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The optical surfaces of the eye are often described in terms of their radius and asphericity. The variations
caused by experimental noise in repeated measurements of radius and asphericity of the same surface are
strongly correlated. We show this correlation in experimental corneal elevation data from videokeratoscopy
and Scheimpflug topography, in non-contact profilometry data of artificial lenses, and in simulations. The effect
is a characteristic of the fits to conic curves, and not restricted to any experimental device or fitting procedure.
A separate analysis of radius and asphericity may estimate incorrectly the statistical significance of the
changes in the ocular surfaces. We propose a MANOVA-based statistical analysis that increases sensitivity by

a factor of 4. © 2010 Optical Society of America
OCIS codes: 330.4875, 330.7325.

1. INTRODUCTION

Ocular surfaces are typically described by surfaces whose
profiles are conic sections. The general equation of a conic
curve is

x?=2Ry - (1+Q)y?, (1)

where R and @ are the apical radius and asphericity, re-
spectively. The apical direction is along the y-axis. Any
conic is described in terms of these two parameters: the
radius R representing the radius of curvature at the apex
of the conic section and the asphericity @ representing
the deviation of the conic from a circle. Conic curves are
classified in circles (@ =0), hyperbolas (@ <-1), parabolas
(@=-1), and ellipses (@ >-1).

Radius and asphericity have been widely used to char-
acterize the geometry of the cornea [1-4] and the crystal-
line lens. For example, they have been used in descrip-
tions of the optical biometry of different populations, such
as myopes and hyperopes (see Llorente et al. [5] and ref-
erences therein), evaluation of diurnal changes in corneal
topography [6], analysis of the changes in anterior and
posterior corneal geometries with aging [7], evaluation of
the geometrical changes induced by corneal refractive
surgery [8,9], or design of custom-guided ablation algo-
rithms aiming at controlling anterior corneal asphericity
[10]. They have also been used to describe the geometry of
the crystalline lens in vitro [11] and in vivo as a function
of age [12], and in vivo as a function of accommodation
[12-14].

Contact and intraocular lenses have evolved to as-
pheric designs, allowing the manipulation of the spherical
aberration that they induce. In contact lenses, aspheric
monofocal designs may provide a better optical quality
[15], and also may modify the depth of focus in multifocal
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designs [16]. In intraocular lenses, aspheric designs are
used to mimic the compensatory effect of the young crys-
talline lens [17,18].

Ocular surface geometry can be assessed by corneal to-
pography [19], Scheimpflug imaging [20], or optical coher-
ence tomography in vivo [21,22]. Shadow photography is
used for crystalline lenses in vitro [23]. Profilometry is of-
ten used for plastic samples and artificial eyes [24,25].

All these techniques produce elevation maps that are
affected by measurement noise. When fitting a noisy data
set to a conic, two important issues may appear: First, the
average radius and asphericity obtained from repeated
measurements may be biased (i.e., when increasing the
number of measurements the average value does not con-
verge to the nominal value as a consequence of the non-
linear nature of conic curves) [26]. This problem is greatly
alleviated when the fit is performed by minimizing the
geometric distance between the data points and the curve
[27], instead of other magnitudes [such as the residues of
Eq. (1)] [28]. Another alternative for removing this bias
from the data is to use an iterative procedure called
renormalization that effectively weights each error ac-
cording to its impact on the fitted parameters [26]. The
second issue is that the values of R and @ obtained from
fits to repeated noisy measurements of the same surface
are strongly correlated, which has been reported in the
area of image analysis [26]. This correlation has received
much less attention than the bias.

In this study we show that this correlation is present in
fits to measurements of human corneas collected with two
different ocular topographers and also in data from arti-
ficial lenses collected with a profilometer, as well as in
simulations. Furthermore, we note that it has an impor-
tant effect when comparing different measurements, for
example, in studies that address the differences of ocular
biometry across populations, changes induced by a cor-

© 2010 Optical Society of America


https://core.ac.uk/display/36085005?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

1542 J. Opt. Soc. Am. A/Vol. 27, No. 7/July 2010

neal treatment, or changes in the crystalline lens with ag-
ing or accommodation. We find that the typical analysis in
terms of separate changes in R and @ is not adequate due
to the correlation, and propose what is to our knowledge a
new statistical analysis that solves this problem.

2. MATERIALS AND METHODS

We studied the correlation between radius and aspheric-
ity in repeated measurements of corneal and intraocular
lens surfaces fitted by conics. The analysis was performed
on repeated measurements from three different instru-
ments: Scheimpflug imaging topography, videokeratos-
copy, and non-contact profilometry. We also performed
computer simulations to explore the origin of the correla-
tions. Measurements on patients followed the protocols
approved by the Institutional Review Boards, and fol-
lowed the tenets of the Declaration of Helsinki.

A. Scheimpflug Imaging Topography

We collected repeated measurements of the anterior and
posterior corneal surfaces of three healthy eyes of three
subjects with a Pentacam (Oculus, Wetzlar, Germany)
Scheimpflug imaging topographer. This method provides
quantitative elevation maps of both surfaces, sampled in
a uniform square grid with a side of 100 um (see Fig. 1,
left) [9]. The instrument’s software corrects the geometri-
cal distortion of both corneal surfaces (due to the geo-
metrical configuration of Scheimpflug cameras) and the
optical distortion of the posterior surface (due to its imag-
ing through the anterior corneal surface [14]). We col-
lected 33 measurements of the right eye of Subject 1 (age
26), 23 measurements of the right eye of Subject 2 (age
25), and 35 measurements of the right eye of Subject 3
(age 37). All the measurements on each eye were taken
consecutively in one single session, which took 45 min or
less.

In addition to these data, we used data from a previous
study [9] of 27 eyes of 14 patients before and after LASIK
surgery, and 18 eyes of nine control subjects who did not
undergo surgery, but that were measured at different
time points. Each subject was measured in three or four
experimental sessions on different days (over the first
month post-surgery in patients and over 1 week for con-

Placido disk
videokeratography

Non-contact
profilometry
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x*=2Ry —(1+Q)y’ R QO
Fig. 1. Schematic diagram of the experimental methodology.
Experimental data are obtained from real eyes with a Sche-
impflug imaging topographer (left) and a Placido disk topogra-
pher (center), and from an intraocular lens with an optical pro-
filometer (right). The data are exported to a computer, and fitted
by ellipsoids or ellipses, described by given radius and
asphericity.
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trols), and the measurements were repeated between
three and six times per experimental session.

B. Corneal Videokeratoscopy

We used an Atlas 990 (Carl Zeiss Meditec AG, Jena, Ger-
many) topographer based on Placido disks to collect re-
peated measurements of the anterior corneal surface of
eyes. We obtained 55 repeated measurements on Subject
1 and 20 measurements on Subject 2 (from the group of
subjects described above). Each session took less than 2 h.
The videokeratoscope provides a three-dimensional (3D)
elevation map sampled in concentric circles around the
corneal apex (see Fig. 1, center).

C. Lens Profilometry

In vivo corneal measurements are subject to variability in
the sample and also to uncertainty in centration and
alignment. We also used a microscopy-based non-contact
optical profilometer (Plu 2300, Sensofar, Barcelona,
Spain) [29] to obtain repeated profilometric measure-
ments of an aspheric intraocular lens (Alcon Acrysoft 1Q,
power 22 D, nominal R=20 mm, @=-33.23) [30]. The in-
strument was programmed to take 36 two-dimensional
(2D) profiles at identical exact conditions (within less
than 140 min), using the confocal mode of the instrument,
as described in [24]. Each profile extends about 5.5 mm,
consisting of 1658 data points equi-spaced in the horizon-
tal direction. The accuracy in the vertical direction is
within 0.1 um.

D. Simulations

We generated data sets following ideal rotationally sym-
metric ellipsoids, with the same sampling as the one used
by Pentacam (grid of 100 um squares). We also run simu-
lations for 2D data. In this case we generated ellipses
with the data points 100 um apart. We added Gaussian
noise along the apical direction (z-axis in the 3D data,
y-axis in the 2D data) at each point, with a 10 um stan-
dard deviation. The procedure was repeated 1000 times.

E. Fitting Procedures

All elevation maps were exported from the instruments
and analyzed in Matlab (The Mathworks, Natick, MA,
USA). For the corneal surfaces and simulations, we fitted
the central 6 mm (diameter) of the elevation maps to
quadrics [31], whose general equation is

X y° oz
—+—+—=1 (2)
a B v

Rotationally symmetric quadrics have the restriction «
=pB. When fitting corneal surfaces, we found that in all
cases the best fit corresponded to an ellipsoid, i.e., a, S,
and y were positive. Radii and asphericities of the two
main meridians are calculated as R,=a/ \@, R,=p/ Vv,
Q.=al/y-1, and @,=p/y-1. In all cases, we allowed free
translation in space of the fitting surface, but no rotation.

The profiles of the intraocular lens were fitted by conics
[Eq. (1)]. In this case we allowed both free translation and
rotation of the fitting curve, because we found that the
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profiles were tilted. We fitted the entire profiles, which
have a length of ~5.5 mm and are centered approxi-
mately at the apex.

The fitting was performed by minimizing the mean
squared error along the z-axis for 3D measurements and
along the y-axis for 2D measurements, using routines
written in Matlab. As initial conditions, we used the re-
sult of minimizing the squared residues of Egs. (1) and (2)
(for the 2D and 3D cases, respectively). This minimization
may be done very fast through a matrix inversion but the
results are strongly affected by a bias [26], and that is
why we only used this method to generate the initial con-
ditions.

F. Statistical Analysis

We compared the usual statistical analysis that treats
separately R and @ with a multivariate analysis of the
variance (MANOVA) that takes into account both vari-
ables at the same time. Separate analyses of the two vari-
ables were done with Student’s ¢-test. We considered that
there was a change in the surface if we found a statisti-
cally significant change in R or in @. As the probability of
false positives roughly doubles with respect to using two
variables, we applied a Bonferroni correction (p=0.025 in
each of the two ¢-tests).

The MANOVA tests whether two sets of multidimen-
sional measurements are different. For multidimensional
measurements we mean those that are characterized by
more than one scalar, as is the case of measurements of
the corneal geometry that is characterized by R and Q.
Brieflyy, MANOVA finds the direction of the R-@ plane in
which the separation between the two data sets is maxi-
mum, and then performs a one-dimensional test along
that direction, correcting the p-value for the extra degree
of freedom introduced by the search of the direction of
best discrimination. We used the implementation of
MANOVA that is available in Matlab’s statistics toolbox
(function manoval). We use p=0.05 as the threshold be-
tween significant and non-significant differences.

3. RESULTS

A. Experimental Measurements

Figure 2 shows the correlation plot (radius versus asphe-
ricity) for repeated measurements of three subjects, taken
with Pentacam. The data consist of 3D topographies, fit-
ted to quadrics [Eq. (2)]. Figure 2(a) shows the data for
the anterior cornea, and Fig. 2(b) for the posterior cornea.
For the six data sets of repeated measurements, radii and
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Fig. 2. Correlation between radius and asphericity when Pen-
tacam data from repeated measurements are fitted to ellipsoids.
(a) Data of anterior corneal surface. (b) Data of posterior corneal
surface. Diamonds: Subject 1. Circles: Subject 2. Triangles: Sub-
ject 3.
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asphericities of the fits are strongly and significantly cor-
related, except for the posterior surface of Subject 2 (p
=0.07, circles; nonetheless, when the data were fitted to
non-rotationally symmetric ellipsoids, there was a signifi-
cant correlation in the vertical meridian, p=0.02). Table 1
shows the correlation coefficients () and p-values (p) for
these measurements, as well as the slopes of the correla-
tions. These data correspond to fits to rotationally sym-
metric ellipsoids, and the results hold (some of them with
improved correlations) for non-rotationally symmetric el-
lipsoids.

In order to find the degree of correlation in a broader
set of conditions, we analyzed a data set of repeated Pen-
tacam measurements on patients before and after LASIK,
at different time points, taken by three different opera-
tors in a clinical setting, and measurements of non-
operated control subjects taken in a laboratory setting.
This data set consists of measurements from different
subjects obtained on different days (three to six measure-
ments per day). Each data set is centered at its own mean
value, which differs across subjects. As we are interested
in comparing dispersion of the values, we subtracted the
average values of radius and asphericity for each subject
and session from all the measurements of the session.
Figure 3(a) shows the correlation between the dispersion
in R and @ of the anterior corneal surface, for all patients
pre- and post-LASIK, and for all controls. Figure 3(b)
shows the results for the posterior surface on the same
eyes. The correlations are very strong (r=0.93 and p
<1071? for the anterior surface, r=0.77 and p <1071° for
the posterior), especially considering the heterogeneity of
this set of measurements.

Figure 4 shows the correlation between R and @ from
fits to the Placido videokeratoscopy data for Subject 1
[Fig. 4(a)] and Subject 2 [Fig. 4(b)]. As data are affected by
the shadows and occlusions by the eyelashes and eyelids
in the upper quarter of the topography, data in the hori-
zontal meridian are more reliable than those of the verti-
cal meridian, and only the radii and asphericities for the
horizontal meridian are depicted. The correlation in the
horizontal direction is stronger than the corresponding
correlations in the vertical direction or for rotationally
symmetric fits (not shown), but all correlations except one
are significant (Table 1). In general, the videokeratoscopy
data show a lower correlation than the Scheimpflug im-
aging data.

Figure 5 shows the correlation between radius and as-
phericity of repeated measurements of the profile of an
aspheric intraocular lens, obtained with the Plu non-
contact optical profilometer. In this case, the data consist
of a 2D profile, fitted by conics. The correlation is also
very high: r=0.83, p=4x 10719,

B. Simulations

We built a synthetic data set corresponding to a perfect
ellipsoid with R=8 mm and @=0.3. When no noise is
added to the data, the fitting algorithm provides exactly
the correct ellipsoid parameters. The noise added to the
synthetic ellipsoids causes dispersion in the fitted param-
eters (Fig. 6), and the correlation arises (r=0.95, p
<10715). Figure 6 also shows the histograms along the R
and @ directions. We see that, in spite of minimizing the
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Table 1. Correlations between Fitted Radii and Asphericities in the Experimental Data
Subject 1 Subject 2 Subject 3 Multiple® I0L?
Scheimpflug Anterior 0.82 0.83 0.76 0.93 —
imaging surface 5-1079 8-1077 1077 <10-1 —
m (mm1)° 2.3+£0.5 2.1+£0.6 2.1+0.6 2.85+0.03 —
f 33 23 35 717 —
Posterior 0.88 0.38 0.76 0.77 —
surface 10-11 0.07 1077 <10°1 —
m (mm™1) 1.9+0.3 0.8+0.7 2.2+0.6 1.71+0.09
33 23 35 717 —
Placido disk Symmetrical 0.39 -0.44 — —
videokeratoscopy 0.003 0.06 — — —
m (mm™1) 0.9+0.3 -0.3+0.7
55 20 — — —
Horizontal 0.54 0.53 — — —
meridian 2-1075 0.016 — — —
m (mm™1) 0.8+0.3 0.6+0.4
55 20 — — —
Vertical 0.28 0.48 — — —
meridian 0.04 0.03 — — —
m (mm™1) 0.4+0.3 0.5+0.4
55 20 — — —
Profilometer r — — — 0.83
D — — — 4-10710
m (mm™1) 7.4+1.5
n — — — 36

“Data from a group of LASIK patients and non-operated controls.
’Intraocular lens.

“Correlation coefficient.

[’p—value for the correlation.

“Slope of the correlation (and 95% confidence interval).

/Number of measurements.

geometrical distance between data and fitted curves,
there is a slight bias in the average values. However, this
bias is much smaller than the one reported for other types
of fitting procedures [26].

We have found that the slope of the correlation depends
on the average values of R and @. In particular, the slope
increases approximately linearly with R, and to a much
lesser extent with @. Also, the slope depends highly on
the diameter of the fitting area, roughly doubling from a
fit within a 64 mm diameter. It may also depend on other
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Fig. 3. Dispersion in fitted radius and asphericity from mea-

surements obtained with Pentacam on different subjects (pre-
and post-LASIK patients and controls) on different days (within
1 month, three to six consecutive measurements per session). (a)
Anterior surface of the cornea. (b) Posterior surface of the cornea.

factors such as the type of noise, different samplings of
the elevation map (square grid, rings, etc.), or unequal
variance for the noise in different regions of the topogra-
phy (for example, topographers are typically more accu-
rate in the center than in the periphery). With respect to
the latter case (differences in the effect of noise across the
corneal topography), we observed in simulations that a
very important bias in the average parameters occurs
when noise in the periphery was greater than in the cen-
ter. We found that the average @ shifted from the nominal
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Fig. 4. Correlation between fitted radius and asphericity, for re-
peated measurements of the anterior corneal surface performed
by Placido disk videokeratoscopy. (a) Subject 1. (b) Subject 2.
Data are fitted to non-rotationally symmetric ellipsoids. The plot-
ted data are for the horizontal meridian.
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Fig. 5. Correlation between fitted radii and asphericities for re-
peated measurements on an aspheric intraocular lens, performed
with a non-contact profilometer. Data are fitted by conics. This
example corresponds to aspherical intraocular lens with a very
high asphericity and very different geometry from that of normal
eyes, and therefore the graph has been plotted with a different
aspect ratio than Figs. 2—4.

0.3 to 0.9 and R shifted from the nominal 8 to 8.15 mm,
for the 10 um standard deviation in the central 3 mm and
20 um standard deviation in the remaining area up to 6
mm diameter. A further study of these factors is necessary
to characterize the correlation, but would be very
instrument-specific, and falls beyond the scope of this pa-
per.

We compared the slopes obtained by our simulations
with the experimental results, by running simulations
with the average experimental radii and asphericities and
the same fitting region (central 6 mm diameter) and the
noise values reported in the methods. We found for the
simulated data slopes of 3 mm™! for the anterior surface
and of 2.5 mm™! for posterior corneal surfaces, only
slightly higher than the slopes found for the experimental
data set (reported in Table 1). On the other hand simula-
tions based on the average experimental radius and as-
phericities from fits of 2D profilometric data on intraocu-

-0.1

78 79 8 81 82

R (mm)
Fig. 6. (Color online) Results of the simulations for an ideal ro-
tationally symmetric ellipsoid with R=8 mm and @=0.3, and
added Gaussian noise of 10 um standard deviation. The central
box shows the fitted parameters of 1000 fits, and the histograms
show the dispersion in radius (top) and asphericity (right). The
dashed lines indicate the nominal values. The elliptical contour
limits the region where the mean squared error with respect to
the nominal ellipsoid is lower than 0.5 um (see Fig. 7). The rect-
angular contour limits the region of 95% confidence intervals in
R and Q.
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lar lenses showed a slope of 7.1 mm~!. In this case the
slope of simulations falls within the confidence interval of
the experimental result (see Table 1).

C. The Origin of the Correlation

The ellipsoids whose parameters lie along the line of cor-
relation are very similar within the fitting region. To il-
lustrate this, we built synthetic data sets of ellipsoids
with radii ranging from 7.7 to 8.3 mm and asphericities
ranging from —0.2 to 0.7 (no noise was added). Figure 7
shows the mean squared error between each of these el-
lipsoids and the one with R=8 mm and @=0.3 (aligning
them so that the mean squared error was minimum, and
for a region of 6 mm of diameter around the apex). The
region with the lowest difference is tilted in the R-@
plane. Furthermore, this region closely matches the pa-
rameters obtained by fitting noisy ellipsoids of R=8 mm
and @=0.3 (elliptic contour in Fig. 6). We conclude that
the experimental noise produces a dispersion of the fitted
parameters, with preference for ellipsoids that are statis-
tically more similar to the nominal one. As the param-
eters of these similar ellipsoids are located along a diago-
nal in the R-Q space, the fitted data are correlated. We
repeated the same calculation of the mean squared error
using ellipses instead of ellipsoids, with similar results,
indicating that the largest part of the effect is intrinsic to
the geometry of ellipses, and not due to factors of the 3D
geometry.

D. Consequences in the Statistical Analysis

In most literature in visual optics addressing corneal or
crystalline lens geometry, the confidence intervals for ra-
dius and asphericity are calculated separately to analyze
the significance of changes across patients, conditions, or
treatment. The separate confidence intervals for radius
and asphericity limit a region in the @-R plane shown by
the rectangle in Fig. 6 (95% confidence). However the true
95% confidence region (region inside which the 95% of the
randomly generated points fall) is actually very different
from the rectangle as it is close to the elliptical contour in
Fig. 6. Considering the confidence intervals estimated by
considering R and @ separately (rectangle) instead of the
true region (ellipse) can lead to false positives and false
negatives. Points within the rectangle but outside the el-

7879 8 8182
R (mm)
Fig. 7. (Color online) Mean squared error between an ellipsoid
with R=8 mm and @=0.3 and ellipsoids with the radii and as-
phericities specified in the axes. Contours have been plotted for
mean squared errors at 0.2 um steps between 0.1 and 0.7 um
and at 1 um steps between 1 and 8 um.
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Fig. 8. Proportion of simulated experiments where a significant difference was detected between a reference ellipsoid with R=8 mm and
®=0.3 and a test ellipsoid with (a) R=8+AR mm and @=0.3 or (b) R=8 mm and @=0.3+AQ. Each experiment compares five fits to the
reference ellipsoid and five fits to the test one, simulating two sets of five repeated noisy measurements (10 um standard deviation at
each point of the ellipsoid). For each amount of change of R or @, we simulated 1000 experiments, and the proportion of detected sig-
nificant differences is plotted. Circles: Proportion of trials where MANOVA identified a significant change. Squares: Proportion of trials
where the Student’s ¢-test identified a significant change, either in radius or in asphericity. Triangles: Same as squares but applying the

Bonferroni correction. Insets show a detail of the region near zero.

lipse will be erroneously identified as significantly differ-
ent, decreasing the specificity of the test while points out-
side the ellipse but within the rectangle will be
erroneously identified as not significantly different, de-
creasing the sensitivity of the test.

In order to overcome this problem one must use a mul-
tivariate statistical test, which takes into account the pos-
sible correlation between the two variables. We propose to
use MANOVA.

Figure 8 compares the different sensitivities when us-
ing separated Student’s ¢-tests for R and @ and when us-
ing MANOVA. In order to test the probability of detecting
significant differences between corneal surfaces we simu-
lated corneal topography measurements of pairs of cor-
neal surfaces. One cornea had R=8 mm and @=0.3 in all
cases, while in the other R took values between 8 and 8.1
mm and @=0.3 was constant [Fig. 8(a)], or @ took values
between 0.3 and 0.5 and R=8 mm was constant [Fig.
8(b)]. To simulate realistic corneal topography measure-
ments, Gaussian noise (with a standard deviation of
10 um) was added to the ellipsoid. Each simulated experi-
mental session consisted of five measurements per cor-
nea. Each pair of series of five measurements was com-
pared to estimate whether the two corneal surfaces were
statistically different. Each experimental session was re-
peated 1000 times to obtain accurate probability esti-
mates. Three statistical methods were tested: separate
t-tests on R and @, with and without the Bonferroni cor-
rection, and the MANOVA test proposed in this study. Fig-
ure 8 shows the probability that the two corneas are iden-
tified as significantly different, according to the three
statistical methods. We found that MANOVA has higher
sensitivity, being capable of detecting changes in R and @
about four times smaller than the separate tests. Also,
MANOVA has a higher specificity, finding fewer false posi-
tives than the separate tests (Fig. 8, insets). The fact that
the rate of false positives for MANOVA is lower than the
expected 0.05 (because we set the threshold in p=0.05) is

probably due to deviations of the data from ideal normal
distributions. Both the Student’s ¢-test and MANOVA
share most assumptions about the data, including that of
normally distributed data. However, MANOVA takes into
account the possible correlation between the variables,
which we have demonstrated to occur between R and @ of
repeated measurements on the same surface.

Note that MANOVA does not use previous knowledge of
the correlation between the two variables, and therefore
it can be directly applied to any set of measurements.
However, if the correlation specific to a given instrument
is well known from a careful characterization, other sta-
tistical methods that make use of this previous knowledge
can be implemented, increasing further the sensitivity
and specificity of the tests.

4. DISCUSSION

The presence of strong correlations between radii and as-
phericities describing a surface obtained from multiple
measurements has important implications in the detec-
tion of changes in conic surfaces. Certain combination of
changes in the asphericity and radius along the correla-
tion line can be interpreted as a change in the surface
that does not really exist, while changes in radius and as-
phericity of the same magnitude but in the perpendicular
direction can describe true significant changes in the sur-
face. This is particularly important in physiological optics
where conic surfaces are used to describe the surfaces of
the ocular component. Studies of the geometry of crystal-
line lens reveal correlations between radius and aspheric-
ity [11] which may be overinterpreted as a particular fea-
ture of the lens, in association with development, growth,
or aging. However, our results indicate that this is actu-
ally a consequence of the fit. Similarly, the impact of cor-
neal treatments on the corneal geometry and optical qual-
ity is usually assessed in terms of changes in radius of
curvature and asphericity [8,9]. Current efforts in refrac-
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tive surgery aim at not inducing changes in the corneal
asphericity to prevent the induction of spherical aberra-
tion. Statistical analysis of the significance of these
changes should take into account the existing correlations
between radius and asphericity in the statistical analysis
of possible induced changes in asphericity.

5. CONCLUSIONS

There is an important degree of correlation between ra-
dius and asphericity, observed in repeated measurements
of surface topography. The effect has been observed with
different instruments (Scheimpflug imaging topographer,
Placido disk videokeratoscope, and non-contact optical
profilometer). This strong correlation holds across differ-
ent measurement conditions and samples: anterior and
posterior surfaces of the cornea in vivo, and intraocular
lens in vitro. Simulations show that this correlation effect
is produced even by subtle measurement noise or surface
variability (as with the profilometer; Fig. 5). Measure-
ment noise and surface variability will always be present
experimentally, and we therefore can conclude that when
fitting surface measurements to conics or conic-based sur-
faces the retrieved R and @ parameters will be usually
correlated. It is clear from the examples and also from the
simulations that when reporting the results of conic fit-
tings, as those routinely used in ocular biometry, radius
and asphericity cannot be treated separately: a correct de-
scription of the surface needs both parameters. We have
proposed to use the statistical test MANOVA to study cor-
neal changes. This test increases the sensitivity of the
analysis, detecting changes about four times smaller than
the separate analysis in R and Q.
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