategy consists of applying MC dropout throughout all layers
(see presented architecture in section 2.2), whose minimal
dropout (p = 0.05) was intended as regularization. The second
strategy is inspired by existing work in segmentation uncertainty
(Kendall et al., 2015; Nair et al., 2018), where dropout is applied
only at key positions. Accordingly, we modified the architecture
(see section 2.2) and applied a prominent dropout (p = 0.5) at
the center positions of the U-Net architecture only, i.e., before
the pooling and after the upsampling operations (cf. illustration
of MC dropout in Figure 1A). The third strategy is similar to
the second but introduces the center dropout (p = 0.5) only at
the two lowest pooling/upsampling steps. In a fourth strategy,
we replaced the dropout of the initial architecture by concrete
dropout (Gal et al., 2017). Concrete dropout learns the dropout
probability as part of the optimization procedure and can, as the
standard dropout, also be applied during test time to generate
stochastic network samples. We refer to this four strategies as
baseline+MC, center+MC, center low+MC, and concrete+MC.
We considered the non-MC counterparts center, center low,
and concrete as additional softmax/sigmoid uncertainties next to
baseline (described in section 2.3.1).

2.3.3. Aleatoric Uncertainty
Aleatoric uncertainty is said to capture the noise inherent to
an observation (Kendall and Gal, 2017) and is thus different
from model uncertainty (e.g., MC dropout), which accounts for
uncertainty in the model parameters. Kendall and Gal (2017)
showed that aleatoric uncertainty in classification problems can
be obtained by defining a network f (x) for input x that generates
two outputs

[x̂, σ 2] = f (x) ,

where x̂ correspond to the logits, and σ 2 defines the variance
of their Gaussian perturbation (N (x̂, σ 2)). The logits and the
variance are simultaneously optimized by the aleatoric loss,
which approximates the intractable objective with Monte-Carlo
samples of the perturbed logits. We refer to this method as
aleatoric and modified the architecture (see section 2.2) to output
the variance σ 2

r in addition to the logits x̂r for every tumor region
r (see Supplementary Section 1.1 for a detailed architecture
description). We used the x̂r outputs for the segmentations and
the σ 2

r outputs as measures of uncertainty. To normalize the

range of the variance maps across tumor regions, we normalized
it to [0, 1] over all subjects.

2.3.4. Ensembles
Ensembles of neural networks are typically used when
performance is highly relevant, e.g., for the BraTS challenge
(Kamnitsas et al., 2017), but they can also be used to quantify
uncertainties (Lakshminarayanan et al., 2017). Our ensemble
consists of K = 10 models that share the same architecture
(see section 2.2) but differ in training to enforce variability. We
trained each model k on alternating K − 1 folds of the training
dataset (as in k-fold cross-validation, resulting in 90 instead of
100 training subjects. We obtained the foreground probability pr
for each tumor region r by the average

pr =
1

K

K
∑

k=1

pk,r

of all models. As an uncertainty measure we used the normalized
entropy (Equation 1).

2.3.5. Auxiliary Networks
We use the term auxiliary network to describe additional
networks that are trained successively to the primary network
(i.e., segmentation network). Such networks have been used
to assess segmentation performances by regressing subject-level
performance metrics (DeVries and Taylor, 2018; Robinson et al.,
2018). Inspired by this idea, we applied auxiliary networks
for voxel-wise prediction of the segmentation errors (i.e., false
positives, false negatives) of each tumor region separately. Since
the auxiliary networks learn to detect segmentation errors, we
can directly use their sigmoid segmentation error probabilities as
a measure of segmentation uncertainty. Producing uncertainty
estimates by a separate network is motivated by the presumption
that a network might not be the best in assessing its own
trustworthiness (Jiang et al., 2018).

We considered two types of auxiliary networks in our
experiments. The first type, named auxiliary feat., uses the
features maps of the segmentation network (see section 2.2) as
input and consists of three consecutive 1×1 convolutions. The
second type, named auxiliary segm., employs the three label
maps (WT, TC, ET) produced by the segmentation network in
combination with the four MR images as input. The difference
between the two types of auxiliary networks is defined by the
link to the segmentation network. The first is more closely linked
through the feature maps, whereas the second is decoupled
and only requires the resulting segmentations. We refer to
the Supplementary Section 1.2 for a detailed description of the
auxiliary feat. and auxiliary segm. architectures.

2.4. Analyzing Voxel-Wise Uncertainty
We selected three techniques to analyze the quality of voxel-wise
uncertainties produced by the different uncertainty estimation
methods (Figure 1B) independently of their expressed
uncertainty (e.g., model uncertainty, data uncertainty). The
techniques aim at evaluating the model’s confidence levels and
the segmentation error localization abilities, which are required
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for tasks relying on visual feedback, or guided/automated
correction. Additionally, the Dice coefficient was used to
monitor the segmentation performance.

2.4.1. Reliability Diagram
Reliability diagrams (DeGroot and Fienberg, 1983) assess the
quality of a model’s confidence. It is a visual measure of how
close a model’s calibration is to practically unachievable perfect
calibration (Guo et al., 2017). Perfect calibration is obtained when
a model’s predictions f (x) with confidence p are correct with a
rate of p for any label y

P(y(x) = y|f (x) = p) = p ,

where y(x) are the model’s label predictions. For instance, when
a model is confident with 70%, it should be correct 70 out of
100 times (Guo et al., 2017). To create a reliability diagram, the
continuous predictions f (x) are discretized inM confidence bins
cm for m ∈ {1, . . . ,M} and plotted against the accuracies am in
these bins. Therefore, the identity line of the reliability diagram
represents perfect calibration.

For segmentation tasks, the reliability diagrams are typically
reported over an entire test set, jointly considering the
confidences of all voxels across subjects. Although this offers
a general idea of the model’s overall calibration, it omits
information about a single subject (i.e., patient). Achieving
good calibration levels at subject-level is, however, required in
a clinical setting if the voxel confidences should be used for
visual feedback or guided corrections of automated segmentation
results. Therefore, we report subject-level calibration along with
dataset-level calibration.

Calibration builds on model confidence, which we used as
a surrogate for uncertainty (as in Kendall and Gal, 2017). This
consists in considering the tumor region probability pr for the
baseline, MC dropout and ensemble variants. Since aleatoric and
auxiliary variants do not explicitly output probabilities pr , we
translated their uncertainty by y(1 − 0.5q) + (1 − y)0.5q to
confidence values, where y ∈ {0, 1} is the segmentation label and
q ∈ [0, 1] is the normalized uncertainty.

2.4.2. Expected Calibration Error
The expected calibration error (ECE) (Naeini et al., 2015) distills
the information of a reliability diagram into one scalar value. It is
defined by the absolute calibration error between the confidence
and accuracy bins, cm and am, respectively, weighted by the
number of samples nm (in our case voxels) in the bin. More
formally, with N and M being the total number of samples and
the number of bins, the ECE is given by

ECE =

M
∑

m

nm

N
|cm − am| .

The ECE ranges from 0 to 1, where a lower value represents a
better calibration. Through weighting by the bin size, the ECE is
influenced by large confident and accurate extra-cranial regions
typically found in brain tumor MR images. To reduce this effect,
we only considered voxels within the skull-stripped brain to

calculate the ECE. As for the reliability diagram, we are interested
in the subject-level ECE and thus report the mean subject ECE
instead of the dataset ECE (i.e., considering all voxels in the test
set to calculate a single ECE). Complementary to the ECE, we also
computed the average calibration error (Neumann et al., 2018).
We refer to the Supplementary Section 4 for the description
and results.

2.4.3. Uncertainty-Error Overlap
In segmentation, not only calibration is of interest but also the
model’s ability to localize segmentation errors. Ideally, a model
would be uncertain only where it makes mistakes. To assess this
behavior, we introduce the uncertainty-error overlap (U-E). The
U-E measures the overlap, through Dice coefficient, between the
regions where the model is uncertain U about its prediction and
the segmentation error E (i.e., union of false positives and false
negatives), such that

U-E =
2|U ∩ E|

|U| + |E|
,

where | · | represents the cardinality. The U-E ranges from 0
to 1 with 1 describing a perfect overlap. By considering voxels
belonging to U and E only, the U-E is not influenced by the
true negative uncertainty and thus typically independent of the
image size or additional background voxels, as opposed to the
ECE. However, calculating U-E requires to threshold U. We
determined the threshold for each method independently, based
on the maximal U-E performance on the validation set. The U-
E performance was evaluated for thresholds from 0.05 to 0.95 in
steps of 0.05. Complementary to the U-E, we also computed the
area under the curve of the precision-recall curve. We refer to the
Supplementary Section 4 for the description and results.

2.4.4. Dice Coefficient
Although the Dice coefficient is not a measure for analyzing the
quality of the uncertainty, we used it tomonitor the segmentation
performance of the different methods. It measures the overlap
between two segmentation and ranges from 0 to 1, where 1
describes perfect overlap. Rather than determining the best
method for segmentation, the Dice coefficient monitoring aims at
detecting potential influences of the segmentation performance
on the uncertainty estimates. Ideally, all methods would
produce identical segmentations attributing any improvement
in uncertainty measures directly to the corresponding method.
In practice, however, this is unfeasible due to differences
in the architectures and training. An improvement in the
uncertainty measures could, therefore, also be due to an
improved segmentation performance.

2.5. Analyzing Aggregated Uncertainty at
the Subject Level
Besides analyzing the method’s uncertainty estimates on a voxel
level, we further analyzed their quality when aggregated on a
subject level (i.e., one scalar value per subject; Figure 1C). The
motivation of the subject-level analysis is twofold. First, the
aggregation distills the uncertainty information such that the
influence of irrelevant and erroneous voxel-wise information
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is reduced. The aggregation, therefore, provides an assessment
of the individual uncertainty estimations at a higher level that
can forgive deficiencies (e.g., poor calibration) at the voxel
level. Second, the aggregation presents a possible usage of the
uncertainty estimations. It is an alternative to corrections at the
voxel-level which are unfeasible for brain tumor segmentation
where task-related knowledge (e.g., multiple lesions) is very
sparse. In clinical applications subject-level information is
important to flag possible failure cases for expert review. The
vast amount of possible aggregations can further help in pointing
to important characteristic of the voxel-wise uncertainty when
used at the subject level. The quality of the aggregated subject-
level information is defined by its relation to the segmentation
performance; the better the aggregated uncertainty, the better it
should be able to describe the segmentation performance. We
aim at a good correlation between aggregated uncertainty and
segmentation performance, which consequently enables accurate
segmentation failure detection.

2.5.1. Aggregation Methods
The aggregated subject-level scalar is highly influenced by the
chosen aggregation method. Hence, we studied three distinct
aggregation methods.

Mean aggregation. Mean aggregation is one of the simplest
aggregation methods, and it is motivated by the intuition that
an overall higher voxel-wise uncertainty should be an indicator
of poor segmentation performance. This requires the aggregated,
but not necessarily the voxel-wise, uncertainty to be calibrated. In
practice, we used the negative mean uncertainty to obtain direct
relation to the segmentation performance.

Prior knowledge-based aggregation. We know that
uncertainty is inherently present at the segmentation boundary.
Although this boundary uncertainty might be well-calibrated
it is mainly proportional to the size of the segmentation and
consequently introduces a bias toward the tumor size to the
aggregation. Similarly, one might expect more severe issues
when the large amount of uncertainties are present far from
the segmentation boundary. If only boundary uncertainty
is present we would expect less deviation from a reference
segmentation. We used this knowledge to create three different
aggregation weightings which deemphasize uncertainty at
boundaries. The first weighting consists of masking out voxels at
the segmentation boundary. In our experiments we masked three
voxels within the boundary (i.e., one-pixel distance inside and
outside, and at the boundary). The second weighting considers
the distance to the boundary, penalizing uncertainties close
to the boundary, and up-weighting uncertainties distant
from the segmentation boundary. The third weighting
normalizes the boundary uncertainty by dividing through the
segmentation volume.

To aggregate the differently weighted voxel information to
a scalar value per subject, we used three simple operations:
mean, sum, and logsum (as used by Nair et al., 2018). We
considered nine combinations between prior knowledge-
based weightings and these three simple operations. The
nine combinations were then used to train a random
forest regressor that predicts the Dice coefficient of the

segmentation. We used such a prediction model instead of
evaluating the correlation with the segmentation performance
because we aim at obtaining a good predictor rather than
solely finding the most important combination. We refer to
the Supplementary Sections 2.1, 2.3 for details regarding
the nine combinations and training details of the random
forest regressor.

Aggregation with automatically-extracted features. Instead
of manually defining additional aggregation methods, we
employed the PyRadiomics1 (Van Griethuysen et al., 2017,
version 2.2.0) package to extract subject-level features from
the voxel-wise uncertainty estimates automatically. Although
typically used in the context of radiomics, the package is
not limited to this application but is rather a general tool
to extract shape, first-order, and other gray-level features.
The benefit of using automated feature extraction is two-
fold: (a) it allows us to compare to the aggregation with
prior knowledge and (b) potentially points to new predictive
features of the uncertainty. We extracted 102 features from the
thresholded voxel-wise uncertainty estimates. The threshold was
determined for each uncertainty method by the maximal U-E
performance on the validation set (identical to section 2.4.3).
The features were used to train a random forest regressor
that predicts the Dice coefficient of the segmentations. We
refer to the Supplementary Sections 2.2, 2.3 for features and
training details.

2.5.2. Subject-Level Metrics
We assessed the three aggregation methods for each uncertainty
estimation method based on their ability to predict the Dice
performance of the automated segmentations. To do so,
we evaluated the estimates of the aggregation methods by
three metrics.

Spearman’s rank correlation. We used Spearman’s rank
correlation coefficient to asses the correlation between the
estimated and the actual Dice coefficients. Spearman’s rank
correlation was chosen since not all estimates lead to a linear
relationship (i.e., mean aggregation). The metric ranges from -
1 to 1, where the extremes describe a perfect monotone relation
(positive if 1, negative if −1) between estimated and actual Dice
coefficients.

AUC-ROC. We evaluated the segmentation failure detection
abilities of the uncertainty and aggregation methods by the
area under the curve of the receiver operating characteristic
(AUC-ROC). To do so, we translated the regression problem
(i.e., building a predictor for the Dice coefficient) to a
binary classification problem. We classified the segmentations
in successful and failed according to the average inter-rater
Dice coefficient for every tumor region. As the inter-rater
performances are not provided for the BraTS 2018 dataset,
we considered the inter-rater performances reported in Menze
et al. (2015) for the BraTS 2013 dataset2. The AUC-ROC was

1https://pyradiomics.readthedocs.io
2Note that the inter-rater performance between the BraTS 2013 and the BraTS

2018 dataset might differ since the existing annotations were revised by expert

board-certified neuroradiologists. Also, the non-enhancing and the necrosis label

were fused.
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computed by the scores of the regression output and ranges from
0 to 1, where 1 describes a perfect separator between the classes,
0.5 corresponds to random guesses, and 0 is the reciprocal of a
prefect separator (i.e., consistently predicting wrong class).

Youden’s accuracy. For improved comparability and
understanding, we evaluated the accuracy (range [0, 1]) along
with the AUC-ROC. We used the maximal Youden’s index
(Youden, 1950) to determine the accuracy from the ROC curve.
This index is defined for each point on the ROC curve as

J = sensitivity− (1− specificity)

and corresponds to the vertical distance to the chance line (i.e.,
sensitivity = 1 − specificity). Its maximum defines an optimal
point on the ROC curve.

3. RESULTS

3.1. Dataset-Level vs. Subject-Level
Calibration
Figure 2 illustrates the difference between dataset-level (i.e., all
voxels in the test set) and subject-level (i.e., all voxels of a subject)
calibration with reliability diagrams. While the calibration at the
dataset level is good for all tumor regions, miscalibrations in
the form of overconfidence and underconfidence are present at
the subject level. We find an under-/overconfidence in 39%/25%,
30%/32%, and 21%/41% of the test subjects for the three tumor
regionsWT, TC, and ET. Consequently, less than 40% (36%, 38%,
and 38%) of the subjects are well-calibrated. The percentages
indicate that the amount of miscalibration is similar for all
tumor regions, but ET exhibits more overconfidence (and less
underconfidence) than the other regions (column underconfident
subject in Figure 2 is exemplary). Also, we observe small
differences among the uncertainty methods; they mostly agree,
except for the aleatoric uncertainty, which disagrees at the
dataset level.

3.2. Voxel-Wise Uncertainty
We evaluated the voxel-wise uncertainties on average subject-
level ECE, uncertainty-error overlap (U-E), and Dice coefficient.
The results are listed in Table 1 and reveal that no uncertainty
estimation method considerably outperforms others. Most
methods perform in a similar range with a small advantage for
the ensemble method. Only the aleatoric method is distinctly
performing worse in term of the uncertainty metrics ECE
and U-E, while the competitive Dice coefficients indicate no
segmentation related issues. We found that the MC dropout
variants typically marginally outperform the non-MC variants
(i.e., dropout only applied during training), but occasionally
lead to considerable gains in ECE. The results also show
that finding the optimal dropout strategy, i.e., the amount
and position of dropout, is not evident. On one hand,
the method containing moderate dropout (center low/+MC)
outperforms the methods with minimal (baseline/+MC) and
maximal (center/+MC) dropout on all metrics. On the other
hand, the benefit of using MC dropout is larger for the
minimal and maximal dropout strategies. Concrete dropout,

which learns an optimal dropout rate, yielded comparable but
not superior results than (center low/+MC). Furthermore, the
results show that the auxiliary methods achieved uncertainty
performances on par with the baseline model, on whose
segmentation errors they are trained. Benefits in comparison to
baseline are mainly found for auxiliary feat. and in terms of
U-E.

Overall, the results are similar for all tumor regions.
Differences among the tumor regions are mainly found in the
ECE metric, which is considerably lower for ET than WT.
This effect can be explained since the ET includes substantially
fewer voxels predicted as uncertain (since fewer foreground
voxels) and, in turn, the ET tumor class includes more certain
background voxels, leading to an improved ECE. Furthermore,
the results indicate a link between segmentation performance
and ECE, where better-performing methods often relate to an
improved ECE. Methods outputting the uncertainty estimates
separately from the segmentation (i.e., auxiliary segm., auxiliary
feat., and aleatoric) are excluded from this observation.

Figure 3 shows the uncertainty estimates for theWT label (see
Figures S3, S4 for visual examples of TC and ET) produced by
the selectedmethods on underconfident, overconfident, andwell-
calibrated subjects (same subjects as in Figure 2). The examples
visually confirm the similar segmentation performances of
the different methods. Further, the uncertainty estimates
clearly show a pattern between amount of uncertainty and
miscalibration. The underconfident subject exhibits considerably
more overall uncertainty than the overconfident subject and
perceivably more than well-calibrated subject. We also observe
that the amount of uncertainty varies among the methods.
For instance, the center/+MC methods consistently exhibit
more uncertainty than the auxiliary methods. The regions
exhibiting uncertainty are, however, similar for all methods,
except the aleatoric method which visually confirms its
poor calibrations.

In an additional experiment, we analyzed the dependency of
the training dataset size on the quality of uncertainty estimates.
Themethod we used for these experiments is baseline+MC as it is
mostly represents the performance level of the studied methods.
The results in Figure 4 show that quality in terms of ECE is low
(i.e., high ECE) with few training data and increases afterwards.
This demonstrates that the higher uncertainty introduced
through small datasets is worse in terms of quality.

3.3. Subject-Level Aggregated Uncertainty
Figure 5 shows the AUC-ROC results of the uncertainty
estimation methods for the three aggregation methods (see
Figure S5 and Table S5 for the corresponding ROC curves and
the AUC-ROC values, respectively). The results demonstrate that
mean aggregation has a limited ability to detect segmentation
failures and is comparable with guessing (i.e., AUC-ROC of
0.5). Results for the ET tumor label are even below 0.5,
revealing a direct relation between uncertainty and segmentation
performance instead of the expected inverse relation. An
improvement over mean aggregation is achieved by aggregating
with prior knowledge and automatically extracted features. The
aggregation with automatically extracted features obtained the
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FIGURE 2 | Comparison between dataset-level and subject-level calibration (shown in reliability diagrams) for the selected uncertainty estimation methods. The first

column shows the dataset-level calibration, which considers all voxels in the dataset. The second to fourth columns show subject-level calibrations, which consider

voxels of a single subject. The exemplary subjects indicate underconfident, overconfident, and well-calibrated methods. The rows indicate the three tumor regions.

TABLE 1 | Performances of the different uncertainty estimation methods in terms of expected calibration error (ECE), uncertainty-error overlap (U-E), and Dice coefficient.

WT TC ET

ECE% U-E Dice ECE% U-E Dice ECE% U-E Dice

Baseline 1.059 0.427 0.869 0.853 0.41 0.767 0.309 0.401 0.692

Concrete 0.984 0.429 0.875 0.802 0.419 0.775 0.278 0.407 0.686

Center low 0.942 0.434 0.88 0.83 0.409 0.775 0.28 0.403 0.686

Center 1.606 0.425 0.817 1.086 0.41 0.695 0.381 0.395 0.642

Baseline + MC 1.016 0.433 0.869 0.805 0.41 0.765 0.284 0.403 0.693

Concrete + MC 0.952 0.431 0.877 0.785 0.422 0.778 0.27 0.409 0.689

Center low + MC 0.922 0.435 0.881 0.83 0.41 0.769 0.275 0.409 0.69

Center + MC 1.014 0.432 0.874 1.06 0.409 0.716 0.462 0.4 0.651

Ensemble 0.893 0.436 0.88 0.749 0.402 0.778 0.275 0.411 0.701

Aleatoric 12.187 0.001 0.874 2.407 0 0.757 1.284 0.007 0.673

Auxiliary segm. 1.058 0.428 0.869 0.887 0.397 0.767 0.323 0.39 0.692

Auxiliary feat. 1.057 0.433 0.869 0.852 0.403 0.767 0.318 0.423 0.692

All metrics range from 0 to 1, but the ECE is reported in % for better comparisons. Lower ECEs are better as well as higher U-Es and Dice coefficients.We note that the Dice coefficient is

not a measure for analyzing the quality of the uncertainty and is reported to monitor the segmentation performance of the different methods. Mean values are presented, and standard

deviations are omitted due to marginal differences. Bold values indicate best performances. Horizontal separations group types of uncertainty methods and WT, TC, and ET indicate

the tumor regions whole tumor, tumor core, and enhancing tumor.

Frontiers in Neuroscience | www.frontiersin.org 8 April 2020 | Volume 14 | Article 282

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Jungo et al. Analyzing Uncertainty in Brain Tumor Segmentation

FIGURE 3 | Visual examples of the whole tumor uncertainty produced by the different uncertainty estimation methods. The columns correspond to underconfident,

overconfident, and well-calibrated subjects (same as in Figure 2).

overall best AUC-ROC values. Although it is not possible to
determine the best uncertainty method visually, the aletoric
method shows apparent weaknesses. We also built a combined
model with the automatically extracted features and the
generated prior knowledge features, but it did not lead to
consistent improvements in terms of AUC-ROC.

We assessed feature importance by accumulating their ranks
over the individual regression models (i.e., one for each
uncertainty estimation method). We found the distance weighted
masked mean feature to be the most important feature for the
prior knowledge-based aggregation. For the aggregation with
automatically extracted features, the shape sphericity, which is
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FIGURE 4 | Effect of the training dataset size on the expected calibration error

(ECE).

a measure of roundness relative to a sphere, and run length
non-uniformity, which is a measure of similarity among the
different gray level run lengths, were dominantly the two most
important features.

Since it represents the best-performing aggregation method,
we evaluated the aggregation with automatically extracted
features in terms of Spearman’s rank correlation and Youden’s
accuracy in addition to AUC-ROC. The corresponding results are
shown in Figure 6with numerical details in Table S5. The results
reconfirm the similarities found among the different uncertainty
estimation methods, with the aleatoric method yielding the
lowest performance, and producing negative outliers in all three
metrics, although less prominent for the Youden’s accuracy.
Additionally, we observed that the predictions based on the
TC tumor label uncertainty achieved the highest values for all
three metrics, whereas ET tumor label uncertainty is typically the
worst-performing.

4. DISCUSSION

Uncertainty estimation methods have been used for different
medical image segmentation tasks, but little is known on their
quality and limitations. Therefore, we analyzed the quality
of common uncertainty estimation methods on the clinically
relevant problem of automated brain tumor segmentation. The
methods were evaluated on their calibration, segmentation error
localization, and segmentation failure detection abilities. First,
our results show that overall good calibration is only achieved at
the dataset level. Second, segmentation error localization relying
on voxel-wise uncertainty is difficult and unreliable. However,
we found that segmentation failure detection on subject level is
possible by aggregating voxel-wise uncertainty estimates.

We found a good calibration of voxel-wise predictions at the
dataset level but observed notable miscalibrations when assessed
at the subject level. As such, the good dataset-level calibration

can be explained by the subject-level miscalibrations (under-
and overconfidence), which average out when combined. The
subject-level miscalibrations are influenced by the dependence
of neighboring voxels in the uncertainty estimates, resulting
from the fully-convolutional architectures and an inter-voxel
dependence in the MR images itself. Although this dependence
is beneficial for the segmentation task, it also produces similar
uncertainties within a neighborhood and therefore biases the
calibration. Consequently, poor segmentations are expected to
introduce a larger bias. The observed miscalibrations further
indicate that the uncertainty estimates may contain non-
negligible errors. As a consequence, using voxel-wise uncertainty
for user feedback or guided corrections is questionable andmight
lead to undesired outcomes in automated corrections. Therefore,
our findings point on the importance of developing methods able
to calibrate uncertainties for each subject individually.

The results of the voxel-wise uncertainty evaluation reveal
that all methods (including the softmax/sigmoid baseline)
performed similarly, except for the aleatoric uncertainty, which
performed worst. Among the similar performing methods,
the ensemble achieved the overall best results. It achieved
improved uncertainty metrics along with its expected benefits
in segmentation performance. MC dropout, which can be
viewed as a poor man’s ensemble equivalent, showed benefits
similar to ensemble when compared to using standard dropout
(i.e., during training only). However, finding the optimal
dropout strategy that maximizes segmentation performance and
uncertainty estimates remains difficult, also because concrete
dropout showed not to be optimal. Therefore, as a rule of
thumb, we suggest using ensembles when resources allow it.
Otherwise, we suggest applying MC dropout with a focus on
regularization benefits.

The results further indicate a possible relation between
the quality of the uncertainty and segmentation performance.
For instance, the ensemble and the MC dropout methods
revealed benefits for the uncertainty along with improved
segmentation performance. It is impossible to determine whether
these methods are effectively producing qualitatively better
uncertainties or the increased quality results from the improved
segmentation. To assess the uncertainty separately, methods that
produce decoupled uncertainty estimates would be required, as
advocated by Jiang et al. (2018). Our auxiliary networks are
examples of such decoupled solutions. They showed promising
results but without achieving substantial benefits. Further work
in this direction is needed to determine its full potential. The
experiment with limited training data confirmed the observation
of a link between segmentation performance and quality of
the uncertainties by showing improved quality with increasing
dataset size. This observation is troublesome because large
datasets are rare and qualitatively good uncertainties would be
especially desirable for underperforming models due to little
training data.

Aggregating the voxel-wise uncertainty can distill valuable
information for segmentation failure detection. The best-
performing aggregation method tested was the aggregation with
automatically extracted features. It achieved a good correlation
with the Dice coefficient and enabled an accurate separation
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FIGURE 5 | Differences among the three aggregation methods for each uncertainty estimation approach in terms of area under the curve of the receiver operating

characteristic (AUC-ROC) for segmentation failure detection.

FIGURE 6 | Segmentation failure detection performance of the aggregation

uncertainty by automatically extracted features in terms area under the curve

of the receiver operating characteristic (AUC-ROC) and Youden’s accuracy as

well as correlation with the segmentation performance in terms of Spearman’s

rank correlation (ρ). Each point per color represents an uncertainty estimation

method. The negative outliers in each metric and for each tumor region

correspond to the aleatoric method.

between successful and failed segmentations results. For the
mean aggregation, we obtained notably worse results, indicating
a poor relation between mean uncertainty and segmentation
performance. However, we could greatly improve this relation
by simply weighting the uncertainties according to some
prior knowledge. A subsequent feature importance analysis

revealed that, particularly, the distance to the segmentation
boundary matters as prior knowledge. For the aggregation with
automatically extracted features, two important features in the
voxel-wise uncertainty estimates were revealed: shape sphericity
and run length non-uniformity. The importance of the sphericity
can, to some extent, be explained by its definition, which consists
of a ratio between mesh volume and surface area. This definition
results in low sphericities for large-area-low-volume structures
such as a narrow uncertainty rim that we would expect for a
successful segmentation. Considering volume and area at the
same time might be key to cope with the highly variable brain
tumor volumes and areas. Similarly, the narrow uncertainty
rim of successful segmentations is expected to contain a lot of
similar uncertainty levels and thus resulting in a lower run length
non-uniformity than of failed segmentations.

Overall, the analyzed uncertainty estimation methods only
limitedly provide the desired additional and useful information.
Our results question whether a remedy of the challenges with
voxel-wise uncertainties is even feasible. Additional processing
is required to take advantage of the voxel-wise estimates.
We presented such an additional processing by aggregating
the voxel-wise uncertainties into one value per subject and
achieved promising results for segmentation failure detection.
The promising aggregation results point in the direction of an
intermediate approach, operating in-between voxel and subject
level. We believe this is important in clinical applications where
uncertainty estimation methods would directly operate at the
levels of lesion, region, or image slice e.g., for automated
segmentation correction.
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Our evaluation has several limitations worth mentioning.
First, due to its popularity we used a U-Net-like architecture with
a shared learning scheme for all our experiments. Our findings
may differ for other setups, especially when altering the output
confidences of a network, such as Dice coefficient loss as shown
by Sander et al. (2019). Second, the metrics used to analyze the
quality are comparing with the ideal case. Although good metrics
signify high quality, the opposite (i.e., bad metrics mean low
quality) might not be true, since the quality is not solely defined
by the employed metrics. Moreover, low metric results, as for the
U-E, do not directly mean that the uncertainty information is
useless but might require additional steps to create benefit. Third,
we used a selection of commonly used uncertainty estimation
methods. Hence, we cannot claim that these findings apply to
other, recently proposed techniques (e.g., Baumgartner et al.,
2019; Jena and Awate, 2019;Wang et al., 2019). Also, we analyzed
the different uncertainty estimation methods independently
of their expressed uncertainty (e.g., model uncertainty, data
uncertainty). While this provides information on the quality
across types of uncertainty, an independent analysis by type of
uncertainty might bring additional insights for the development
of new uncertainty estimation methods.

In conclusion, we analyzed common uncertainty estimation
methods and found that the quality of their voxel-wise
uncertainty is limited in terms of subject-level calibration
and segmentation error localization. We further showed that
aggregating the voxel-wise uncertainties to the subject level
enables accurate segmentation failure detection, which after
all confirms the usefulness of the uncertainty estimates. We

suggest a careful usage of voxel-wise uncertainty measures and
highlight the importance of developing solutions that address
the subject-level requirements on calibration and segmentation
error localization.
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