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in surfaces fitted by conics
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The optical surfaces of the eye are often described in terms of their radius and asphericity. The variations
caused by experimental noise in repeated measurements of radius and asphericity of the same surface are
strongly correlated. We show this correlation in experimental corneal elevation data from videokeratoscopy
and Scheimpflug topography, in non-contact profilometry data of artificial lenses, and in simulations. The effect
is a characteristic of the fits to conic curves, and not restricted to any experimental device or fitting procedure.
A separate analysis of radius and asphericity may estimate incorrectly the statistical significance of the
changes in the ocular surfaces. We propose a MANOVA-based statistical analysis that increases sensitivity by
a factor of 4. © 2010 Optical Society of America
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. INTRODUCTION
cular surfaces are typically described by surfaces whose
rofiles are conic sections. The general equation of a conic
urve is

x2 = 2Ry − �1 + Q�y2, �1�

here R and Q are the apical radius and asphericity, re-
pectively. The apical direction is along the y-axis. Any
onic is described in terms of these two parameters: the
adius R representing the radius of curvature at the apex
f the conic section and the asphericity Q representing
he deviation of the conic from a circle. Conic curves are
lassified in circles �Q=0�, hyperbolas �Q�−1�, parabolas
Q=−1�, and ellipses �Q�−1�.

Radius and asphericity have been widely used to char-
cterize the geometry of the cornea [1–4] and the crystal-
ine lens. For example, they have been used in descrip-
ions of the optical biometry of different populations, such
s myopes and hyperopes (see Llorente et al. [5] and ref-
rences therein), evaluation of diurnal changes in corneal
opography [6], analysis of the changes in anterior and
osterior corneal geometries with aging [7], evaluation of
he geometrical changes induced by corneal refractive
urgery [8,9], or design of custom-guided ablation algo-
ithms aiming at controlling anterior corneal asphericity
10]. They have also been used to describe the geometry of
he crystalline lens in vitro [11] and in vivo as a function
f age [12], and in vivo as a function of accommodation
12–14].

Contact and intraocular lenses have evolved to as-
heric designs, allowing the manipulation of the spherical
berration that they induce. In contact lenses, aspheric
onofocal designs may provide a better optical quality

15], and also may modify the depth of focus in multifocal
1084-7529/10/071541-8/$15.00 © 2
esigns [16]. In intraocular lenses, aspheric designs are
sed to mimic the compensatory effect of the young crys-
alline lens [17,18].

Ocular surface geometry can be assessed by corneal to-
ography [19], Scheimpflug imaging [20], or optical coher-
nce tomography in vivo [21,22]. Shadow photography is
sed for crystalline lenses in vitro [23]. Profilometry is of-
en used for plastic samples and artificial eyes [24,25].

All these techniques produce elevation maps that are
ffected by measurement noise. When fitting a noisy data
et to a conic, two important issues may appear: First, the
verage radius and asphericity obtained from repeated
easurements may be biased (i.e., when increasing the
umber of measurements the average value does not con-
erge to the nominal value as a consequence of the non-
inear nature of conic curves) [26]. This problem is greatly
lleviated when the fit is performed by minimizing the
eometric distance between the data points and the curve
27], instead of other magnitudes [such as the residues of
q. (1)] [28]. Another alternative for removing this bias

rom the data is to use an iterative procedure called
enormalization that effectively weights each error ac-
ording to its impact on the fitted parameters [26]. The
econd issue is that the values of R and Q obtained from
ts to repeated noisy measurements of the same surface
re strongly correlated, which has been reported in the
rea of image analysis [26]. This correlation has received
uch less attention than the bias.
In this study we show that this correlation is present in

ts to measurements of human corneas collected with two
ifferent ocular topographers and also in data from arti-
cial lenses collected with a profilometer, as well as in
imulations. Furthermore, we note that it has an impor-
ant effect when comparing different measurements, for
xample, in studies that address the differences of ocular
iometry across populations, changes induced by a cor-
010 Optical Society of America
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eal treatment, or changes in the crystalline lens with ag-
ng or accommodation. We find that the typical analysis in
erms of separate changes in R and Q is not adequate due
o the correlation, and propose what is to our knowledge a
ew statistical analysis that solves this problem.

. MATERIALS AND METHODS
e studied the correlation between radius and aspheric-

ty in repeated measurements of corneal and intraocular
ens surfaces fitted by conics. The analysis was performed
n repeated measurements from three different instru-
ents: Scheimpflug imaging topography, videokeratos-

opy, and non-contact profilometry. We also performed
omputer simulations to explore the origin of the correla-
ions. Measurements on patients followed the protocols
pproved by the Institutional Review Boards, and fol-
owed the tenets of the Declaration of Helsinki.

. Scheimpflug Imaging Topography
e collected repeated measurements of the anterior and

osterior corneal surfaces of three healthy eyes of three
ubjects with a Pentacam (Oculus, Wetzlar, Germany)
cheimpflug imaging topographer. This method provides
uantitative elevation maps of both surfaces, sampled in
uniform square grid with a side of 100 �m (see Fig. 1,

eft) [9]. The instrument’s software corrects the geometri-
al distortion of both corneal surfaces (due to the geo-
etrical configuration of Scheimpflug cameras) and the

ptical distortion of the posterior surface (due to its imag-
ng through the anterior corneal surface [14]). We col-
ected 33 measurements of the right eye of Subject 1 (age
6), 23 measurements of the right eye of Subject 2 (age
5), and 35 measurements of the right eye of Subject 3
age 37). All the measurements on each eye were taken
onsecutively in one single session, which took 45 min or
ess.

In addition to these data, we used data from a previous
tudy [9] of 27 eyes of 14 patients before and after LASIK
urgery, and 18 eyes of nine control subjects who did not
ndergo surgery, but that were measured at different
ime points. Each subject was measured in three or four
xperimental sessions on different days (over the first
onth post-surgery in patients and over 1 week for con-

ig. 1. Schematic diagram of the experimental methodology.
xperimental data are obtained from real eyes with a Sche-

mpflug imaging topographer (left) and a Placido disk topogra-
her (center), and from an intraocular lens with an optical pro-
lometer (right). The data are exported to a computer, and fitted
y ellipsoids or ellipses, described by given radius and
sphericity.
rols), and the measurements were repeated between
hree and six times per experimental session.

. Corneal Videokeratoscopy
e used an Atlas 990 (Carl Zeiss Meditec AG, Jena, Ger-
any) topographer based on Placido disks to collect re-

eated measurements of the anterior corneal surface of
yes. We obtained 55 repeated measurements on Subject
and 20 measurements on Subject 2 (from the group of

ubjects described above). Each session took less than 2 h.
he videokeratoscope provides a three-dimensional (3D)
levation map sampled in concentric circles around the
orneal apex (see Fig. 1, center).

. Lens Profilometry
n vivo corneal measurements are subject to variability in
he sample and also to uncertainty in centration and
lignment. We also used a microscopy-based non-contact
ptical profilometer (Pl� 2300, Sensofar, Barcelona,
pain) [29] to obtain repeated profilometric measure-
ents of an aspheric intraocular lens (Alcon Acrysoft IQ,

ower 22 D, nominal R=20 mm, Q=−33.23) [30]. The in-
trument was programmed to take 36 two-dimensional
2D) profiles at identical exact conditions (within less
han 140 min), using the confocal mode of the instrument,
s described in [24]. Each profile extends about 5.5 mm,
onsisting of 1658 data points equi-spaced in the horizon-
al direction. The accuracy in the vertical direction is
ithin 0.1 �m.

. Simulations
e generated data sets following ideal rotationally sym-
etric ellipsoids, with the same sampling as the one used

y Pentacam (grid of 100 �m squares). We also run simu-
ations for 2D data. In this case we generated ellipses
ith the data points 100 �m apart. We added Gaussian
oise along the apical direction (z-axis in the 3D data,
-axis in the 2D data) at each point, with a 10 �m stan-
ard deviation. The procedure was repeated 1000 times.

. Fitting Procedures
ll elevation maps were exported from the instruments
nd analyzed in Matlab (The Mathworks, Natick, MA,
SA). For the corneal surfaces and simulations, we fitted

he central 6 mm (diameter) of the elevation maps to
uadrics [31], whose general equation is

x2

�
+

y2

�
+

z2

�
= 1. �2�

otationally symmetric quadrics have the restriction �
�. When fitting corneal surfaces, we found that in all
ases the best fit corresponded to an ellipsoid, i.e., �, �,
nd � were positive. Radii and asphericities of the two
ain meridians are calculated as Rx=� /��, Ry=� /��,
x=� /�−1, and Qy=� /�−1. In all cases, we allowed free

ranslation in space of the fitting surface, but no rotation.
The profiles of the intraocular lens were fitted by conics

Eq. (1)]. In this case we allowed both free translation and
otation of the fitting curve, because we found that the
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rofiles were tilted. We fitted the entire profiles, which
ave a length of �5.5 mm and are centered approxi-
ately at the apex.
The fitting was performed by minimizing the mean

quared error along the z-axis for 3D measurements and
long the y-axis for 2D measurements, using routines
ritten in Matlab. As initial conditions, we used the re-

ult of minimizing the squared residues of Eqs. (1) and (2)
for the 2D and 3D cases, respectively). This minimization
ay be done very fast through a matrix inversion but the

esults are strongly affected by a bias [26], and that is
hy we only used this method to generate the initial con-
itions.

. Statistical Analysis
e compared the usual statistical analysis that treats

eparately R and Q with a multivariate analysis of the
ariance (MANOVA) that takes into account both vari-
bles at the same time. Separate analyses of the two vari-
bles were done with Student’s t-test. We considered that
here was a change in the surface if we found a statisti-
ally significant change in R or in Q. As the probability of
alse positives roughly doubles with respect to using two
ariables, we applied a Bonferroni correction (p=0.025 in
ach of the two t-tests).

The MANOVA tests whether two sets of multidimen-
ional measurements are different. For multidimensional
easurements we mean those that are characterized by
ore than one scalar, as is the case of measurements of

he corneal geometry that is characterized by R and Q.
riefly, MANOVA finds the direction of the R-Q plane in
hich the separation between the two data sets is maxi-
um, and then performs a one-dimensional test along

hat direction, correcting the p-value for the extra degree
f freedom introduced by the search of the direction of
est discrimination. We used the implementation of
ANOVA that is available in Matlab’s statistics toolbox

function manova1). We use p=0.05 as the threshold be-
ween significant and non-significant differences.

. RESULTS
. Experimental Measurements
igure 2 shows the correlation plot (radius versus asphe-
icity) for repeated measurements of three subjects, taken
ith Pentacam. The data consist of 3D topographies, fit-

ed to quadrics [Eq. (2)]. Figure 2(a) shows the data for
he anterior cornea, and Fig. 2(b) for the posterior cornea.
or the six data sets of repeated measurements, radii and

ig. 2. Correlation between radius and asphericity when Pen-
acam data from repeated measurements are fitted to ellipsoids.
a) Data of anterior corneal surface. (b) Data of posterior corneal
urface. Diamonds: Subject 1. Circles: Subject 2. Triangles: Sub-
ect 3.
sphericities of the fits are strongly and significantly cor-
elated, except for the posterior surface of Subject 2 (p
0.07, circles; nonetheless, when the data were fitted to
on-rotationally symmetric ellipsoids, there was a signifi-
ant correlation in the vertical meridian, p=0.02). Table 1
hows the correlation coefficients �r� and p-values �p� for
hese measurements, as well as the slopes of the correla-
ions. These data correspond to fits to rotationally sym-
etric ellipsoids, and the results hold (some of them with

mproved correlations) for non-rotationally symmetric el-
ipsoids.

In order to find the degree of correlation in a broader
et of conditions, we analyzed a data set of repeated Pen-
acam measurements on patients before and after LASIK,
t different time points, taken by three different opera-
ors in a clinical setting, and measurements of non-
perated control subjects taken in a laboratory setting.
his data set consists of measurements from different
ubjects obtained on different days (three to six measure-
ents per day). Each data set is centered at its own mean

alue, which differs across subjects. As we are interested
n comparing dispersion of the values, we subtracted the
verage values of radius and asphericity for each subject
nd session from all the measurements of the session.
igure 3(a) shows the correlation between the dispersion

n R and Q of the anterior corneal surface, for all patients
re- and post-LASIK, and for all controls. Figure 3(b)
hows the results for the posterior surface on the same
yes. The correlations are very strong (r=0.93 and p
10−15 for the anterior surface, r=0.77 and p�10−15 for

he posterior), especially considering the heterogeneity of
his set of measurements.

Figure 4 shows the correlation between R and Q from
ts to the Placido videokeratoscopy data for Subject 1
Fig. 4(a)] and Subject 2 [Fig. 4(b)]. As data are affected by
he shadows and occlusions by the eyelashes and eyelids
n the upper quarter of the topography, data in the hori-
ontal meridian are more reliable than those of the verti-
al meridian, and only the radii and asphericities for the
orizontal meridian are depicted. The correlation in the
orizontal direction is stronger than the corresponding
orrelations in the vertical direction or for rotationally
ymmetric fits (not shown), but all correlations except one
re significant (Table 1). In general, the videokeratoscopy
ata show a lower correlation than the Scheimpflug im-
ging data.
Figure 5 shows the correlation between radius and as-

hericity of repeated measurements of the profile of an
spheric intraocular lens, obtained with the Pl� non-
ontact optical profilometer. In this case, the data consist
f a 2D profile, fitted by conics. The correlation is also
ery high: r=0.83, p=4�10−10.

. Simulations
e built a synthetic data set corresponding to a perfect

llipsoid with R=8 mm and Q=0.3. When no noise is
dded to the data, the fitting algorithm provides exactly
he correct ellipsoid parameters. The noise added to the
ynthetic ellipsoids causes dispersion in the fitted param-
ters (Fig. 6), and the correlation arises �r=0.95, p
10−15�. Figure 6 also shows the histograms along the R

nd Q directions. We see that, in spite of minimizing the
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eometrical distance between data and fitted curves,
here is a slight bias in the average values. However, this
ias is much smaller than the one reported for other types
f fitting procedures [26].

We have found that the slope of the correlation depends
n the average values of R and Q. In particular, the slope
ncreases approximately linearly with R, and to a much
esser extent with Q. Also, the slope depends highly on
he diameter of the fitting area, roughly doubling from a
t within a 6–4 mm diameter. It may also depend on other

Table 1. Correlations between Fitted Rad

Sub
cheimpflug Anterior rc 0

maging surface pd 5·
m �mm−1�e 2.3

nf

Posterior r 0
surface p 1

m �mm−1� 1.9
n

lacido disk Symmetrical r 0
ideokeratoscopy p 0

m �mm−1� 0.9
n

Horizontal r 0
meridian p 2·

m �mm−1� 0.8
n

Vertical r 0
meridian p 0

m �mm−1� 0.4
n

Profilometer r
p

m �mm−1�
n

aData from a group of LASIK patients and non-operated controls.
bIntraocular lens.
cCorrelation coefficient.
dp-value for the correlation.
eSlope of the correlation �and 95% confidence interval�.
fNumber of measurements.

ig. 3. Dispersion in fitted radius and asphericity from mea-
urements obtained with Pentacam on different subjects (pre-
nd post-LASIK patients and controls) on different days (within
month, three to six consecutive measurements per session). (a)
nterior surface of the cornea. (b) Posterior surface of the cornea.
actors such as the type of noise, different samplings of
he elevation map (square grid, rings, etc.), or unequal
ariance for the noise in different regions of the topogra-
hy (for example, topographers are typically more accu-
ate in the center than in the periphery). With respect to
he latter case (differences in the effect of noise across the
orneal topography), we observed in simulations that a
ery important bias in the average parameters occurs
hen noise in the periphery was greater than in the cen-

er. We found that the average Q shifted from the nominal

Asphericities in the Experimental Data

Subject 2 Subject 3 Multiplea IOLb

0.83 0.76 0.93 —
8·10−7 10−7 �10−15 —

2.1±0.6 2.1±0.6 2.85±0.03 —
23 35 717 —

0.38 0.76 0.77 —
0.07 10−7 �10−15 —

0.8±0.7 2.2±0.6 1.71±0.09
23 35 717 —

−0.44 — —
0.06 — — —

−0.3±0.7
20 — — —

0.53 — — —
0.016 — — —

0.6±0.4
20 — — —

0.48 — — —
0.03 — — —

0.5±0.4
20 — — —

— — — 0.83
— — — 4·10−10

7.4±1.5
— — — 36

ig. 4. Correlation between fitted radius and asphericity, for re-
eated measurements of the anterior corneal surface performed
y Placido disk videokeratoscopy. (a) Subject 1. (b) Subject 2.
ata are fitted to non-rotationally symmetric ellipsoids. The plot-

ed data are for the horizontal meridian.
ii and

ject 1
.82
10−9

±0.5
33

.88
0−11

±0.3
33

.39
.003
±0.3
55

.54
10−5

±0.3
55

.28

.04
±0.3
55

—
—

—
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.3 to 0.9 and R shifted from the nominal 8 to 8.15 mm,
or the 10 �m standard deviation in the central 3 mm and
0 �m standard deviation in the remaining area up to 6
m diameter. A further study of these factors is necessary

o characterize the correlation, but would be very
nstrument-specific, and falls beyond the scope of this pa-
er.
We compared the slopes obtained by our simulations

ith the experimental results, by running simulations
ith the average experimental radii and asphericities and

he same fitting region (central 6 mm diameter) and the
oise values reported in the methods. We found for the
imulated data slopes of 3 mm−1 for the anterior surface
nd of 2.5 mm−1 for posterior corneal surfaces, only
lightly higher than the slopes found for the experimental
ata set (reported in Table 1). On the other hand simula-
ions based on the average experimental radius and as-
hericities from fits of 2D profilometric data on intraocu-

ig. 5. Correlation between fitted radii and asphericities for re-
eated measurements on an aspheric intraocular lens, performed
ith a non-contact profilometer. Data are fitted by conics. This

xample corresponds to aspherical intraocular lens with a very
igh asphericity and very different geometry from that of normal
yes, and therefore the graph has been plotted with a different
spect ratio than Figs. 2–4.

ig. 6. (Color online) Results of the simulations for an ideal ro-
ationally symmetric ellipsoid with R=8 mm and Q=0.3, and
dded Gaussian noise of 10 �m standard deviation. The central
ox shows the fitted parameters of 1000 fits, and the histograms
how the dispersion in radius (top) and asphericity (right). The
ashed lines indicate the nominal values. The elliptical contour
imits the region where the mean squared error with respect to
he nominal ellipsoid is lower than 0.5 �m (see Fig. 7). The rect-
ngular contour limits the region of 95% confidence intervals in
and Q.
ar lenses showed a slope of 7.1 mm−1. In this case the
lope of simulations falls within the confidence interval of
he experimental result (see Table 1).

. The Origin of the Correlation
he ellipsoids whose parameters lie along the line of cor-
elation are very similar within the fitting region. To il-
ustrate this, we built synthetic data sets of ellipsoids
ith radii ranging from 7.7 to 8.3 mm and asphericities

anging from �0.2 to 0.7 (no noise was added). Figure 7
hows the mean squared error between each of these el-
ipsoids and the one with R=8 mm and Q=0.3 (aligning
hem so that the mean squared error was minimum, and
or a region of 6 mm of diameter around the apex). The
egion with the lowest difference is tilted in the R-Q
lane. Furthermore, this region closely matches the pa-
ameters obtained by fitting noisy ellipsoids of R=8 mm
nd Q=0.3 (elliptic contour in Fig. 6). We conclude that
he experimental noise produces a dispersion of the fitted
arameters, with preference for ellipsoids that are statis-
ically more similar to the nominal one. As the param-
ters of these similar ellipsoids are located along a diago-
al in the R-Q space, the fitted data are correlated. We
epeated the same calculation of the mean squared error
sing ellipses instead of ellipsoids, with similar results,

ndicating that the largest part of the effect is intrinsic to
he geometry of ellipses, and not due to factors of the 3D
eometry.

. Consequences in the Statistical Analysis
n most literature in visual optics addressing corneal or
rystalline lens geometry, the confidence intervals for ra-
ius and asphericity are calculated separately to analyze
he significance of changes across patients, conditions, or
reatment. The separate confidence intervals for radius
nd asphericity limit a region in the Q-R plane shown by
he rectangle in Fig. 6 (95% confidence). However the true
5% confidence region (region inside which the 95% of the
andomly generated points fall) is actually very different
rom the rectangle as it is close to the elliptical contour in
ig. 6. Considering the confidence intervals estimated by
onsidering R and Q separately (rectangle) instead of the
rue region (ellipse) can lead to false positives and false
egatives. Points within the rectangle but outside the el-

ig. 7. (Color online) Mean squared error between an ellipsoid
ith R=8 mm and Q=0.3 and ellipsoids with the radii and as-
hericities specified in the axes. Contours have been plotted for
ean squared errors at 0.2 �m steps between 0.1 and 0.7 �m

nd at 1 �m steps between 1 and 8 �m.
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ipse will be erroneously identified as significantly differ-
nt, decreasing the specificity of the test while points out-
ide the ellipse but within the rectangle will be
rroneously identified as not significantly different, de-
reasing the sensitivity of the test.

In order to overcome this problem one must use a mul-
ivariate statistical test, which takes into account the pos-
ible correlation between the two variables. We propose to
se MANOVA.
Figure 8 compares the different sensitivities when us-

ng separated Student’s t-tests for R and Q and when us-
ng MANOVA. In order to test the probability of detecting
ignificant differences between corneal surfaces we simu-
ated corneal topography measurements of pairs of cor-
eal surfaces. One cornea had R=8 mm and Q=0.3 in all
ases, while in the other R took values between 8 and 8.1
m and Q=0.3 was constant [Fig. 8(a)], or Q took values

etween 0.3 and 0.5 and R=8 mm was constant [Fig.
(b)]. To simulate realistic corneal topography measure-
ents, Gaussian noise (with a standard deviation of

0 �m) was added to the ellipsoid. Each simulated experi-
ental session consisted of five measurements per cor-
ea. Each pair of series of five measurements was com-
ared to estimate whether the two corneal surfaces were
tatistically different. Each experimental session was re-
eated 1000 times to obtain accurate probability esti-
ates. Three statistical methods were tested: separate

-tests on R and Q, with and without the Bonferroni cor-
ection, and the MANOVA test proposed in this study. Fig-
re 8 shows the probability that the two corneas are iden-
ified as significantly different, according to the three
tatistical methods. We found that MANOVA has higher
ensitivity, being capable of detecting changes in R and Q
bout four times smaller than the separate tests. Also,
ANOVA has a higher specificity, finding fewer false posi-

ives than the separate tests (Fig. 8, insets). The fact that
he rate of false positives for MANOVA is lower than the
xpected 0.05 (because we set the threshold in p=0.05) is

ig. 8. Proportion of simulated experiments where a significant d
=0.3 and a test ellipsoid with (a) R=8+	R mm and Q=0.3 or (

eference ellipsoid and five fits to the test one, simulating two s
ach point of the ellipsoid). For each amount of change of R or Q
ificant differences is plotted. Circles: Proportion of trials where
here the Student’s t-test identified a significant change, either i
onferroni correction. Insets show a detail of the region near zer
robably due to deviations of the data from ideal normal
istributions. Both the Student’s t-test and MANOVA
hare most assumptions about the data, including that of
ormally distributed data. However, MANOVA takes into
ccount the possible correlation between the variables,
hich we have demonstrated to occur between R and Q of

epeated measurements on the same surface.
Note that MANOVA does not use previous knowledge of

he correlation between the two variables, and therefore
t can be directly applied to any set of measurements.
owever, if the correlation specific to a given instrument

s well known from a careful characterization, other sta-
istical methods that make use of this previous knowledge
an be implemented, increasing further the sensitivity
nd specificity of the tests.

. DISCUSSION
he presence of strong correlations between radii and as-
hericities describing a surface obtained from multiple
easurements has important implications in the detec-

ion of changes in conic surfaces. Certain combination of
hanges in the asphericity and radius along the correla-
ion line can be interpreted as a change in the surface
hat does not really exist, while changes in radius and as-
hericity of the same magnitude but in the perpendicular
irection can describe true significant changes in the sur-
ace. This is particularly important in physiological optics
here conic surfaces are used to describe the surfaces of

he ocular component. Studies of the geometry of crystal-
ine lens reveal correlations between radius and aspheric-
ty [11] which may be overinterpreted as a particular fea-
ure of the lens, in association with development, growth,
r aging. However, our results indicate that this is actu-
lly a consequence of the fit. Similarly, the impact of cor-
eal treatments on the corneal geometry and optical qual-

ty is usually assessed in terms of changes in radius of
urvature and asphericity [8,9]. Current efforts in refrac-

ce was detected between a reference ellipsoid with R=8 mm and
mm and Q=0.3+	Q. Each experiment compares five fits to the
ve repeated noisy measurements (10 �m standard deviation at
imulated 1000 experiments, and the proportion of detected sig-
VA identified a significant change. Squares: Proportion of trials
s or in asphericity. Triangles: Same as squares but applying the
ifferen
b) R=8
ets of fi

, we s
MANO
n radiu
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ive surgery aim at not inducing changes in the corneal
sphericity to prevent the induction of spherical aberra-
ion. Statistical analysis of the significance of these
hanges should take into account the existing correlations
etween radius and asphericity in the statistical analysis
f possible induced changes in asphericity.

. CONCLUSIONS
here is an important degree of correlation between ra-
ius and asphericity, observed in repeated measurements
f surface topography. The effect has been observed with
ifferent instruments (Scheimpflug imaging topographer,
lacido disk videokeratoscope, and non-contact optical
rofilometer). This strong correlation holds across differ-
nt measurement conditions and samples: anterior and
osterior surfaces of the cornea in vivo, and intraocular
ens in vitro. Simulations show that this correlation effect
s produced even by subtle measurement noise or surface
ariability (as with the profilometer; Fig. 5). Measure-
ent noise and surface variability will always be present

xperimentally, and we therefore can conclude that when
tting surface measurements to conics or conic-based sur-
aces the retrieved R and Q parameters will be usually
orrelated. It is clear from the examples and also from the
imulations that when reporting the results of conic fit-
ings, as those routinely used in ocular biometry, radius
nd asphericity cannot be treated separately: a correct de-
cription of the surface needs both parameters. We have
roposed to use the statistical test MANOVA to study cor-
eal changes. This test increases the sensitivity of the
nalysis, detecting changes about four times smaller than
he separate analysis in R and Q.
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