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Resumen

El estudio del entrelazamiento cudntico es esencial para la comprension de diversas areas
como la Optica cudntica, la materia condensada e incluso la fisica de altas energias. Ademads,
el entrelazamiento nos permite superar la fisica y tecnologias cldsicas llevando a una mejora
en el procesado de la informacidn, la computacién y la metrologia. Recientemente se ha des-
cubierto que el entrelazamiento desarrolla un papel central en la caracterizacién y simulacién
de sistemas cudnticos de muchos cuerpos, de esta manera facilitando nuestra comprension
de la materia cudntica. Mientras que se tiene un buen conocimiento del entrelazamiento en
estados puros bipartitos, nuestra comprension del caso de muchas partes es mucho més lim-
itada, a pesar de que sea un escenario mds rico y que presenta un contraste mds fuerte con
la fisica cldsica. De entre todos los posibles estados entrelazados, una clase especial ha lla-
mado la atencién por su amplia gama de aplicaciones. Estos estados se llaman k-uniformes
y son los estados multipartitos de n cuerpos con dimension local ¢ con la propiedad de que
todas las reducciones a k cuerpos son madximamente desordenadas. Operacionalmente, en un
estado k-uniforme cualquier subconjunto de hasta k& cuerpos estd maximamente entrelazado
con el resto. Los estados & = |[n/2]-uniformes se llaman estados absolutamente maxima-
mente entrelazados porque son mdximamente entrelazados respecto a cualquier particion de
los n cuerpos en dos grupos. Estos estados encuentran aplicaciones en varios protocolos y, en
particular, forman los elementos de base para la construccion de los cddigos de correccion de
errores cuanticos con geometria holografica, los cuales han aportado intuicién importante so-
bre la conexion entre la teoria de la informacidn cudntica y la teoria conforme de campos. Las
propiedades y aplicaciones de estos estados son intrigantes porque conocemos poco sobre las
mismas: cudndo existen, como construirlos, como se relacionan con otros estados con entre-
lazamiento multipartito, como los estados grafo, o como se relacionan mediante operaciones

locales y comunicacion clésica.

Con esta motivacién en mente, en esta tesis primero estudiamos las propiedades de los estados
k-uniformes y luego presentamos métodos sistematicos para construir expresiones cerradas de
los mismos. La naturaleza de nuestros métodos resulta ser muy util para entender la estruc-
tura de estos estados cudnticos, su representacion como estados grafo y su clasificacién bajo
operaciones locales y comunicacién cldsica. También construimos varios ejemplos de esta-

dos absolutamente mdximamente entrelazados, cuya existencia era desconocida. Finalmente,
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exploramos una nueva familia de codigos de correccién de errores cuanticos que generalizan
y mejoran la conexion entre los c6digos de correccion de errores clasicos, los estados entre-

lazados multipartitos y el formalismo de estabilizadores.

Los resultados de esta tesis pueden desarrollar un papel importante en la caracterizacién y
el estudio de las tres siguientes dreas: entrelazamiento multipartito, cédigos de correccidén
de errores clasicos y cédigos de correccion de errores cudnticos. Los estados de entrelaza-
miento multipartito pueden aportar una conexion para encontrar diferentes recursos para tar-
eas de procesamiento de la informacion cudntica y cuantificacién del entrelazamiento. Al
construir dos conjuntos de estados multipartitos altamente entrelazados, es importante saber
si son equivalentes entre operaciones locales y comunicacion clasica. Entendiendo qué esta-
dos pertenecen a la misma clase de recurso cudntico, se puede discutir qué papel desempefian
en ciertas tareas de informacion cudntica, como la distribucion de claves criptogréficas cuan-
ticas, la teleportacion y la construccion de codigos de correccién de errores cudnticos Opti-
mos. También se pueden usar para explorar la conexidn entre la correspondencia holografica
Anti-de Sitter/Conformal Field Theory y c6digos de correccion de errores cudnticos, que nos
permitiria construir mejores codigos de correccion de errores. A la vez, su papel en la car-
acterizacion de redes cuanticas sera esencial en el disefnio de redes funcionales, robustas ante

pérdidas y ruidos locales.
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Abstract

Studying entanglement is essential for our understanding of such diverse areas as quantum
optics, condensed matter physics and even high energy physics. Moreover, entanglement al-
lows us to surpass classical physics and technologies enabling better information processing,
computation, and improved metrology. It was recently discovered that entanglement plays a
prominent role in characterizing and simulating quantum many-body states and in this way
deepened our understanding of quantum matter. While bipartite pure entangled states are well
understood, multipartite entanglement is much richer and leads to stronger contradictions with
classical physics. Among all possible entangled states, a special class of states has attracted
attention for a wide range of tasks. These states are called k-uniform states and are pure mul-
tipartite quantum states of n parties and local dimension ¢ with the property that all of their
reductions to k parties are maximally mixed. Operationally, in a k-uniform state any subset
of at most k parties is maximally entangled with the rest. The k£ = |n/2|-uniform states are
called absolutely maximally entangled because they are maximally entangled along any split-
ting of the n parties into two groups. These states find applications in several protocols and,
in particular, are the building blocks of quantum error correcting codes with a holographic
geometry, which has provided valuable insight into the connections between quantum infor-
mation theory and conformal field theory. Their properties and the applications are, however,
intriguing, as we know little about them: when they exist, how to construct them, how they
relate to other multipartite entangled states, such as graph states, or how they connect under

local operations and classical communication.

With this motivation in mind, in this thesis we first study the properties of k-uniform states and
then present systematic methods to construct closed-form expressions of them. The nature of
our methods proves to be particularly fruitful in understanding the structure of these quantum
states, their graph-state representation and classification under local operations and classical
communication. We also construct several examples of absolutely maximally entangled states,
whose existence was a subject of an open question. Finally, we explore a new family of
quantum error correcting codes that generalize and improve the link between classical error

correcting codes, multipartite entangled states, and the stabilizer formalism.

The results of this thesis can have a role in characterizing and studying the following three

topics: multipartite entanglement, classical error correcting codes and quantum error correct-



ing codes. The multipartite entangled states can provide a link to find different resources for
quantum information processing tasks and quantify entanglement. Constructing two sets of
highly entangled multipartite states, it is important to know if they are equivalent under local
operations and classical communication. By understanding which states belong to the same
class of quantum resource, one may discuss the role they play in some certain quantum infor-
mation tasks like quantum key distribution, teleportation and constructing optimum quantum
error correcting codes. They can also be used to explore the connection between the Anti-
de Sitter/Conformal Field Theory holographic correspondence and quantum error correction,
which will then allow us to construct better quantum error correcting codes. At the same time
their roles in the characterization of quantum networks will be essential to design functional

networks, robust against losses and local noise.
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1. Introduction

Quantum entanglement is certainly one of the most fascinating concepts arising in quantum
mechanics. Besides its interest from the foundational point of view, it plays a key role in quan-
tum information science, being a resource for many applications such as quantum communi-
cation and quantum computation [RBOT, BGM™ 10, [CS96, Ste96a, [CGL99, DCO0b, KimO08]].
This stimulated to the development of entanglement theory, in both bipartite and multipartite
cases. The essence of bipartite entanglement is thus that the information about a quantum
bipartite system is not only encoded in its parts, but also in the correlations between them.
Remarkably, when a bipartite quantum system is maximally entangled, the information ap-
pears to be fully encoded in these correlations and no longer in the subsystems which look
maximally noisy or mixed. An example of such a situation is the Einstein-Poldolsky-Rosen

(EPR) or maximally entangled state of two parties.

A very intriguing question is of course whether similar situations exist if the system is made
out of more than two parties. The family of states generalizing this property of the EPR state
to an arbitrary number of parties and local dimensions is the family of Absolutely Maximally
Entangled (AME) states [HCL ™12, [AC13| [GZ14]. AME states are therefore pure quantum
states of n partite systems of local dimension ¢ with the property that all reduced states (mar-
ginals) of at most half the system size are maximally mixed. Remarkably, these states are
known not to exist for all combinations of number of parties and dimensions [Sco04]]. Note
that, one way of extending EPR state is based on the purity of reduced density matrices that
leads to AME states, the other criteria one can consider focuses on generalization based on
Stochastic Local Operations and Classical Communication (SLOCC) classification, for exam-
ple, GHZ and W classes, see [DVCO0]. Moreover, extension based on Mermin formulation
of non-locality is another way of generalizing the EPR states, for a good review on this topic
see [HHHHO9].

Generalizing different properties of the EPR state to an arbitrary number of parties can lead
to the discovery of different types of multipartite entangled states. All of these processes
and applications depend on the property of the multipartite entangled states that are used
as a resource. The applications like measurement-based quantum computation [BBD09b],
quantum error correction schemes [NC00], quantum secret sharing [HBB99|], quantum simu-

lations [L1096]], and in principle in any task involving entangled many-body quantum systems



1. Introduction

[HHHHOQ9], along with its intriguing properties and applications to condensed matter physics
[GTBOS]. Although studying relevant sets of multipartite entangled states is very interesting,

in this thesis we focus on AME and k-uniform states.

In view of the large number of constraints that an AME state should satisfy, it is obvious
that the existence, let alone the systematic construction of these states is a highly nontrivial
problem. For instance it has been shown that these states exist only for special values of the
number of qubits. It is known that there is no AME state for four qubits [GW10] although
there are AME state of five and six-qubits [BPB*07, LMPZ96b]. The existence of an AME
states of seven-qubit was an open question until it was shown [HGS17] that there is no such
state. It had already been shown that no AME state exists for eight or more qubits [Sco0O4].
But we should stress that these results are specific to qubits and for any n, it is possible to
construct AME states if we choose the dimension of each part ¢ large enough [RGRA1S].
Despite all these partial results, it is still largely unknown for which value of n and ¢ AME

states exist and how they can be constructed.

AME states are special cases of the class of so-called k-uniform states for k = |n/2]. k-
uniform states (or for simplicity k-UNI states) are pure states which have the property that
all of their reductions up to k parties are maximally mixed. These states have also deep
connections with apparently unrelated areas of mathematics such as combinatorial designs.
Also, the study of this set of entangled state showed that £-UNI states are a particular type
of quantum error correcting codes (QECCs) [Sco04]. These states exhibit highly entangled
subspaces that form code spaces of QECC:s.

To build a quantum computer which behaves correctly in the presence of errors and many
other quantum applications we need the theory of QECCs. It is also known that there is a
connection between the Anti-de Sitter/Conformal Field Theory (AdS/CFT) holographic cor-
respondence and QECC [PYHP15, IADHI1S, ILS15]. Code constructions which realize this
connection are based on tensor networks in which the fundamental building blocks are AME
states. QECC and AdS/CFT holographic correspondence are two very interesting concepts in
contemporary physics. QECC are crucial to build and operate in the foreseeable future. The
AdS/CFT holographic correspondence is currently our best tool for understanding nonpertur-

bative quantum gravity.

The theory of QECC has some close connection to the theory of classical error correcting
codes as well as some striking differences. Using classical codes one can construct a set of
k-UNT states and show that they are stabiliser states. Many quantum codes can be described
in terms of the stabilizers of the codewords. The stabilizer formalism for £-UNI states and

quantum codes illustrates the relationships to classical coding theory.

In this PhD thesis we explore and deepen the relation between k-UNI states and classical



1.1. Contributions

error correcting codes. Building on this, we can construct a large set of k-UNI states. We then
construct a basis whose elements are all k-UNT states, generalizing the bipartitie Bell basis,
and finally develop a stabilizer formalism for these states. We present two systematic methods
to construct k-UNTI states and classify them based on SLOCC. We then show how the states
derived through our constructions are example of graph states and provide the corresponding
graph. Based on the stabilizer formalism we search new encoding and decoding techniques for
transmitting quantum information. We show how to construct stabilizer QECCs that encode

logical qudits into a subspace spanned by k-UNT states.

1.1. Contributions

In the following, we review the different works that conform this thesis, giving the motivations

and explaining the main results.

1.1.1. Constructing absolutely maximally entangled (AME) states
from maximum distance separable codes

Entanglement has been identified as a crucial property to investigate and describe in several
areas of science. The resource-theory of entanglement considers separated parties sharing a
joint quantum state. It is natural to restrict the allowed operations to the set of operations
to Local quantum Operations assisted by Classical Communication (LOCC). Then, entangle-
ment arises as a resource allowing to achieve certain tasks that are not possible by LOCC

alone.

The study of multipartite entanglement has led to the discovery of different types of entan-
glement. A set of states which is key in quantum applications is the set of highly entangled
states. There are several fundamental roles that multipartite entangled states play in many
quantum information processing tasks, like measurement-based quantum computing, quan-
tum error correction, quantum secret sharing, multi-party teleportation, and finally quantum
networks. All of these processes and applications depend on the property of the multipartite
entangled states that are used as a resource. Recently, a special class of states have attracted
the attention for a wide range of tasks, called absolutely maximally entangled states. AME
states are of interest for multipartite teleportation and quantum secret sharing and have re-
cently found new applications in the context of high-energy physics in toy models realizing
the AdS/CFT-correspondence.

1.1.1.1. Resulis

In chapter [3] we work out in detail the connection between a certain type of AME states

known as of minimal support and classical maximum distance separable (MDS) error cor-



1. Introduction

recting codes. The minimal number of terms for which the condition of maximally mixed
marginals can still be fulfilled is the dimension of the largest sub-system on which the state
is required to still be maximally mixed, namely qL”/ 2| | AME states with this many terms are
called minimal support AME states. In this chapter, we provide explicit closed form expres-
sions for AME states of n parties with local dimension ¢ a power of a prime for all ¢ > n — 1.
Linear MDS codes are introduced and a systematic construction of AME states of minimal
support is presented. Then, we show how to construct an orthonormal basis of AME states
from any given AME state. We also develop a stabilizer formalism for AME states of minimal

support constructed from MDS codes. These results are also presented in [RGRA18]].

1.1.2. New construction for k-uniform and absolutely maximally
entangled states

Despite all progress in studying multipartite states, in contrast to the case of bi-partite entan-
glement, our knowledge about multipartite entanglement is still in its infancy. For example,
although there is a well-defined order in the entanglement of bi-partite states, it is now known
that for 3-party qubit states such an order is not possible, as there are two LOCC inequivalent

classes and for more than three parties these classes are infinite.

As stated in the beginning, maximal mixedness of subsystems is important for many impor-
tant quantum communication tasks. But, the only known systematic construction of k-UNI
quantum states is based on classical error correction codes which leads to those states that
contain the minimal number of product terms necessary to obtain a full rank for all of the re-
ductions. Now that it is clear that k-UNTI states are useful, we need to find systematic methods

to construct them and classify them based on LOCC.

1.1.2.1. Results

To our knowledge, the only known systematic construction of k-UNI quantum states is based
on classical error correction codes. In chapter[d, we present a systematic method to construct
other set of £-UNTI states and show that the states derived through our construction are not

equivalent to any k-UNTI state constructed from classical MDS error correction codes.

Beside classifying the states based on SLOCC, we use our method to construct k-UNTI states
with smaller local dimension ¢ compared to the same k-UNI state constructed from MDS
codes. We then show how the k-UNTI states derived through our construction are example of
graph states and provide the corresponding graph for both constructions: using MDS codes
and our new systematic method. Furthermore, we use our method to construct several exam-
ples of absolutely maximally entangled states whose existence was open so far, these results
are also presented in [RTGA19].
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1.1.3. Entanglement and quantum combinatorial designs

Classical coding theory and k-UNI states study analogous problems and have a number of
parallel results. Codes were originally introduced in order to correct errors in the transmis-
sion of data over noisy communication channels. Not only this makes them mathematically
interesting, but they also can be considered for more applications. They have been used in
a variety of applications, such as increasing the storage capacity of compact disks, and by
now coding theory has developed into a major area of quantum information. k-UNI states
have deep connections with apparently unrelated areas of mathematics called combinatorial
designs. There are several classes of combinatorial designs, namely Latin squares, cubes,

hypercubes as well as notion of orthogonality between them.

It is possible to introduce quantum combinatorial designs, like quantum Latin squares, cubes,
hypercubes and quantum orthogonal arrays and ask the following questions: Are there more
contributions between the states and mathematical aspects? Are quantum combinatorial struc-
tures different from their classical counterparts? Are the states constructed from quantum

combinatorial designs different from those constructed from classical ones?

1.1.3.1. Resulis

In chapter[5] we introduce several classes of quantum combinatorial designs, namely quantum
Latin squares, cubes, hypercubes and a notion of orthogonality between them. A further
introduced notion, quantum orthogonal arrays, generalizes all previous classes of designs. We
show that mutually orthogonal quantum Latin arrangements can be entangled in the same way
as quantum states. Furthermore, we show that such designs naturally define &-UNI states.
We derive infinitely many classes of mutually orthogonal quantum Latin arrangements and
quantum orthogonal arrays having an arbitrary large number of columns. These results are
also presented in [GRDMZ18§]].

1.1.4. Optimal quantum error correcting codes from absolutely
maximally entangled states

Computers have changed the world in many ways. While computers allow us to solve many
problems, there remain problems that require a computational effort too large even for the
most powerful computers. Quantum computers which used quantum mechanics might be
more powerful than classical computers. Soon after the idea of a quantum computer took hold,

the importance of robustness and quantum error correction was in the center of attention.

This was a challenging problem because of three reasons. First of all, in classical error correc-
tion we can measure all of the bits of a message in the computer while in a quantum computer,

measuring a quantum message can destroy any entanglement between qudits. Second, in clas-
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sical theory one can copy information while in quantum mechanics the cloning of arbitrary
states is impossible. Last, a classical computer only needs to preserve the bit values of 0 and
1, but a quantum compute needs to keep phase information in superposition states. Therefore,
while classical errors are discrete, quantum errors are continuous by nature. In the end, the

field of quantum error correction has been able to overcome these challenges.

A class of quantum codes, called quantum stabilizer codes, has a connection with existing
classical codes. This provides a great advantage to construct quantum codes using the extra
knowledge on code parameters of the classical codes. This also leads us to a better under-
standing of the connection between quantum codes and highly entangled multipartite states
constructed from classical codes. In particular, one application of the AME states is using
them to construct quantum error correcting codes. In this construction, one can construct
stabilizer quantum codes that the logical qudits are encoded in a subspace spanned by AME

states.

1.1.4.1. Results

In chapter [0 we show how to construct stabilizer quantum error correcting codes (QECCs)
that encode a logical qudit into a subspace spanned by AME states for every ¢ > n — 1 prime.
Under a conjecture for which we provide numerical evidence, this construction produces a
family of quantum error correcting codes [n, 1,n/2], for n even with the highest distance
allowed by the quantum Singleton bound. The conjecture we propose discusses the existence
of a family of QECC whose code spaces are spanned by AME states. We show that our
conjecture is equivalent to the existence of a certain products of generalized Pauli operators
that is incompressible in the sense that its weight cannot be decreased by multiplying it with
stabilizer products and connect this with a feature of the joint weight enumerators of certain
MDS codes. Further we construct such codes for all n up to n = 8 by finding several suitable
incompressible operators. In these QECCs, a logical qudit is encoded in a g-dimensional sub-
space spanned by AME states of n parties. Our proposal has a very clear physical motivation
and complements other constructions of non-binary QECC. In particular our construction is
very explicit and works with a smaller local dimension ¢ given n than previous codes, these

results are also presented in [RGRAT1S].

1.1.5. Quantum codes from highly entangled states

Quantum states are very delicate, therefore, quantum error correction must be used to build
reliable quantum computers. The quantum stabilizer codes have proved particularly fruitful
in producing codes and also in understanding the structure of them. Moreover, if we want to
construct the most general possible stabilizer codes, we should take advantage of connections

to classical coding theory. It is shown that the stabilizer formalism for quantum codes also
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illustrates the relationships to classical coding theory. This way of constructing quantum
codes is very nice in that it allows to use the existing knowledge of the structure of classical

codes to construct quantum codes.

The method of constructing new quantum codes from old ones simplifies the task of finding
QECCs, which can otherwise be quite a difficult problem. There is a practical method of con-
structing new codes from old ones that we call the Shortening process. In this method, one
starts from a k-UNT state constructed from an MDS code and construct a family of stabilizer
QECC:s by tracing out > k parties. So far, in previous literature the main focus was on pre-
senting the stabilizers which require finding a special pattern for them. But, to build quantum
devices we also need a theory instructing us how to decode and encode using a QECC without
losing the protection against errors. We show how to find all the codewords in closed from
expressions as well as logical Pauli operators. We then modify the method to produce a new

set of stabilizer QECCs with a larger code subspace compared with the existing constructions.

1.1.5.1. Resulis

In chapter[7] we discuss the connections between classical codes, highly entangled pure states
(called k-uniform states), and quantum error correcting codes (QECCs). This leads to a sys-
tematic method to construct stabiliser QECCs by starting from a k-UNTI state and tracing out
one party at each step. We show how to find explicit codespace beside stabiliser formalism.
We then modify the method to produce another set of stabiliser QECCs that encode a logi-
cal qudit into a subspace spanned by AME states. This construction produces quantum codes
starting from an AME state without tracing out any party. Therefore, quantum stabilizer codes
with larger codespace can be constructed and that improve the achievable rate compared with

the existed construction. These results are also presented in [[Rai120]].
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2. Preliminaries

In this chapter, we give a short introduction to the basic tools of classical and quantum
information theory that are used throughout this thesis. It focuses on three main top-
ics: entanglement, classical and quantum error correction. Interested readers can consult
Ref. [HHHHQ9] for more details on entanglement, Ref. [MS77] for classical codes and
Refs. [Got97, IGot09, [TerlS] for quantum codes. These three concepts are also explained
in the book by Nielsen and Chuang that is also a very good reference on basic information of

quantum theory and quantum information [NCOQO].

2.1. Entanglement

Besides its interest from the foundational point of view, entanglement plays a key role in quan-
tum information science, being a resource for many applications such as quantum telepor-
tation [BBC"93]], quantum dense coding [BW92]], measurement-based quantum computing
[RBO1, BBFEMO06, BBD*09a], quantum error correction [CRSS98|, [Ste96b, [Sco04]], quantum
secret sharing [HBB99] and multi-party teleportation [KB98, IDCOO0b], and finally quantum
networks [CZKH97, [KimO§8|]. Therefore, the utility of a quantum state in all these applica-
tions depends on entanglement. This led to the development of entanglement theory, in both

bipartite and multipartite cases.

2.1.1. Bipartite entanglement

The essence of bipartite entanglement is that the information about a quantum bipartite system
is encoded in its parts and the correlations between them. There are two extreme cases for
quantum states: states that are separable and states that are maximally entangled. The states
that contain no entanglement are called product or separable [Wer89]]. A pure state [¢)) 45 €

H 4 ® H p is product if it can be written in the form

[V)a = [P)a@[¥)B (2.1)
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for some |1)) 4 € H 4 and |¢)p € Hp. A mixed state p4p is separable if it can be written in

the following form
PAB = Zpi PY @ ply (2.2)

where p; is a classical probability distribution, Vi p; > 0, >, p; = 1, and p, are states in
system A and p’; in system B, respectively. These states are not entangled since they can be
created by performing Local Operations and Classical Communication (LOCC) between the

two systems and thus can be regarded as containing only classical correlations.

Entangled states are those that cannot be written as equation (2.2). Therefore, an entangled
state requires a joint quantum operation for its preparation. An example of such a situation is

the Einstein-Podolsky-Rosen (EPR) or maximally entangled state of two parties
|67) = 100) +[11) , (2.3)

also known as Bell state. Here and in the following, we will not always explicitly normalize
states for the sake of a more compact notation. For two qudits, g level quantum systems, one
can always write a maximally entangled state in the form

q—1
[y =" li)a® |i)p (2.4)
=0

where |i) 4 and |i) g form an orthonormal basis in system A and B, respectively.

Also, one should note that two states that are in the same Local Unitary (LU) equivalence
class have the same entanglement properties. That means performing arbitrary local unitary

operators U; and Us on a given state |¢), i.e.,

V) = U1 ® Us|9) (2.5)

does not change its entanglement properties.

2.1.2. Multipartite entanglement

While the entanglement of bipartite pure states is already well understood [BBPS96,
N1e99, HHHHO9], we are still far from completely understanding multipartite entanglement
[DVCO00, VDMV02, SSCT15]]. Since entangled states constitute the essential ingredient for
many fascinating applications within quantum computation and quantum communication, it

1s a remarkable area to work on.

The basic definition for entanglement in multipartite states is the same as for bipartite sys-

tems. A state is entangled if it cannot be created by local operations and with the help of

10
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classical communication, because this method can only produce classically correlated states.
A multipartite state that possesses no entanglement is called fully separable. A given pure

multipartite state of n parties is fully separable if it can be written as

) =[P @) ® -~ & [P . (2.6)

A multipartite pure state of n parties is called entangled if it cannot be written as the tensor
product of n single-qudit pure states. Note that, a state is called genuinely entangled if all
subsystems are correlated and the state is not separable with respect to any possible splitting
of n subsystems [HHHHO9]].

As before, for a mixed state p we have
P=2DiPi®P® B p,, 2.7

such that p; > 0 is a probability distribution and p§ for j € {1,...n} represent density
matrices for the individual systems. A multipartite state is called entangled if it cannot be

written as a convex combination of product states, i.e., equation (2.7).

2.2. Entanglement transformations for pure states

We describe the entanglement properties and LOCC. After that, we show that LOCC provides
the framework to quantify how much entanglement a state contains.

2.2.1. Schmidt decomposition of bipartite states

The Schmidt decomposition is an important aspect of bipartite states. For every pure state |1))
in H 4 ® H p, there exist orthonormal bases {|a;)} € Ha, and{|3;)} € Hp, such that the state
can be expressed as

I
) => N i) @ 16s) (2.8)
=1

with [ = min(dim(H ), dim(Hg)). The Schmidt coefficients \; are unique, they contain all
the information about entanglement in the state and satisfy >>; A = 1. In this notation, the
squares of these coefficients are given by the eigenvalues of the reduced states. The number
of nonzero Schmidt coefficients is called the Schmidt rank. The state |¢) is entangled if and
only if its Schmidt rank is larger than one, i.e., if there exists only one \; # 0, the state is

separable.

11
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2.2.2. Local operations and classical communication (LOCC)

Considering entanglement as a resource it is reasonable to ask: Given two states, |¢)) and |¢),
with Schmidt coefficients «; and f3;, respectively, which one is more entangled? To find an
answer for this question, we consider the fact that entanglement is usually considered in a
scenario where parties are far apart from each other, thus we restrict the quantum operations
to be locally implemented. We also allow classical information to be transmitted between the
distant parties. Therefore, LOCC is a standard scheme in which we could quantify entangled
states. Based on these operational considerations, if the state |¢)) can be transformed into |¢)

by only using LOCC, |)) possesses at least as much entanglement as |¢).

To study this, let us first write two vectors in decreasing order v = (vy,...,v,) and W =
(wy,...,wy), such that v; > vy > --- > v, and wy > wy > --- > w,. The ¢-dimensional

vector «w majorizes U, written as w < v, if

! !
w<v <= ZwiSZvi,Vlzo,...,q—l. (2.9)
i=0 i=0

Transferring two bipartite states |1)) and |¢) is formulated in [Nie99] by using the concept of
vector majorization. It is proven that the state |¢)) with Schmidt coefficients & = (o, . .., ay)
can be transformed into |¢) with Schmidt coefficients § = (3, ... , B,) if and only if the

vector coefficient o is majorized by the vector coeficients 3 i.e.,

W) 25 o) = B =<’ (2.10)
A state such that all the Schmidt coefficients have the same value 1/, /g is maximally entan-

gled, see Eq. (2.4) as it can be transformed into all other ¢-dimensional states by LOCC.

One should note that for systems of local dimension larger than two, ¢ > 2, it is possible
that neither 3% < o2, nor o < (3%, and thus neither transformation can be deterministically
performed by LOCC.

It is also possible to consider converting the state |¢)) to |¢) with a non-zero success prob-
ability by local operations and classical communication. If such a transformation exists, we
say that state |¢)) can be transformed into |¢) by Stochastic Local Operation and Classical
Communications (SLOCC).

The problem of transforming states via SLOCC with the maximal conversion probability was

discussed by Vidal [Vid99]. The maximal transformation probability from a given bipartite

12
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state |1)) to |¢) with Schmidt coefficients «; and [3;, respectively, is given by

-1 o
Z?:o Qa;

Zl:(] B’L
Note that considering the probability p = 1 leads us to majoriation’s results 3% < a? by

Nielsen [N1e99].

It is also interesting to compare the two sets of LOCC and SLOCC operations mathematically

for bipartite and multipratite states In LOCC operation, it is allowed to perform LU operators

W) =U; @+ @U,|o), (2.12)

adding ancilla particles, apply unitary operators to system and the ancilla, do measurement, in
other words, it contains applying any local operations. Moreover, performing local operations
and exchanging classical communication is allowed. On the other side, SLOCC extends this
set of operations since it allows the probabilistic conversion between states. Mathematically,
SLOCC operations are represented by

V) =41 ® - @ A,lp) , (2.13)

where A; is a ¢ X ¢ matrix.

The study of entanglement transformations gave us a good idea about the classification of
states based on entanglement. In the context of quantum information, a precise way to define
classical correlations is via LOCC operations. Classical correlations can be defined as those
that can be generated by LOCC operations. And, entanglement measure can be defined as a

function over the state space that cannot increase under LOCC operations [Vid0OO].

Now that there exists a notion of which states are entangled and are also able, in some cases,
to assert that one state is more entangled than another. This naturally raises the question
of whether there is a maximally entangled state. For the two-party systems consisting of
two g-dimensional sub-systems (called qudits), such states exist. Any pure state that is LU

equivalent to

q—1
) =" |i,i) =10,0) + |1, 1) + -+ ]g—1,¢g— 1), (2.14)
1=0

is maximally entangled. For the case of qubits (¢ = 2) this state can be presented with

Eq. (2.4).

This means any pure or mixed state of two qudits can be prepared from such states with
certainty using only LOCC operations. However, it is very useful to define a function that

quantifies entanglement, the definition for multipartite entanglement is far from solved.
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2.3. Entropy of entanglement

Equipped with LOCC processes we may now proceed to discuss the quantification of entan-

glement of bipartite systems. For this, we discuss two measures:

Distillable entanglement. Alice and Bob start from /N copies of state p and apply an LOCC
operation, that ends up with a state 0. We now require that for large N the final state
approaches the desired Bell state [¢)®™~ . If it is impossible, then entanglement distillation
Ep = 0. Otherwise we say that the LOCC operations constitute a distillation protocol, P
and the rate of distillation is given by Rp = limy “. The distillable entanglement is the

supremum of such rates over all possible distillation protocols, or

Ep(p) = sup{r: (inf [A (™) = [¢7) (¢ " |owl1) = O}, (2.15)

lim
N—o0
where |.|; is the trace norm [HHHHOQ9].

Entanglement cost. It is a measure dual to £/p, and it reports how many Bell states are needed
to prepare p per input copy by LOCC operations. Alice and Bob start from my copies of a
Bell state and apply an LOCC operation, that ends up with a state o. We now require that
for large N the final state approaches the desired N copies of the state p. The rate of the
protocol is given by Rp = limy “{*. The entanglement cost is the infimum of such rates over
all possible LOCC protocols. The definition is [HHHHO9]

Ec(p) = inf{r : lim (inf |5 — A(I6%) (6" |w)]1) = 0} (2.16)

lim
N—oo

For pure states, one can start from k Bell states |¢") 45 shared between Alice and Bob and
prepare N copies of [¢)) 4, then distil them to get &’ many Bell states, therefore &/ < k. In
other words, it is obvious that &’ < k, otherwise, one could employ LOCC operation to create
entanglement which is impossible using LOCC operations. Also, it is possible to show that
asymptotically in N the entanglement cost and the distillable entanglement coincide in the
case of pure states [BBPS96]]. It is shown that the two measures Ec(|¢))45) and Ep(|t)) ap)
are given by the reduced single qudit von Neumann entropy

Ec(|¥)ap) = Ep([¥)a) = S(pa) = S(ps) , (2.17)

where S(p4) is the von Neumann entropy of the reduced density matrix p4 = Trp(|¢)(¥]),
and S(pp) is the von Neumann entropy of the other party.

This shows that the process that transforms IV copies of state |1)) 45 into some copies of Bell

state |¢T) is asymptotically reversible [BBPS96]. With this, one can uniquely quantify the
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entanglement of a bipartite pure state |1)) 4 as

E(|1)as) = S(pa) = S(pB) (2.18)
==Y AP log |\ (2.19)

that as we discussed before \; represents the Schmidt coefficients of the state 1)) 45. In this

context the von Neumann entropy S(p4) or S(pp) is known as the entropy of entanglement.

2.4. Multipartite entangled states

Despite partial progress our knowledge about multipartite entanglement is much more limited.
One reason why the problem is difficult is the existence of different types of entanglement.
For example, although there is a well-defined order in the entanglement of bipartite states, it
is now known that for multipartite states such order is not possible. For 3-party qubit states
there are two LOCC inequivalent classes [DVCO0] and for n > 3 they are infinitely many
(MVO04, DCO02,, [DC004, [SdVK16].

2.4.1. Multipartite LOCC transformations

In multipartite entanglement there are various types of entanglement that cannot be converted
to each other even probabilistically. For 3 qubits the Greenberger-Horne-Zeilinger (GHZ)
state and W states are famous in their different physical properties and applications to quantum
information processing. The GHZ state |GH Z) = |000) + |111) [GHS90] has the maximal
mixed reduced states for each party. It also violates the Mermin Bell’s inequality maximally,
and enable us to extract one Bell state between any two parties out of three with probability
one. On the other hand, the W state |001) +|010) + |100) has the maximal amount of average
pairwise entanglement distributed over three parties and can be utilized for optimal quantum

cloning.

It is shown that in the case of 4-qubit there exist infinitely many SLOCC classes [SdVK16].
Due to these difficulties LOCC transformation have only been characterized for a few classes
of states [TGP10,/dVSK13]. As the mathematical study of multipartite LOCC transformation
is difficult, other approaches towards the characterization of states have been pursued, such as

studying how useful states are for a specific application.

2.4.2. k-uniform and absolutely maximally entangled states

Among multi-partite states, a very special class that has now attracted much attention is the
class of k-UNTI states [[AC13| Hell3l, RGRAI1S8, RTGA19]. These are the states which have

the property that all of their reductions to £ parts are maximally mixed. As an example, the
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GHZ state is a 1-UNI state. On the other hand the |IW) state is not a 1-UNI state. Obviously
a k-UNTI state is an [-UNI state for [ < k.

A given state can be at most a [n/2| -UNI state. Given a real number » € R we denote by
floor 7, ||, the largest integer not larger than  and by ceiling r, [r], the smallest integer not
smaller than 7. Those n-qubit states which are |n/2| -UNT are called Absolutely Maximally
entangled states or AME states for short.

In view of the large number of constraints that an AME state should satisfy, it is obvious
that the existence, let alone the systematic construction of these states is a highly nontrivial
problem. In fact, it has been shown that these states exist only for special values of n [[GR15,
HESG18]]. In the case of qubits, for instance, it has been proven analytically that there are
no AME states for n = 4 and n > 7. The non-existence in the cases n = 4 and n > 8 was
proven by finding a contradiction in a linear program [Rai99b\, Sco04]]. Qubit AME states for
n = 2,3 were long known, a state for n = 5 was found in [LMPZ96a] and more recently
such for n = 5,6 were found numerically in [BSSB05, BPB*07, [FFPP0O8, FEM™10]. The
existence of such states was previously known in the context of quantum error correction
[Rai99a]. Only recently it was shown that there can not be a qubit AME state for the case
n =7 [HGS17].

2.5. Graph states

Graph states are entangled pure quantum states that are defined based on a graph. These states
are a special class of stabilizer states and are of interest because they can be represented just
by a graph that is both succinct and also, captures all the properties of the state. Graph states
are useful in quantum error-correcting codes, entanglement measurement and purification, and
for the characterization of computational resources in measurement based quantum computing
models [SWO01, HDET06, BB06].

2.5.1. Generalised Pauli operators

In this section we define generalised Pauli operators X and Z that are used in many parts of
this thesis. Operators X and Z generalize the Pauli operators oy and o to Hilbert spaces of

dimension ¢ > 2. We define these operators through their action on a given basis as follows

X|7)=17+1 mod q) (2.20)
Z|j) =’ ), 2.21)

with w := e'?7/¢ the ¢-th root of unity. X and Z are unitary, traceless operators, and X7 =
Z4=1.Fora,be{0,...,q— 1} itholds that Tr(Z* X®) = §,gppand Z X =w X Z.
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We call operators that are tensor products of powers of Pauli operators Pauli strings. The

Pauli strings X; or Z; acts on the qudit at position [ for example

X =1 -90lX®1®---®1, (2.22)
—_——— —_———

-1 n—I
the same definition holds for Z;.

Let us also introduce the gate operation known as discrete Fourier transform or Hadamard
matrix H [DM72, Chapter 4][MS77]. The local Fourier transform, /' operating on the qudit
at position ¢ is given by

F= > w™l){m|. (2.23)

l,m€[q]

Note that /'Y = 1 if ¢ is a prime number. For the qubit case, Fourier transform correspond to

gt ! (2.24)
I Y '

There is connection between Fourier transform and Pauli matrices, F~'ZF = X and
F'XF =271,

the well known H matrix

2.5.2. Stabilizer states

Stabilizer states have first been introduced for qubits [Got97] and later generalized to qudits
[AKOT, KKKSO06]. For a given stabilizer state |1)) there exists an associated stabilizer group,
that consist of a set of pauli strings that leave |1)) unchanged

Vi S = ¢) . (2.25)

Any stabilizer state can be defined by a set of stabilizer generators S, which generates the
group under multiplication, i.e., if S; and S; are two stabilizers, \S;5; is a stabilizer. Stabilizer
states are further defined as a subset of the n-qudit states that can be efficiently described by

a set of n stabilizer generators
S¢:{SZSZW)>:|¢>,SZ€PR,Z:1,,n}, (2.26)
where P" is the group of n-fold tensor products of Pauli operators 1, X and Z.

2.5.3. Definition of graph states

A graph G = (V,T") is composed of a set V' of n vertices and a set of weighted edges specified
by the adjacency matrix I', which is an n X n symmetric matrix with vanishing diagonal

entries and I';; = 0 if vertices ¢, j are not connected or I';; > 0 otherwise. We are now ready
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to define graph states for n qudits of dimension ¢, wherein this section ¢ is a prime number.
The qudits associated to the graph are graphically represented by vertices V' = {v;}, whose
size is |V'| = n. The graph state associated with a given weighted graph G = (V,T") of a
system of n qudits labelled with V' = {v;} and adjacency matrix I, reads [BBD"09a]

Fij
|F> = H CZi,j

i>j

+)®" (2.27)

where |+) = %" |) and pairwise controlled-Z gates apply between the systems according
to the entries of the adjacency matrix I'. For two distinct qudits ¢ and j, the controlled-Z gate
CZ,; is defined by

CZij =Y INlli® Z; = Y W™l ® [m)(ml; . (2.28)

l€q] l,me[q]

In the case of qubits |[+) = |0) + |1), and CZ,; is the controlled Z gate written as

CZ;; = (2.29)

o O O =
oS O = O
o = O O

The graph state |I'), Eq. (2.27), is +1 eigenstate (up to a global phase factor) of the following

n set of stabilizer operators that stabilize |I")

SE =X [[(Zm)" 1<i<n. (2.30)
In this formula, the generators of the stabilizer group provide an intuitive framework to con-
sider the graph representation of a pure state. For every 1 < [ < n, S; means that at site [ we
have considered X, while at all other neighbours connected to [ we have Z to the power given
by the weight of the connecting edge. This shows that considering the graphical representa-

tion, we can uniquely determine the state |I") and its stabilizers.

2.6. Classical error correcting codes

Error correcting codes are introduced to preserve information transmitted across a noisy chan-
nel. These codes provide a way to reduce the influence of noise. The principle of error cor-
recting codes consists of adding redundancy in the message so that the receiver could recover

the sent message even if it has been corrupted during the transmission.
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2.6.1. Finite fields

In order to discuss coding theory, we first need to introduce a notion of linear independence
that is suitable for sequences over a finite set of elements. This brings us to the theory of
finite fields [MS77, Chapter 3,4]. Finite fields are used in many known constructions of
codes. They are also important in many branches of mathematics, because of its diverse
applications in such areas as combinatorics, coding theory, cryptology and the mathematical
study of switching circuits. A finite field is also known as Galois Field in honor of Evariste

Galois and denoted by G'F'. It has the following important properties.

A finite field (or Galois field) is a finite set of elements that is closed under addition, subtrac-
tion, (commutative) multiplication and division (excluding division by zero). For every prime
number p and every natural number m there exists exactly one finite field GF(p™) (up to
isomorphism) of cardinality (also called order) p™. For every prime p the finite field GF'(p)
is equal to the integers modulo p. For example GF'(5) = {0, 1,2, 3,4} where summation,

addition, multiplication, and division are carried out modulo 5.

The prime-power finite fields G F'(p™) can be explicitly constructed as follows: Let GF'(p)|x]
be the set of polynomials in = over G F(p), that is, the polynomials whose coefficients, vari-
able z, addition and multiplication are elements from G'F'(p). Choose a polynomial P over
GF(p) of degree m that is irreducible with respect to that field. Irreducible here means that
P can not be written as the product of two non-constant polynomials in G F'(p)[x]. The exis-
tence of such a polynomial P is always guaranteed [MS77, chapter 3]. GF'(p™) is then the
quotient ring GF (p™) = GF(p)[x]/ P, which is actually a field. That is, GF'(p"™) is the set of
polynomials of degree less than m with the standard addition and subtraction of polynomials

over GF'(p) and the result of multiplication is the remainder after Euclidean division by P.

In summary, when defining a field of order p™, one also needs to specify the irreducible
polynomial. An important property of the finite field is that all fields of the same order are

isomorphic. Therefore, one can choose any irreducible polynomial of degree equal to m for
the field GF'(p™).

As an example, let us consider the case ¢ = 22. The elements of the finite field GF'(2?)
can be written in several different ways (see Table [2.1)). As the field is a prime-power finite
field, it will be convenient to work with the representation in terms of polynomials based
on the irreducible polynomial x> + x + 1. For example we consider multiplication 2.3 or
equivalently multiplying 2-tuple 01.11

2.3=01.11= (2)(1 + z) =z + 2° (2.31)

Considering the irreducible polynomial z? = x + 1 one can reduce the answer x + 22 to a
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as a 2-tuple as a polynomial spin levels

00 0 0
10 1 1
01 X 2
11 x+1 3

Table 2.1.: GF(2?) generated by 2% = = + 1.

polynomial of degree smaller than 2. In this case we get x + x? = 1, and hence in spin level
language we have 2.3 = 1. In general, to get the terms in the familiar computational basis
representation, after doing all computations in the finite field for each term, one simply has to
switch back to the spin level representation.

It is also shown that every finite field contains at least one primitive element [MS77, chapter 4].
A primitive element of a finite field G F'(q) is an element v whose multiplicative order equals
q — 1, which means if 7 is a primitive element, then the cyclic group {1,7,7%,...,79 ?}isa

set of ¢ — 1 distinct nonzero elements of GF(q).

2.6.2. Main problem of coding theory

The first and most classical example of coding theory is the one where two parties are trying to
communicate over a noisy channel. All one wants to do is send a single bit 0 or 1 as message
words. After going through the channel there is a probability p that the received bit does not
match the sent bit. This means, if a 0 is sent through the channel, then the receiver gets a
0 with probability 1 — p and a 1 with probability p. One solution would be sending chunks
of bits repeated many times. For example, suppose we agree to send message words 000 or
111, and we receive word 001 and we know we are using a channel with at most one error.
Therefore we correct it to 000. We can see this by considering the probabilities as well. The
probability that we send 000 and receive 001 is (1 — p)?p, and the probability that we send
111 and receive 001 is p*(1 — p). If p is small then it is likelier that we sent 000 than that we

sent 111, therefore we decode this message as 000.

One needs to encode the original message to give them some protection against errors on the
channel. After that, we need to decode the received message. Given our received word, we
determine which of the message words is most likely to have been sent. Thus, we ask for the
probability that we make an error in the decoding process. We do this exactly in the case of
encoding 0 into 000 and 1 into 111, where there are two or more errors. The probability of

this occurring is:
3
(2> (L=p)p* +p*~3p" <p, (2.32)

when p is small. If we don’t use the encoding technique and just send a single bit then the

probability that it can be received incorrectly is p. Therefore, we see that when p is small, this
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repetition helps us decode correctly.

We can also ask for the expected errors after decoding in a wrong way. In this case, the

expected number can be written as
3(1-p)p* +p° <p, (2.33)

where p is the expected error that might cause because of the structure of the channel. The
general case is that we encode each bit n times, where for simplicity we assume n is odd.

With the same analysis as above, we can check the probability of decoding incorrectly is

n n n— n n n
<n+1>p51(1 —p) T 4t <n>p" < (n_1>p¥1 , (2.34)
n 2

where p is considered to be small. This shows we can decrease the probability of decoding

incorrectly at the price of sending longer and longer messages.

The repetition code is providing a useful method to correct errors in transmission, but we
would like to find efficient ways. One important measure of the effectiveness of a code is the
rate. Suppose we consider the length of the messages to be k over finite field GF'(g), which
means the number of messages will be ¢*. And we send the messages in blocks of 7 symbols

of GF(q). The rate R of a code with length n that encodes ¢* many messages is defined as
R=—. (2.35)
n

The rate of the code of length 3 defined above is % And, the rate of the repetition code of

length n is %

Now we can phrase the main questions in error correction: How can we build redundancy into
messages so that the errors caused by the channel can be detected and corrected? What are
the most efficient codes, that is those that can correct more errors per sent symbol? For a fixed

number of errors what are the largest possible messages?

2.6.3. Classical codes

The purpose of using codes is to correct errors on noisy communication channels [MS77]].
Given integers n, I, ¢, in general, an error correcting code is an injective mapping from a set
of K messages to a subset of [¢]". For any n € Z* we denote by [n] = (0,...,n — 1) the
range from O to n — 1. Protection against errors on some of the letters of the codewords can
be achieved only if ¢" > K. In the language of coding theory a (n, K, dj),-code is an error
correcting code that works with g-level dits and encodes a total of A messages into codewords

of length n, all having pairwise Hamming distance at least dy. A code can correct errors on
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any subset of at most t = |(dy — 1)/2| many dits [MS77, chapter 1].

Liner codes are a special class of codes. These are codes whose set of messages is [g]* for
some integer k£ and whose injective mapping from this set of messages to the set of codewords
18 linear. For such codes K = q’C and, as we mentioned before they are denoted as ¢ =
n, k,du),

To obtain the largest possible number of codewords with a given minimum distance, some-
times one needs to use nonlinear codes. While the theory of nonlinear codes is rich and subject

to many interesting developments, in this thesis we just deal with linear codes.

2.6.4. Linear codes

Classical linear codes represent a very important subset of classical error correcting codes
and have many practical advantages [MS77]. They are characterized by three parameters,
n,k and dy over a finite field GF'(¢q). A linear error correcting code is a linear mapping
from messages of length £ to a subset of codewords of length n. Protection against errors on
some of the letters of the codewords can be achieved only if n > k. The protection depends
on the Hamming distance between the codewords. The Hamming distance dy between two
codewords is defined as the number of positions in which they differ. The large Hamming
distance is essential in guaranteeing to recover the original message if noise causes errors in
t = [(dy — 1)/2] dits of the code.

In summary, in the language of coding theory a linear code denoted as € = [n, k, dg],, is
an error correcting code that works with g-level dits and encodes a total of ¢* messages into
codewords of length n, all having pairwise Hamming distance at least d;. The repetition code

we mentioned as an example is [3, 1, 3],.

For the encoding procedure of a linear code %, it is possible to define a generator matrix,
in which the codewords are all possible linear combinations of the rows of such matrix. A
generator matrix is a £ X n matrix over a finite field GF'(¢), and it can always be written in

the standard form, up to possible permutations of the n letter of the code [MS77, Chapter 1]
Grxn = [1k|A4] , (2.36)

where 1 is identity matrix with size k¥ x k, and A € GF(q)**(™=%_ This standard form will
be useful several times in this thesis.

Every linear code ¢ has a dual code €, that is the code whose codewords are orthogonal
to all the codewords of the original code with respect to the standard Euclidean inner product
of the finite field. The generator matrix H,,_j, of the dual code is the so-called parity check

matrix of the original code. It satisfies G, (Hn_an)T = (0 and if G, is given in standard
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form, then H,,_jx, = [—AT|1,,_]. The matrix H,,_j., is called parity check matrix, because
for any codeword ¢ € ¥ of the original code H,,_;x,c? = 0, so it can be used to check
whether a string is a codeword or not. As an example, a suitable generator matrix of a linear

code [6, 3, 4]5 in standard form is

1 001 11
Gsxg= 1|0 1 01 2 3 (2.37)
00 1|1 3 4
It yields the following closed form expression for the list of the codewords
C=0vG=1,5,l,i+7+1i+2j+3l,i+ 35+ 4l (2.38)

where ¥ = (i, j,1) and 4, j,1 € GF(5).

2.6.5. Dual code

Every linear code % has a dual code €™+, that is the code whose codewords are orthogonal to
all the codewords of the original code with respect to the standard Euclidean inner product of
the finite field

¢+ ={i|uv=0 forallt € €} . (2.39)

% is the orthogonal subspace to €. This also implies that € is exactly the set of all parity
checks on €. If € has generator matrix G and parity check matrix H, then € has generator
matrix = H, and parity check matrix = G. Thus, if 4" has code parameter € = [n, k, dy],
%~ is an [n,n — k,d}], one should also note that while the code parameters of a code and
its dual are related, their Hamming distance are almost independent, as d7; can be larger or
smaller than dy [MS77), Chapter 5].

2.6.6. Bounds on codes

Our goal is producing a code ¥ C (C%)®"™ with a high rate, and a high relative Hamming dis-
tance, that is with message length and Hamming distance as close as possible to n. But, these
requirements contradict each other. There are several upper and lower bounds on classical
codes for fixed length n over GF'(q): upper bounds like the Singleton, Hamming or sphere
packing and, Johnson bound, and lower bounds like the Gilbert-Varshamov bound. In this
section, we discuss one of the most famous upper bound on the parameters of codes, called

Singleton bound. The other bounds on classical codes can be found in textbooks.

The Singleton bound is a fundamental result from coding theory that bounds the maximally

achievable minimal Hamming distance between any two codewords. It states [Sin64] that for
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any code
K < gvdntl, (2.40)

For a linear code ¢ = [n, k, dg], the Singleton bound reads as
k<n-—dy+1. (2.41)

This corresponds to the fact that the rank of the parity check matrix H is r = n — k and it is

equivalent to the maximum number of linearly independent columns of H.

2.6.7. Maximum distance separable codes

Maximum distance separable (MDS) codes are optimal classical codes. The name comes
from the fact that such codes have the maximum possible distance between codewords. We
call a code MDS if and only if the Singleton bound Eq. (2.40)) is fulfilled with equality. i.e.,
K = ¢"4#+1l This is only possible if K = ¢* for some integer k, regardless of whether
the code is linear or not (Some authors chose to only call linear codes fulfilling with
equality MDS codes [MS77, Chapter 11], but others use our broader definition [Sin64]). In
this case, the bound simplifies to

dg <n—Fk+1. (2.42)

As the all zero codeword is always a valid codeword in any linear code, this implies that any
other codeword of a linear code must have at least n — k£ + 1 non-zero elements because
otherwise, it would have a Hamming distance less than n — k + 1 to the all zero codeword.
One directly verifies that the [n, k, dy = n — k + 1],-code saturates the Singleton bound and
is an MDS code.

The dual code €+ of any linear MDS code % is also MDS [MS77, Chapter 11]. If n is
even and k = n/2, then both codes have the same size, i.e., |¢| = |¢*], but for n odd
and k£ = [n/2| one code has k = |n/2| and the other has £k = [n/2]. In general and to
avoid ambiguity, for the case k < |n/2] we denote the MDS code as ¢ = [n, k|, as the

Hamming distance follows from the saturation of the Singleton bound, and the dual code with
€+ = n,n — kl,.

2.6.8. Constructing new codes from old codes

Using old codes to find new ones can simplify the task of finding codes. There is a number of
simple modifications that one can make to existing codes to produce new codes with different
parameters [HPO3]].

An operation to get a shorter code from an existing one is called puncturing. In this method,

24



2.7. Combinatorial designs

from a linear code [n, k, dy|, by deleting one coordinate one obtains a code [n—1, k, dy —1],.
Another manner to construct a code from another one is called shortening. In this construction
starting from a linear code [n, k, dg, and by taking an appropriate subcode after deleting one
coordinate, one can obtain the code [n — 1,k — 1, dy|. It is worth noting that both puncturing

and shortening operations yield MDS codes when starting with an MDS code.

2.7. Combinatorial designs

Combinatorial designs deal with the existence, construction and properties of finite sets
whose arrangements satisfy generalized concepts of balance and symmetry. Some exam-
ples are block designs, t-designs, orthogonal Latin squares and orthogonal arrays [HSS99].
Design theory has its roots in recreational mathematics and has important applications in
finite geometry, tournament scheduling, lotteries, mathematical chemistry, mathematical bi-
ology, algorithm design and analysis, networking, group testing, and cryptography [Sti03].
We will see later that combinatorial designs also provide a tool for constructing k-UNI states
[GZ14,|GRDMZ18].

2.7.1. Latin squares

Let S be a set of s symbols or levels. We denote the elements by 0,1,...,s — 1. A Latin
square of order s is an s x s array with entries from the set S such that each element of .S
appears once in every row and column. It can be shown that a Latin square of order s exists
for every positive integer s [HSS99]. For example, one may label the rows and columns by
0,1,...,s — 1 and take the entry in row ¢ and column j to be 7 + j, modulo s. For instance

the Latin square for s = 4 is displayed as

(2.43)

w NN = O
S W N =
_ O W N
O = O W

Two Latin squares of order s are called orthogonal to each other when one is superimposed
to the other and the ordered pairs (i, j) of corresponding entries consist of all possible s
pairs. A collection of w orthogonal Latin squares of order s is defined by a set of pairwise
orthogonal Latin squares and denoted by POL(s,w). Such a collection is also often called

a set of mutually orthogonal Latin squares, or MOLS(s,w). As an example, three pairwise
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orthogonal Latin squares of order 4 have the form

0 2 31 0 2 31 0 2 31
31 0 2 1 3 20 2013
(2.44)
1 320 2013 31 0 2
2013 31 0 2 1 320

Finding orthogonal Latin squares is a challenging problem. For example none of the squares
in Eq. (2.44)) is orthogonal to the square in Eq. (2.43)). A given Latin square is called isolated

if there is no Latin square orthogonal to it.

2.7.2. Orthogonal arrays

Orthogonal arrays (OAs) are combinatorial arrangements introduced in [Rao46]. The most
important applications of OAs are given in statistics and design of experiments. They also
have a close connection to error correcting codes, difference schemes, Latin squares and
Hadamard matrices [HSS99||.

An r x n array A with entries taken from the set S with ¢ elements is said to be an OAs with
r runs, n factors, ¢ levels, strength k£ and index )\ if every r x k subarray of A contains each
k-tuple of symbols from S exactly A times as a row. Here, r and n denote the number of rows
and columns of A, respectively, while ¢ is the cardinality of the set .S, that is, the level ¢ is the
number of different symbols appearing in A [HSS99]]. The notation used to characterize OAs
can be written as

OA(r,n,q, k) . (2.45)

For example we present OAs of strength £ = 1, kK = 2 and k = 3 respectively, with the sybolic
expression OA(2,2,2,1), OA(4,3,2,2) and OA(8,4,2,3)

1 000
0100
000 0010
0OA(2,2,2,1) = 00 , OA(4,3,2,2) = o1 , OA(8,4,2,3) = 000l .
11 1 01 0111
110 1 011
1 101
1 110
(2.46)

One usually determines an OA by the four independent parameters r, n, ¢ and &, such that the
index A satisfies the relation
r=". (2.47)
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It is shown that given an OA(r, n, ¢, k) one can easily construct another OA with parameters
OA(r,n’,q,k) for any £ < n’ < n by removing n — n’ columns of the OA. Therefore, it
is interesting to determine the maximal factor n such that an OA(r,n, q, k) exists for fixed

integer numbers 7, ¢ and k.

Two OAs are said to be isomorphic if one can be obtained from the other by a sequence of
permutations of the columns, the rows, and the levels of each factor. QAs may be regarded
as special cases of a more general classes of arrays that are also "orthogonal" in a statistical
sense. There are bounds on the existence of OAs discovered in [Rao46]. If ¢ is a prime power
then an OA(q", (¢" — 1)/(¢ — 1), ¢, 2) exists whenever n > 2.

2.7.3. Construction of orthogonal arrays from codes

Orthogonal arrays and codes are very closely related since we can use the codewords in an
error correcting code as the runs of an OA, or conversely, we can regard the runs of an OA as
forming a code. We can associate to any orthogonal array OA(r,n, ¢, k) a code (n, k, dg),
formed by its runs. Conversely, to any code (n, k, dy ), we can associate the n x k array whose
rows are the codewords. This is an orthogonal array O A(r, n, q, k) for some . We can now
define a parity check matrix for an OA to be any parity check matrix for the associated code,

and the dual OA to be the array corresponding to the dual code.

Two codes are said to be isomorphic if one can be obtained one from the other by permuting
the coordinates. If 4" and ¢ are codes with associated orthogonal arrays OA and OA’, then
it can be shown that %’ is isomorphic to ¢ if and only if OA is isomorphic to OA’ [HSS99].

2.8. Quantum error correcting codes

Quantum error correction plays a crucial role in quantum information processing and com-
munication. With QECCs we can find ways to maintain a pure quantum state against the
corrupting effects of decoherence long enough to carry out nontrivial quantum computations
or communication protocols. In this section, we discuss QECCs with a focus on stabilizer
codes. For this, we first discuss finite fields in quantum codes, then, we review the necessary
and sufficient conditions to construct code spaces. Finally, we review some of the existing

bounds on the quantum codes and the main differences between classical and quantum codes.

2.8.1. Finite fields in quantum codes

A field is more than just a set of elements. A finite field is a set of elements in which it is
possible to do two operations, called addition and multiplication, along with a set of properties
governing these operations. The addition and multiplication operations also imply inverse

operations called subtraction and division.
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Whenever resources are finite we are interested in using finite fields. In coding theory the
number of elements, codewords as well as errors is finite. Also, the necessary computation
can be managed in finite time, this implies that the results of computations are deterministic

and exact.

2.8.2. Basics of quantum error correction

A QECC distinguishes a subspace (code space) of the Hilbert space of a physical system as
the space of admissible code states, that is, quantum states of the system that are in a one to
one correspondence (via the encoding and decoding maps) with encoded messages. For the
code to be useful, the code space must be chosen such that the expected errors never map state
from the code space to a state that could also have been produced by a different error from a
different code state (this would introduce an unrecoverable error) but always take the state out
of the code space in a way such that a subsequent correction can bring the system back into

its original state.

We discuss the conditions under which a subspace is a QECC. To do this, we first introduce
some notations. Let {|tm)},,c(,5 be a set of orthonormal quantum states of n qudits spanning
a subspace C. We denote by [¢*] a string of k symbols that range from 0 to ¢ — 1, e.g., for
the case that k& = 1 we have, [¢] := (0,...,q — 1). The code C with parameters [n, k, d], is a
valid QECC if it obeys the Knill-Laflamme conditions [KL97, KKKS06]

Vm,m' € [¢F]: (W] ETF [y} = F(ETF) S | (2.48)

for all £, F' with wt(ETF) < d. Here, wt is the weight of an operator which denotes the
number of sites on which it acts non-trivially. The parameter d is the distance of the code,
which is the minimal number of local operations that act on single sites to create a non-zero

overlap between any two different states |1,,) and [1,,,/), i.e.,

d:= min {wt(W): (¢p|W]¢') #0A " =0}. 2.49
L min{w(V): @IW]6) £ 0 (9]6)) = 0) 2.49)
Such a code can correct all errors that act non-trivially on up to ¢ := |(d — 1)/2] physical

qudits.

2.8.3. Quantum stabiliser codes

In the theory of quantum error correcting codes [[Got09, (Got97] stabilisers are a useful tool
to construct and analyse codes. It is natural to consider code spaces that are spanned by
computational basis states. The stabiliser (group) of such a code space is the abelian sub-
group of the (generalized) Pauli group that leaves every element from the code space invariant.

Conversely, every abelian sub-group of the (generalized) Pauli group that does not contain —1
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has a non-trivial subspace spanned by computational basis stats that is left invariant [Got09,
Got97].

Stabiliser codes are crucial in this thesis. A stabilized subspace C defines a quantum code

space as follows:

C={[n) € H(n,q): Si|m) = [tm), ¥S: € S}. (2.50)

S is generated by n — k independent stabilizer operators \S;, so that the code space C encodes
k logical qudits into n physical qudits. In the language of coding theory a stabiliser QECC
is denoted by C = [n, k, d],- This code is a q'; dimensional subspace C spanned by a set
{|¢m>}me[ g7 of orthonormal states that encodes k logical qudits into n physical qudits, if it
obeys the Knill-Laflamme conditions Eq. (2.48).

2.8.4. Examples of quantum stabiliser codes

2.8.4.1. The 5-qubit code

As an example we consider the five qubit code [5, 1, 3]2, a code with distance 3 with an
optimal achievable distance with respect to the quantum Singleton bound. This code encodes
one logical qubit in five physical qubits. It is also a stabiliser code with a stabiliser subgroup

S =< 51,59, 53,5, > given by the stabiliser generators

S5=XR70Z0X®1
SH=10XQ®ZQZQX
SH3=XR1XRIRZ
Si=70X19X®Z

(2.51)

Note that the group is manifestly invariant under cyclic permutations. As is the case in
the stabilizer formalism, codes are characterized by an abelian stabilizer subgroup such that

[Si, S;] = 0 and the codespace is the joint +1 eigenspace for this group, satisfying
Silw) = |¢) 1=1,...,4. (2.52)

Logical operators are unitary operators which preserve the codeword space, but act non-

trivially on the codewords. For the 5-qubit code the logical operators are given by

X=X0XXX®X (2.53)
7=2Q0ZQZRZZ (2.54)
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One can see that X and Z anti-commute with each other. Yet, they commute with all the
stabilizer generators, so they preserve the codeword space. X and Z behave as logical X and
Z Pauli operators for the logical qubit. One can denote two codeword states by |0) and |1)
such that

Z|0) = |0)
7I%> = —~I1> 2.55)
X10) = 11)
X1) =0)

For given logical operators X and Z there are other Pauli strings S; X and S;Z that perform
the same action on the codeword space. Therefore, representations of logical operators are

not unique.

2.8.4.2. CSS codes

Calderbank-Shor-Steane (CSS) codes are QECCs formed from two classical error correcting
codes. The two classical codes %, and %5 have the property that ‘5; C ¢ ((52L is the
dual code to €»). If ¢, has code parameters [n, ky, dy1], and €5 is a code with parameters
[n, k1, dpra), (recall single brackets represent classical codes), then the corresponding quantum

code is H?’L, ]{31 + k’g —n, min(dHl, dHQ)]]q.

CSS codes are not as efficient as the most general quantum code, but they are easy to derive
from known classical codes. Also, they have a simple form that often makes them ideal for
other purposes [Got09]. In general, CSS codes are an interesting class of codes because they
are built using classical codes, which have been more studied than quantum codes. Therefore,
it is fairly easy to construct useful quantum codes simply by looking at existing classical

codes.

2.8.5. Bounds on Quantum error correcting codes

The question of "how efficient is an error correcting code for a given code length n and local
dimension ¢?" can be considered as an interesting and important question in the theories of
both classical and quantum error correction. As in classical theory there are upper and lower

bounds on the quantum code parameters.

There is a quantum analogous of the classical Singleton bound. The quantum Singleton bound
[Got97, ICC97] states that for any QECC, C = [n, k, d],

n—k

d< + 1. (2.56)
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Comparing with the classical Singleton bound given in Eq. (2.41), we see that to reach a
given code distance in the quantum case, n — k must be twice the necessary value to reach the
same Hamming distance in the classical case. The proof of the quantum Singleton bound for
k = 1 is based on the no-cloning theorem [Got09]] and it is known that binary codes, that is
codes for qubits ¢ = 2, can not achieve it for large n. A QECC is called quantum maximum
distance separable (QMDS) if Eq. (2.56) is saturated and in addition n and k have the same
parity [Rai99b]. Note that for n and k given, there are codes that, while achieving the highest
d allowed by Eq. (2.56), are not called QMDS. However, they are optimal in the sense that
they achieve the largest distance for given n and k. Therefore, in this thesis we call the codes
that saturate the quantum Singleton bound with maximum possible integer distance d optimal

codes.

2.8.6. Difference between classical codes and quantum codes

The field of QECC is very similar to classical coding theory but there are several issues that
need to be considered when transferring classical error correction techniques to the quantum

regime.

(i) It is impossible to perfectly copy an unknown quantum state due to the no-cloning theo-
rem of quantum mechanics [WZ82]. This result implies that there exists no transformation

resulting in the following mapping,

U(lp) @ ) =y @1é) Vo), (2.57)

where U is a unitary operator. This means that coding based on data-copying, which is

extensively used in classical error correction, cannot be used in QECC.

(i1) In classical codes, one can perform arbitrary measurements on the codewords. This is

tricky in the quantum case because measurements are in general destructive.

(iii) Errors in quantum information are intrinsically continuous while classical errors are

discrete.

Because of these fundamental differences between quantum information processing and its
classical counterpart, new ideas and different approaches are necessary to construct quantum

codes.
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3. Constructing AME states from
MDS codes

3.1. Introduction

A striking feature of quantum mechanics is entanglement and the fact that having complete
knowledge of the state of a system does not imply complete knowledge of its subsystems. A
paradigmatic example is an EPR state, in which a pure state of 2-qubits has reduced density
matrices on each half of the system that are completely mixed. As mentioned, AME states are
family of states generalizing this property of EPR states to an arbitrary number of parties and

local dimensions.

Just like EPR states, AME states are known to play an important role in quantum informa-
tion processing when dealing with many parties like [HCL"12, Pip03]]. AME states have
also deep connections with apparently unrelated areas of mathematics such as combinatorial
designs and structures [GAL™13], classical error correcting codes [Hell3]], and quantum er-
ror correcting codes (QECC) [Sco04]. Recently, they have gained new relevance as building
blocks for holographic theories and in high-energy physics. There they allow for the construc-
tion of tensor network states that realize discrete instances of the AdS/CFT correspondence
and holography [LS15, PYHPI15, [ADHI5, [HNQ™16]. As we discussed before, AME states
are special cases of the class of k-uniform (or k-UNI) states for k = |n/2] [ACI3|/GZ14].

At the same time it is still largely unknown for which values of the number of systems n and
local dimension ¢ AME states exist and how they can be constructed. A relevant class of
AME states is formed by those states which can be written as superpositions of just qL"/ 2
product states [Berl/]. These are called minimal support AME states, because qL”/ 2 is the
minimal number of product states necessary to obtain a state whose reduced state on |n /2]
sites is full rank. There is a direct correspondence between minimal support AME states and
classical maximal distance separable (MDS) error correcting codes [GAL™ 15, Hel13},IGZ14].

In this chapter we work out the details of the minimal support AME-MDS correspondence and
provide explicit constructions and closed form expressions for AME states for arbitrary n and

for all ¢ > n — 1. Further, from a single AME state, we show how to produce an orthonormal
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3. Constructing AME states from MDS codes

basis of AME states. Based on our construction of minimal support AME states, we introduce
stabilizer operators and conjecture the existence of a family of QECC whose code spaces are
spanned by AME states.

3.2. Notation

We begin with introducing some notation: For any n € Z* we denote by [n] := (0,...,n—1)
the range from 0 to n — 1. Let H(n,q) = CZ" be the Hilbert space of n distinguish-
able ¢ level quantum systems (also called qudits). For any sequence ji,...,j, € [q|" we
denote the corresponding vector by j = (ji,...,jn), its length by |j| = n, and write
17) = |1y dn) = |j1) ® --- ® |j,) for the associated product state in H(n,q). As
is customary we call the set of states {|j>}3 the computational basis. For any sequence
J1,---,Jn and subset S C [n] of indices, we denote the truncation of j to the index set S
by ;rs := (Ji)1es. For instance, given the vector j = (6,4,3,4,5) and the subset S = {1,2,5}
we have jg = (6,4,5).

Any AME state can be written as

q—1
W) = > Chgaliiedn) s (3.1
Fyeerfin=0
where the coefficients c;, ;. can be regarded as a tensor of n indices with the property of
being multi-unitary [GAL™T13] or perfect [PYHPI5]]. A tensor c is called perfect if for any

bipartition of its indices into a set S and complementary set S¢ with |S| < |S¢|, the resulting

matrix C' = Crs Grse is proportional to an isometry, i.e., CTC o< 1. Using this matrix C,
Eq. (3.1) can be rewritten as
0y = > hel). (3.2)
I€[g)!s]

—

Note that the states C'|l) € H(|S¢|, q) are in general not product states.

An n-qudit state in H(n, q) := C™ is AME, and denoted concretely by AME(n, ), whenever

ps = Trge [) (Y] x 1 VS c{l,...,n}|S| < |n/2| , (3.3)

where S¢ denotes the complementary set of S. AME states can be classified according to the
minimal number of terms they have, when expanded in any product basis [GAL™15]. The
minimal number of terms for which the condition of maximally mixed marginals can still be
fulfilled is the dimension of the largest sub-system on which the state is required to still be
maximally mixed, namely qL"/ 2| AME states with these many terms are minimal support

AME states. In this section, we focus on AME states of minimal support.
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Being an AME state of minimal support puts strong constraints on the coefficients ¢;, ;.
in the expansion in Eq. (3.1). Let the Hamming distance between two sequences ji, .. ., jn
and ki, ..., k, be the number of sub-indices [ for which j, # k;. Then, |¥) can only be a
minimal support AME state if |¢;,. ;.| € {0,1/V qL"/QJ} and if all sequences ji ..., j, for
which |cj, ;.| # 0 have pairwise Hamming distance at least [n/2] + 1 [GAL"15]. To see
this, let us consider a bipartiton S U .S = {1,...,n} and look at C' = Cf 5. jrse A8 @ linear
map from the space H(|S|, q) to H(|S¢|, q). As |[) is of minimal support, the states C|J;s)
are product states and hence every column of the matrix C' contains only a single non-zero
element. Now consider the case |S| = |n/2]. Then, C associates to any sequence [ of length
[n/2] a sequence 7i of length [n/2], namely the one for which C7. # 0. As the AME state
is minimal support, there are precisely ¢ [7/2] such sequences of length [n/2]. Consider now
the set of sequences that is obtained by concatenating any sequence of length |n/2| with the

associated sequence of length [n/2], i.e., the set {l o : [ € [q] /2] A Cr # 0}

3.3. Correspondence between minimal support AME
states and maximum distance separable codes

There is a direct correspondence between minimal support AME states and classical MDS
codes [Hell3]. We first describe how an MDS code can be obtained from any minimal support
AME state, then explain more generally how to obtain MDS codes. Finally, we show how
any MDS code that encodes |n/2| dits (¢ level classical systems) into n dits allows for the
construction of minimal support AME states in AME(n, ¢).

As we discussed in Preliminaries , in the language of coding theory a (n, K, dy),-code
is an error correcting code that encodes a total of K messages into codewords of length n,
all having pairwise Hamming distance at least dy. The Singleton bound is a fundamental
result from coding theory that bounds the maximally achievable minimal Hamming distance

between any two codewords. Recall that for any code the Singleton bound Eq. (2.40) reads
K < g dntl, (3.4)

We call a code maximum distance separable (MDS) if and only if the above bound is fulfilled
with equality. This is only possible if K = ¢* for some integer k, regardless of whether the
code is linear or not. Some authors chose to call MDS only those linear codes fulfilling
with equality [MS77, Chapter 11], but others use our broader definition [Sin64, KKO15]]. For
linear codes, the bound simplifies to Eq. (2.42)), recall

dg <n—k+1. 3.5
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3. Constructing AME states from MDS codes

As the all-zero code word is always a valid code word in any linear code, this implies that
any other code word of a linear code must have at least n — k£ 4 1 non-zero elements because
otherwise it would have a Hamming distance less than n — &+ 1 to the all zero codeword. One
directly verifies that the (n, qL”/ 2 ,[n/2] 4+ 1),-code constructed above saturates this bound
with equality for all n. Thus from any minimal support AME state a classical MDS code can

be constructed.

Conversely from any MDS code with k = |n/2] an AME state can be constructed by simply
taking the equally weighted superposition of the computational basis states corresponding to
all the code words [GAL™15]]. For linear MDS codes particularly nice and explicit construc-
tions can be achieved. The encoding map of a linear code is a linear map from the space of
messages to the space of codewords, that is the generator matrix Gy.,,. The encoded version
of an arbitrary message can be obtained by splitting the message up into blocks of length &
and multiplying the corresponding row vectors from the right with the k& x n generator matrix,
thereby yielding the corresponding codeword. Multiplication and addition are thereby to be
performed in a finite field whose cardinality is at least as large as that of the message alphabet.

We already know that the generator matrix Gy, of any [n, k, dy]-code over a finite field
GF(p™) can always be written in the standard form, Gy, = [1x|A] Eq. 2.36) [MS77,

chapter 1]. Given the generator matrix G or alternatively the matrix A, of a suitable

|_n/2J xn’
linear MDS code € with k& = |n/2] over a finite field of cardinality ¢ (equal to a power of a
prime), it is straightforward to construct an AME(n, ¢) state. As the Hamming distance of the
MDS code is dy = [n/2] + 1, for any two different ¢, @ € [q] [*/2] the states ”UGLn/QJ )

and |W G /2] ..,) are orthogonal on all subsystems of size at least [n/2]. The state

velq) /2] ve[q)L"/?]

is hence a minimal support AME state in AME(n, q).

AME states can hence be constructed whenever a suitable matrix Gy, or A is known. The
first examples of matrices A with the desired properties were presented by Singleton [Sin64]]

for the cases ¢ = 5 and ¢ = 7 and later a general construction was found in [RS85) ISR86].

We come back to explaining how suitable matrices A and Gy, can be constructed in the
next section. First, as an example, we go through the construction of a minimal support state
AME(6, 5). In this example the local dimension ¢ = 5 is prime so that the finite field GF'(5) is
simply the set {0, 1, 2, 3, 4} with the standard arithmetic modulo 5. The number of free indices
in the closed form expression of the AME state with minimal support is kK = [n/2| = 3, so

we can write ¥ = (i, 7,1). A suitable generator matrix of a [6, 3,4]; MDS code in standard
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form is
100111
Gsx¢=|0 1 0|1 2 3 (3.7)
00 1|1 3 4
It yields the following closed form expression for a minimal support state AME(6, 5):
Oy = > [7G)
UEGF(5)3
(3.8)

4
= > g li+i+1i+25+ 30+ 35 +41)
i,7,1=0

We present an example with a prime-power finite field in the next section.

3.4. Explicit construction of generator matrices for
MDS codes and AME states

We now show explicitly how generator matrices of linear MDS codes and hence minimal
support AME states can be constructed and how closed formulas, reminiscent of the example
in the end of the last Section, can be obtained for all n. To do this, we first discuss the

properties of the generator matrices of MDS codes in more detail.

Coming back to the standard form of the generator matrices of linear codes Gy, = [1x|A],
we can readily see that a linear code can only be an MDS code if all entries of the matrix A
are non-zero and that dy = n— k+1 is the optimal achievable Hamming distance between all
codewords. If A had a zero somewhere, there would be a codeword with less than n — k& + 1
non-zero symbols and which hence would have Hamming distance less than n — k + 1 to the

all zero codeword (which is a valid codeword in any linear code).

In fact, a linear code with a given matrix A is an MDS code if and only if every square
submatrix of A is nonsingular [MS77, Chapter 11], [Sin64]. To show this we first need to
prove the following: Every square submatrix of A is nonsingular if and only if any subset of
up to k of the column vectors of Gy, = [Lx|A] is linearly independent. First note that it
is enough to show this for subsets of size exactly k. Let now K be the square matrix of any
given set of k column vectors of G,. These vectors are linearly independent if and only if
the determinant det (/') is non-zero. By shuffling all the columns that came from the 1, part
of G,,xx to the left and then using Laplace’s expansion of det(K) in terms of the determinants
of minors, one realizes that det(K) is (up to possibly a sign) equal to the determinant of a
square sub-matrix of A, and hence non-zero. This is true for all sub-sets of at most & columns

only if all sub-matrices of A are non-singular.
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3. Constructing AME states from MDS codes

As we are looking at linear codes, and hence any linear combination of codewords is again a
valid codeword, to find the minimal distance between any two codewords it is sufficient to find
the codeword with the minimal Hamming distance from the all zero codeword. This however
is exactly n minus the maximal number of zeros that can occur in any linear combination
of rows of Gx,. Due to the linear independence of any subset of £ columns the maximum
number of such zeros is k£ — 1. This implies that the achieved Hamming distance is exactly

dg = n — k + 1, saturating the Singleton bound.

To construct suitable matrices A, we now introduce concept of the so-called Singleton arrays.
As we discussed in the Preliminaries, any finite field GF'(q), with ¢ a power of a prime,
contains at least one primitive element [MS77/, chapter 4]. Given any primitive element -y, the

Singleton array of size ¢ is defined to be

1 1 ... 1 1 1
1 as Ag—3 Qg—2
1 a as (g—2

Sq = : : , (3.9
1 a3 ag—2
1 ag—
1

with
a; = ] _172,. (3.10)

The Singleton array is a special case of a more general construction known as a Cauchy matrix
[MS7’7, chapter 11]. Every submatrix of a Cauchy matrix is again a Cauchy matrix and an
explicit formula for the determinant of any Cauchy matrix is known, which in particular shows
that it is non-zero. The Singleton array .S, thus has the sought after property that all its square
sub matrices are non-singular [RS85, Mar90]. By taking rectangular sub-matrices of .S, it is
hence possible to construct generator matrices Gy, = [1x|Ag n—x] of MDS codes and thereby
minimal support AME states. All one has to do is to take a power of a prime ¢ sufficiently
large such that .S, contains a sub-matrix of size at least |(¢ + 1)/2| x [(¢ + 1)/2], and then
take this as the matrix A in Eq. (3.6). We provide a Mathematica notebook for the explicit

construction of Singleton arrays, see [ame] (also Table. [3.1).

One straightforwardly verifies that S, contains such a sufficiently large sub-matrix whenever
q > n — 1. Further, if ¢ is even, the element a; can be appended to the third and the (¢ — 1)-st
rows of S,, without creating singular submatrices [MS77, chapter 11],[RS83]. For ¢ = 2? this

increases the size of the largest square sub-matrix, as the extended Singleton array S has the
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form

ar 3.11)

1
= !

1 as a

1
This yields a matrix A of size 3 x 3 for ¢ = 4, giving a closed form formula for a minimal
support AM E(6,4). For this, let us list the elements of the singleton arrays S). The elements
of the finite field GF'(2%) can be written in several different ways (see Table. . As the
field is a prime-power finite field, it is convenient to work with the representation in terms of
polynomials based on the irreducible polynomial 22 = x + 1. We chose ¥ = z as a primitive
element and, using the polynomial representation of G'F'(2?), the appearing elements can be

calculated to be

=z (3.12)

1
=—=x+1. (3.13)

g = —
1—22 =z

Let us now take the the largest submatrix of size 3 x 3 as the matrix A

1 1 1
A=1|1 T z+1 (3.14)
1 z+1 T

and construct an AME(6,4). The number of free indices in the closed form expression of the

state AME(6,4) with minimal support is k = 3, so ¥ = (3, j, (), and it can be written as,

W)= > |igliti+litej+Q+a)li+@+1)j+zl). (3.15)
{o,f:i’,lxeﬂ}
To get the terms of |¥) in the familiar computational basis representation, after doing all
computations in the finite field for each term, one simply has to switch back to the spin level
representation, i.e., make the replacement {0,1,z,2 + 1} — {0,1,2,3} according to Ta-
ble.

As another example, let us consider the case ¢ = 5. Taking v = 3, which is a primitive
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element in GF(5) = {0,1,2,3,4} mod (5), we find

1
ap = 13 = 3 =2 because 1 = 6 mod 5 (3.16)
1 1
Ay = 1T-9 2 3 because 1 = 6 mod 5 (3.17)
1 1
as = T —1° 4 because 1 = 16 mod 5 (3.18)
and obtain
11111
1 2 3 4
Ss=1 3 4 (3.19)
1 4
1

The biggest submatrix has size 3 x 3. Hence, taking

Asys = (3.20)

—_ =
w NN =
= W =

we can construct a [6, 3, 4]5-code, which is an MDS code, and the resulting AME state is

precisely the one given in Eq. (3.8).

Finally, we present a number of Singleton arrays that can be used to construct closed form
expression of AME states with minimal support in Table. [3.1] A Mathematica notebook to

create these and various larger tables is made available under [ame].

3.5. Basis of AME states

The Bell basis of the Hilbert space of 2 qubits is an orthonormal basis of maximally entangled
states. In what follows, we show how, starting from a single AME state |V) € #H(n,q), a
complete orthonormal basis of AME states for #(n, q), an AME basis, can be constructed.
Given an AME state | V) written in the form of (3.2)) with respect to some fixed product basis,
we first recall the definition of the operators X, Eq. (2.20) and Z, Eq. (2.21) that generalize
the Pauli operators ox and o, to Hilbert spaces of dimension ¢ > 2. X and Z are defined

through their action on this local elements of the product basis states |;) via

X|j)=17+1 mod q) (3.21)
Z15) = o’ j) . (3.22)
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As a side remark, note that only for ¢ prime are the integers modulo ¢ equal to the finite
field GF(q). In all other cases, the algebraic structure of X and Z as defined above does not
correspond to that of the respective finite field (if it even exists). This however is irrelevant for
this section. The following works for arbitrary ¢ not necessarily prime or a power of a prime.

Only the properties of X and Z discussed above are used.

For every @ we define the operator

M@=(1®  -01lX"®.. X" ") (1® - @1z g. ..@Z™m). (3.23)
|_n/2J lrn/2—|

Note that, for n even, the maximal number of X’s and that of Z’s are equal, namely n/2. In
contrast, if n is odd, the maximal number of X’s is one larger than the maximal number of
Z’s. We now use this family of operators to construct complete orthonormal bases of AME

states:

Lemma 3.1. Consider a Hilbert space H(n,q) of n parties with local dimension q with at
least one AME state |V) € H(n,q). If n is even or |V) is minimal support, then the ¢" states

|U5) = M(a) |¥) (3.24)

with @ € [q]" form a complete orthonormal basis of AME states of H(n, q).

Proof. First, all the | ;) are AME states, as acting with local unitaries on |¥) does not change

the entanglement properties. It remains to show orthonormality, i.e., that

(VM (@) MB)) = [ ba. (3.25)

To show this we use that according to Eq. (3.2) any AME state | V) can be written as

=Y [fec|l, (3.26)

I€[q)!s!

with |S| = [n/2] and C' an isometry. It thus follows from the cyclicity of the trace that

(UM (@) M©)P) = > (Ilm) (1] CT M (@)t M(b) C i) (3.27)
Lme(q)lS|
= > (It M@t M) C i) (3.28)
Ie(q)!s!
= Tr(M(a)t M) CCh. (3.29)
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Now, if n is even, then C is proportional to a unitary, i.e., CTC' = C' CT 1, and thus

(VM@ M) = - T (@) MB) = T b (.30

where we have used that Tr(Z¢ X°) = 8,0 0. For n odd C'CT ¢ 1 but if |¥) is a minimal
support AME state, then there exists a local product basis |f> such that C' maps product states
to product states. This implies that if c?”(n 2]] # g”[” 2]] then M (&@)" M (b) contains at least

one X and then each term in Eq. (3.28) vanishes individually. But now, whenever d,, nj2]) =

bi(ajz])- then M@ M) = 1@ - @1 ZPTA T 24 @ L @ Zhaman e, it has

weight at most [n/2] and thus, because |) is AME we have

(W[ M (@) M(5)|P)

n/2—|

1 b _ ] n

= —Tr(1® - - @LRZ A1 24 g ... g Zbnaon St = 1100 -
r(le--- 1l Q- ® ) I daine i|:|1 b

[n/2] =1

(3.31)

]

The general case of constructing an AME basis is always possible if the states are stabilizers.

3.6. Stabilizer operators for AME states of minimal
support

Stabilisers are a useful tool to construct and analyse codes [[Got09, |Got97]] . In an analogous
fashion, we can construct a set of Pauli strings that generate a stabilizer group that stabilizes
a given individual AME state. In the next section we use this generating set to construct
a stabilizer group for a subspace spanned by ¢ orthonormal AME states. The construction
we present only works for AME states constructed from a linear MDS code as described in
Section[3.3]and can hence only work for ¢ being a power of a prime. For the sake of simplicity
we further restrict from now on to the case ¢ prime, for which the algebraic structure of the X
and Z operators defined in (2.20) and (2.21)) coincides with that of the finite field G F'(q). For
q a power of a prime, a much more elaborate construction based on the (discrete) Heisenberg-
Weyl group [Wey50, WES9, BBRV02, \Gra04, [Dur03]] would have to be employed.

Remember that, given a generator matrix G, the corresponding AME state takes the form
(recall Eq. (3.6))
W) = Z |6GLn/2JXn>' (3.32)

velq L2

Denote the matrix elements of G /2] xn by ¢i, and that of the code’s parity check matrix

X
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H /2] xn by hy . For ¢ prime, the state |U') is then the plus one eigenstate of the following n

stabilizer operators:

"o X% 1<1< [nj2)

sy = : (3.33)

n_ 2 nf2] <1<n
The first |n/2] stabilizers, involving the X operators, permute the computational basis states
in the decomposition of |¥) and hence leave it invariant. The second set of [n/2] stabilizers,

that involve the Z operators, also leave | V) invariant as

SZIJ |\Ij> — Z wH’—n/Q-‘Xn(GLn/QJXn)Tﬁ |’[7G|-n/2J Xn> = |\I/>7 (3_34)

velq) /2]

because H[n/ﬂ ‘n <GLn/2J ) =0.

One should note that any stabilizer state is equivalent to a graph state under the action of local
Clifford group, see [NCOO, BB0O6]. It is also shown that one can start from an associated
graph states and find a graph basis which is a collection of orthonormal states of the form of
graph states. With this, as soon as one can show a state is a stabilizer state, it guarantees of

the existence the graph state corresponding to it and a complete orthonormal basis.

3.7. Conclusions

In this chapter we have shown in detail how to explicitly construct AME states of n parties
with local dimension ¢ > n — 1 of minimal support by means of linear MDS codes. For an
AME state of minimal support constructed via such a linear MDS code and ¢ prime, we have
derived a set of stabilizer operators that stabilize the AME state. Along the way, we have
also shown how, starting from any single AME state, a complete basis of the Hilbert space

consisting of AME states can be constructed.
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44

GF(2) = {0,1} y=1, So= 1, !
modulo (2)
1 1 1
GF(3) ={0,1,2} v =2, Sy= 1 2
modulo (3) 1
GF(22):{07170,17(212} 1 all . 1
modulo (1 + =z + z*) v =u, Sh= U 4y a
a1 =x,a9 =1+ . 1
1 1 1 1 1
GF(5) = {0,1,2,3,4} . . 1 g Z 4
modulo (5) 7= 5=
1 4
1
1 11 1 1 11
1 3 6 4 2 5
GF(7) = {0,1,2,3,4,5,6} L6425
modulo (7) 7=3 Sr=14 25
1 2 5
1 5
1
1 1 1 1 1 1 1
GF(2%) ={0,1,a1,as,as,a4,as,ag} Lar ay ag as a5 ag
modulo (1 + 22 + 23) 1 ax a3 as as ag
1 as Qa4 Qa5 AQag
V=, Sg = 1
ap =22, a0 =1+z+2% a3 =14z, . a4 G5 e
ay =, as =z + 22 and ag = 1 + z2. as  de
1 ag
1
1 1 1 1 1 1 1 1
1 ay a a3 a4 a5 ag ay
GF(32):{071aa1aa2;a3;a4;a5aa6;a7} 1 az a3 a4 as ag ay
modulo (2 + z + z?) 1 a3 a4 as ag a7
y=z, So= 1 a4 as ag ar
a1 =2+x,a3=14z, a3 =14 2z, 1 a5 ag a7
ay =2, a5 =x, ag = 2x and a7 = 2 4 2x. 1 ag ar
1 ar
1
1 1 1 1111111
1 10 7 3 8 6 4 9 5 2
1 7 3 8 6 4 9 5 2
1 3 8 6 4 9 5 2
GF(11) = {0,1,2,3,4,5,6,7,8,9,10} L8 6495 2
modulo (11) 7=250=1 6 4952
1 4 9 5 2
1 9 5 2
1 5 2
1 2
1

Table 3.1.: Singleton array for various finite fields.




4. New construction for k-uniform
and absolutely maximally
entangled states

4.1. Introduction

Multipartite entangled states play an important role in many quantum information processing
tasks. Providing a general framework for multipartite entanglement represents a highly com-
plex problem, probably out of reach. Therefore, many efforts have focused on the study of
relevant sets of states such as, for instance, graph states [HEB04, HDE"06] or tensor network
states [Orl4]. Operationally, k-UNI states are a set of multipartite entangled states that are
interested in this point of view. It is relevant question to find general constructions for them
and classifying them based on SLOCC.

In the previous chapter (3), we focused on constructing AME states from MDS codes. Until
now, using MDS codes is the only systematic method to construct AME and k-UNI states
[Hell3, RGRA1S|]. With this method, one can construct minimal support k-UNI states as
they can be expressed with the minimum number of product terms needed to guarantee that
the reduced states are maximally mixed. In this chapter, we go beyond that and introduce a
new systematic method of constructing k-UNI states. We prove that this method constructs

different states as the derived states are not of minimal support.

We call this method CI+Q because it combines a given classical MDS code with a basis made
of k-UNI quantum states. With this method we construct k-UNI states with smaller local
dimension ¢ that cannot be obtained from MDS codes. Also, we prove that the CI+Q method

constructs different states as the derived states are not minimal support states anymore.

We show that our states cannot be obtained from any state of minimal support by SLOCC. We
then show how the £-UNI states derived through our construction are example of graph states
and provide the corresponding graph, which is different from the graphs associated to states
of minimal support. Finally, we present generalizations of the Cl1+Q method and use them to

construct two examples of AME states whose existence was open so far, namely AME(19, 17)
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4. New construction for k-uniform and absolutely maximally entangled states

and AME(21, 19).

4.2. MDS codes and £-UNI states

As we discussed, in the language of coding theory, linear error correcting codes are specified
by the tuple of integer numbers [n, k, dy], and defined over a finite field GF'(q). Such codes
encode ¢* many messages specified by vectors ; € [¢]*, withi = 1,...,¢", into a subset
of codewords ¢; € [q]", all having Hamming distance dy [MS77, Chapter 1]. Given an
[Net, £, e — €], MDS code, it is possible to define its dual, which is an [ng, ng — ¢, ¢ + 1],
MDS code. In what follows, we take initial MDS codes with ¢ < n /2 so that the number of

codewords in the dual is ng — ¢ > n/2.

MDS codes [ng, ¢, ng — ¢], have been used to derive AME states of minimal supports when
¢ = |n/2|, or alternatively from the dual codes [ng, ng — ¢, ¢ + 1], when £ = [n/2] [Hell3|
RGRA18]] . It is also possible to construct £-UNI states from a given MDS code. Consider the
pure quantum state corresponding to the equally weighted superposition of all the codewords

¢; of the code, i.e.,

W)= > la), (.1)

It is instructive for what follows to recall why (4.1) is a k-UNI state, that it, to show why all
reductions up to k parties are maximally mixed. For that we use two properties of MDS codes.
First, since all codewords have a distance at least equal to the Singleton bound (2.41)), all the
off-diagonal elements of the reduced density matrices of at most k£ parties are zero. What
remains to be proven is that all the diagonal elements of the reduced state of k parties are
equal. But this follows from the fact that any MDS code has a systematic encoder in which
any set of symbols of length £ of the codewords can be taken as message symbols [MS77,

Chapter 11], that is, all the ¢* possible combinations of messages appear.

Using the construction of MDS codes, this superposition of all codewords of MDS codes

reads

) = 318 = 317 Gioxn) = 3 |55, 54 (42)

The dual code €+ of any linear MDS code % is also MDS. As above, one can construct the
two states 1) and |¢)*) by taking the equally weighted superposition of the codewords of €
and its dual €', respectively. However, considering the connection between the codewords of
the original code and its dual, one can check that the states [¢)) and |1)) can be transformed
one into the other by local unitary operations, more precisely by applying Fourier gates that
map the Z-eigenbasis into the X -eigenbasis to each party. Therefore, not only |), but also
9+) is a k-UNI state of minimal support.
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4.3. Orthonormal basis

Finally, let us recall that MDS codes over finite fields G F'(¢) have been found for the following

intervals
n > 2 k=1lorn-—1

n<q+2 qisevenandk =3o0orqg—1 (4.3)

n<qg+1 all other cases

which in turn defines an existence interval of k-UNI,;, states, i.e., k < [n/2] (see [MS77,
Chapter 11], [RS85]).

4.3. Orthonormal basis

In what follows we show how to construct an orthonormal basis starting from a k-UNI;,
state built from an [n, k,n — k|, MDS code. In particular, we focus on the operators M (7)
labelled by ¢ € [¢"], that have the form

M) =2"® - QZ*"QX" ' @ .. X" . (4.4)
k n—k

This family of Pauli string can be used to derive a complete orthonormal basis of £-UNI states.

As we see next, these ¢" unitary operators define a basis when acting on a k-UNI,;, state.

Lemma 4.1. Consider a k-UNl,, state |¢)) € H(n,q) and all possible vectors v; € [q"],
withi = 1,...,q" Then, the states |1;) = M(0;) [¢) form a complete orthonormal basis of
k-UNI,;, states.

Proof. First, note that all the |¢;) are k-UNI states, since local unitary operations do not
change the entanglement properties of the state |¢)). Then we should just check the orthonor-

mality of the states, i.e., check that
(| M (@) M (T ) =T] 6 - (4.5)

To show this we use the fact that, for any k-UNTI state |¢) constructed from an MDS code
¢ = [n,k,dy = n — k + 1],, the Hamming distance between all the terms is at least dyy =
n — k + 1. The large Hamming distance between the terms in the superposition of state |1))
implies

(WIM (@) M (@) [0) = (1M @) MEE) ) TT b (4.6)

i=k+1

where M (172)) has the Z operators of M (7;) and no X operators. Now, by considering the
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4. New construction for k-uniform and absolutely maximally entangled states

(a) Classical Part Quantum Part

(b) Classical Part Quantum Part

,
i A A AR A A
-

<

Y

hq

S
<)

Figure 4.1.: Methods of constructing k-UNTI states. (a) Cl+Q method. Constructing k-UNI
states by concatenating each codeword of an MDS code with a given ¢-UNTI state of an or-
thonormal basis. (b) CI+Q with repetition. Constructing AME states by repeating states in
the quantum part.

property of having k-UNTI state, we yield

WM @) M(@l) = T @) M) TT o =10 @)
i=k+1 i=1
Here we also used the fact that the operator M (QT(Zi))T M (QT(Zil)) has weight at least k. O

In the previous chapter this result was proven for the particular case of AME states of minimal
support, leading to an AME basis. The above lemma generalizes the result to any k-UNI,,;,
states.

4.4. Constructing k-UNI states of non-minimal support

We now present the new construction of £-UNI states, which combines the codeword of a

given MDS code with an orthonormal basis where all elements are ¢'-UNI states, see fig-

ure[d.1fa).

Lemma 4.2 (C1+Q method). Consider an [ng, {,ng — {|, MDS code of codewords ¢; and a
complete {'-UNI(nq, q) orthonormal basis with states |1;) such that nq = {. Construct the
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4.4. Constructing k-UNI states of non-minimal support

state
oy = > 1&) ) - (4.8)
i=1,..., q@\ng";lq”

This state is a ({' + 1)-UNI state of n = ng + nq parties. One can use the dual of an MDS

code for the classical part. In this case, one then demands that nq = nq — { and obtains
k = min{¢+ 1, ¢ + 1}-UNI szate.

The condition ny = ¢ is needed to ensure that the number of codewords in the code match
the number of elements in the basis, as required by the construction. Note that the number of
states in the ¢'-UNI(nq, ¢) basis is ¢"¢, while the number of codewords in the MDS code is q-.
This requirement implies that ¢/ < ¢. But, the conditions for the lemma are more general, as
one can use the dual of an MDS code for the classical part. One then demands that nq = ng—/¢
and obtains a £ = min{¢ + 1, ¢’ + 1}-UNI state.

Proof. For the classical part in our construction, it is possible to use an MDS code ¢ =

[N, €], or its dual ¢t = (N1, el — ¢],- The resulting states can be written as

0y =D |c; | Vi) = ZMka |th;) = Zm, T A) [U) (4.9)
i \nfl" ps

where as above we denote by |¢) (J¢)) the state associated to code € (€1). The above
equation is the generalized form of Eq. (4.8). The difference between |¢) and |¢) is in the

generator matrix, or alternatively the A matrix. For the state |¢) we have v; € [¢]"*.

The pure states |¢) or |¢) are k-UNTI states iff the reduced density matrix o5 of any subset of
k parties, S C {1,...,n} with |S| = k, is maximally mixed. This subset may be (i) entirely
contained in the support of the classical part Cl = {1,...,nq}; (ii) entirely contained in the
support of the quantum part Q = {1,...,nq}, (iii) split between the two parts C1 U Q =

{1,...,n}. We consider these three different cases separately.

Case (i): If the S qudits of the reduced density matrix og are contained in the classical part,
S C (], the reduced density matrix resulting from tracing out all the quantum part and
the complement of S in Cl, S& = S¢ N Cl, of the state |¢), Eq. (4.9), is

o5 = Trge, Trq |¢) (S
=D (Trse, |0, G:A) (T, T Al) (ilthir)

NG

=2 Trs,
%

(4.10)

which is a direct consequence of having a complete basis in the quantum part, i.e.,

(Yi]1bir) = 6;.. In case of considering the state |¢), the same procedure holds when
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4. New construction for k-uniform and absolutely maximally entangled states

we calculate the reduced density matrix og with the same condition for the set S C CI.
We should just replace o; € [q]° with @; € [g]™~*. As argued for state {#.1)), og is
proportional to the identity matrix whenever its size is equal to the number of free

indices in the code used in the classical part, equal to ¢ for the state |¢) and ny — ¢ for

|67).

Case (ii): If the qudits are all contained the quantum part, S C Q, the reduced density matrix

og resulting from tracing out all of the qudits of the classical part and the complement
ofSinQ,S(CQ:SCﬂQ,is

os = Trai Trsg [9) (9]

= zi;(vi|vi/>(viA|vi/A> (Tlrg(cQ i) (Vi) @11)
where we have used that (7;|t;) = ;. The quantum part is a complete orthogonal

basis, then the reduced density matrix in this case is maximally mixed for any subset S
fully contained in the quantum part, which may be of size at most nqy = £ or nqg = ny—/

depending on the MDS code used for the classical part.

Case (iii): Finally, we consider the case where S N Cl = S¢y # Sand SN Q = Sq # 5. We
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then have the general formula

og = Trge

)Pl = > Trsg, (18, TA) (T, Ty A|) @ Trag (|0 (u]).  (4.12)
We start by the state |¢) in which the MDS code used for the classical part has ¢ < n¢;/2
and consider the case in which |S| = ¢ + 1. We first show that

Trs&(lﬁi’ﬁ“@ (Ui, Uy A]) o< 00, (4.13)

forall S with |Scy| < ¢'. Asthe terms |, ; A) that make up the classical part of the state
|¢) are coming from an MDS code, they are all product states in, say, the computational
basis. Fix any S, with |S¢y| < ¢, and let {|s)} be the computational basis for S¢; and
{|t)} be that of S¢&;. We can then write

Trse, (|0, 03 A) (Vir, Uy A]) = > s)(s (s, t U, G A) (U, U AlS', £) (4.14)

s,s’,t
For v; # v, the two inner products in the right hand side of the last equation can be
simultaneously non-zero only if |0}, 7;A) and |v;, Uy A) are identical in at least |S&|

many locations, because otherwise they cannot both be non-orthogonal to |t). But this



4.4. Constructing k-UNI states of non-minimal support

means that their Hamming distance could not be larger than dy < ng —|S&| = |Sa| <
U< Ng /2 = /2. But, at the same time, we know that the Hamming distance between
any two |0;, 1; A) and |0, Uy A) for 0; # Uy is atleastdy = ng — €+ 1 > £+ 1, where
the inequality follows from ny > 2¢. These were only compatible if /+ 1 < ¢/2, which
is never fulfilled. We now use into to get

o5 = ZTTS&(W’ Ui A) (3, GiA|) @ Trsg ([00) (i) (4.15)

Any set S of size ¢’ 4+ 1 with non-zero intersection with the classical and quantum part
is such that |Sq| < ¢'. Therefore, as all the states in the quantum part |¢);) are ¢'-UNI
states, one has Trge (|10:) (¥]) o< 1,Vi. We are therefore left with

s oc Y Trse (|0, 0A) (0, GA]) @ L, (4.16)

which is maximally mixed because |S¢;| < ¢ < £.

Let us finally consider the state |¢") in which the classical part is constructed from the
dual code € and the condition ny — £ = nq 1s necessary. We can now repeat the same
analysis as above. To conclude that the terms in the classical part are proportional to
8;# we need that di; = ¢ + 1 > | S|, while for the traces in the quantum part to be
maximally mixed it is required that |Sq| < ¢'. These two conditions can be fulfilled if
|S| = min{¢ +1,¢' + 1}.

Now, considering all the three cases, we see that Case (iii) is the most restrictive and implies
that our construction leads in general to min{¢ + 1, ¢’ + 1}-UNI states, this minimum being
equal to (¢’ 4 1)-UNTI for the state |¢). O

Note that the the previous proof also implies that some reduced states o in our construction

are maximally mixed even for sizes |S| > /.

It just remains to present instances in which the construction applies. Recall that the C1+Q
method, requires an [n, £, MDS code and a complete ¢'-UNI(ng, ¢) orthonormal basis, with
ng = £ or ng = n — { depending on the MDS code. For the quantum basis, we can employ
the direct correspondence between minimal support states and classical MDS codes. Then,
in order to find instances of the CI+Q method, one can simply check the known conditions
for the existence of MDS codes. To show this we use that according to Eq. (4¢.3), we should
find max{ne, nq} for given local dimension g. Considering this, one simply can verify that
max{n, nq} = n.. Thus the existence of MDS code with n, parties and local dimension ¢ is
enough to guarantee that such a non-minimal support £-UNI state can be constructed by our
method. In Table 4.1| we provide examples of k-UNI states for systems of smaller dimension
than those obtained using the existing MDS codes.
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4. New construction for k-uniform and absolutely maximally entangled states

| uniformity | n Cl part Basis for Q part  C1+Q method | MDS code |
n = 3,2,2], Bell basis q>2 q>4
n= [4,2,3], Bell basis q>3 qg>4
k=2 n= 5,2, 4], Bell basis q>4 q>7
n=2~8 5,3, 3], GHZ basis qg>4 q>7
n= 6,3,4], GHZ basis qg>4 q>38
n=10  [7.3,5], GHZ basis q>7 q>9
n =11 [7,4,4], AME(4,q) basis q>T g>11
n=12 8,4,5], AME(4,q) basis q>7 qg>11
k=3 n—13  [0,4.6], AME(4,q) basis g>8 q>13
n=14 9,5,5], AME(5,q) basis q>38 qg>13
n=15 [10,5,6], AME(5,q) basis qg>9 qg>16
n =16 [11,5,7], AME(5,q) basis qg>11 q>16

Table 4.1.: Comparison between local dimension ¢ of the two methods.

As a concrete example, we can consider the state AME(5, ¢) with the following closed form
expression [GRDMZ]18]|

q—1
19T = > {Lm, L+ m)[Yam) (4.17)

l,m=0

where the states 1) ,,) define a Bell basis
Yam) = X' @Z™Y |r,r). (4.18)

For the qubit case we have

@) = 1000)]¢) +[011) [¢F)

(4.19)
+[101)|¢7) + [110)|¢p—)

where |¢*) and |¢)*) are the Bell basis of the Hilbert space of 2 qubits. One can easily check

that all the reduced density matrices og up to 2 parties are maximally mixed.

4.5. Inequivalence under stochastic LOCC (SLOCC)

After presenting our construction, we now show that it provides states that could not be ob-
tained using the previously known method based on MDS codes. In order to do so, we show
that states obtained using our construction cannot be obtained by SLOCC from £-UNI,;,, that
is, they belong to different SLOCC classes.

It is a well-known result that the number of product states needed to specify a pure state is an

upper bound to the rank of all possible reduced states. For a k-UNI,,,;, state, this implies that,
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4.6. Graph states

for any subset S C {1,...,n}, one has
rank(ps) < ¢" (4.20)

where pg = Trge|¢)(1p]. It is also well known that this number cannot be increased by
SLOCC [EBO1].

Now consider k-UNTI state |¢) in H(n, ) constructed from CI+Q method. All the reductions
up to k parties of the state |¢) are maximally mixed. However, it is possible to show that

there exists at least one subset of size |S| = k + 1 parties such that the reduced density matrix

os = Trge |¢)(¢| < 1. This specific set contains k parties of the classical part and one party
from the quantum part. This implies that the state |¢) is not minimal support and hence the
two states |¢) and |¢) cannot be mapped into the other probabilistically via LOCC. Therefore,

they belong to different SLOCC classes.

4.6. Graph states

All the codewords of the code space that construct the minimal support k-UNI state are linear
combinations of the rows of a generator matrix Gy, or the parity check matrix H, ., in
case of considering the dual MDS code. For a k-UNI,,;, state constructed via the generator

matrix of a linear MDS code Eq. (4.2), the stabilizer generators can be constructed as follows,

" oy X9bm 1<I<k
5] = . 4.21)
Qn_ Zh-km k<] <n

We use g; ,, to denote the matrix elements of the generator matrix G, and that of the code’s
parity check matrix H,,_jx, by ;. In particular, the above equation contains 7 simultaneous

linear equation that can be listed as follows

k n—k
s1 = X 1 1 X Xaz o X%k
Sy = 1 X 1 X Xo2 o X %20n-k)
s o= 1 1 X X X XM
Sp = Zv gre . gzram gz ]
Spre = Z@r g grae ]
S, = Z M-k ZT%m-k . Z%mek ] 1 ...  Z,
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4. New construction for k-uniform and absolutely maximally entangled states

where we denote the matrix elements of A by a; ,,,. For the sake of simplicity we did not write

the tensor product between each element.

The state [¢)), Eq. (4.2), is the plus one eigenstate of the set of Pauli strings constructed by
the stabilizer generators. To show this, we use that in the decomposition of |¢)) the first k
stabilizers which involve X operators, permute the computational basis and hence leave it
invariant. And if we perform the second part of the n — k stabilizers, involving Z operators,
on the state [1))

sty = 3 whin-en @oa) 01500 ) = o) (4.23)

ve(ql®

where £ < | < n, and we used the condition H,,_; (kan)T = (. The same construction
holds if we consider the dual code % to construct the minimal support state |¢/"). Taking the
parity check matrix H,,_j, as the generator matrix and G, as the parity check matrix we
can construct |)1). In this case, it is obvious that the Pauli strings that generate the stabilizer
group can be constructed from Eq. (.21) if the local unitary transformation acts on all of
the qudits and transform the computational basis to the X-basis. This implies that the k-
uniform state constructed from the MDS code % is local unitary equivalent to the k-UNI state

constructed from the dual code €, i.e., the state |[pt).

If one performs local Fourier transforms F; = 3, ; w*|i)(j| on all the last n — k parties of the
state |¢) in (@.1)), the stabiliser formalism Eq. (4.22) can be written as

o X, QK Z-um 1<I<k
Y =

. 4.24)

X, QF_ Z7mik k<l <n

This directly leads us to get the stabiliser formalism of graph states
=X, [ (Zn)im  1<1<n, (4.25)

m=0

where for k-UNI,,;, states the adjacency matrix is

0A
v = — ) 4.26
ran (4.26)

nxn

For the k-UNI,,;, constructed from the dual MDS code €, one has to replace —a for each

term and also take the transposition as well, i.e., make the replacement a; ,,, = —ap, ;.

Therefore k-UNL,;, states derived from MDS codes [n, k, n— k], are examples of graph states

as it is possible to connect the adjacency matrix I' and the code parameters [Hel13, RGRA18§].
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k+1 k+2 k+3 n

Figure 4.2.: A complete bipartite graph. Graph state which is local unitary equivalent to the
k-UNI,,;, states constructed from MDS codes.

After performing the local Fourier transforms the resulting state is a graph state corresponding
to a complete bipartite graph, see Figure This graph is partitioned into two subsets, one
containing k vertices and the other one n — k vertices. The weights of the edges connecting
the vertices in the two subsets depend on the details of the construction of the MDS code
but the structure is the same for all the states [¢)) (@.1). Note that, when ¢ is a power of
a prime, discrete Heisenberg-Weyl groups should be considered for the stabiliser formalism
[Fad95, IAR9S].

The states |¢) constructed from the CI+Q method are formed by concatenating the two parts,

)= > 1@ (4.27)
i=1,...,q*
i) = M(%;) |[v) - (4.28)
For the operator M (¥/) after performing local Fourier transforms on the last ny — ¢’ parties we
get
Mp(@) = F'M@)F=2"Q® - QZ" QZ " Q- @ Z "=, (4.29)
¢ ng—t'

which contains only Z matrices, that in the graph state representation represent edges that

connect vertices, as shown in Figure

Further, we should note that the dual code €+ = [ne1, et — ¢, £+ 1], can be used to construct
the classical part of the state |¢). In this case the condition ng — ¢ = ny is necessary. The

graphical representation is shown in Figure (4.4).

The graph state representation of the states |¢) constructed from the C1+Q method, Eq. (4.8)),

when the states in the basis are k-UNI,,;, derived from an MDS code, is rather intuitive and
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4. New construction for k-uniform and absolutely maximally entangled states

Figure 4.3.: Graph state representing the k-UNI states constructed from the Cl+Q method.
The graph can be considered as two parts connected as the method. The left-hand side is the
graph state representing the state constructed from [¢)) = >, |¢i), i.e., the Cl part. The right-
hand side is the graph state representing the Q part, states |¢;). The operators M (;) describe
how the two parts connect.

shows the structure of the method: it is formed by concatenating the two complete bipartite

graphs associated to each MDS code or, equivalently, the corresponding £-UNI,,,;, state.

4.7. Constructions of previously unknown AME states

We now show how using our method one can construct AME states whose existence was
unknown so far. For that we need to introduce a generalization of the method, which we call
Cl+Q with repetition, where states in the quantum part are repeated, that is, several codewords
of the classical part concatenate to the same quantum state of the quantum part. For this to
be possible, one should employ MDS codes with the property that the codewords can be
distributed into subsets each forming MDS codes with smaller parameters. In particular, we
need MDS codes ¢ = [na, [%W , {%J + 1], such that its codewords can be partitioned into
q? subsets each forming an MDS code, with parameters 6; = [t [%W — 2, {%J + 3],
Comparing the code parameters of the MDS code ¢ with each subclass €’;, we see that they
require the same number of physical qudits but the number of logical qudits decreases by 2
(while obviously the Hamming distance increases by the same amount). The idea is now to

associate all the elements of each subclass to the same state in a Bell basis, see Figure4.I(b).
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Figure 4.4.: Graph state representing the k-UNI states constructed from the Cl+Q method.
The graph represent k-UNI state of non-minimal support that is constructed using the dual
code ¢+ = (N1, s — £, £ + 1], as the classical part. The necessary condition is ng — ¢ = ng.

Lemma 4.3 (C1+Q with repetition). Consider an € = [n., [%W , {%J + 1], MDS code such
that its codewords can be partitioned into ¢* subsets each forming MDS code with parameters
Ci = [na, [%1 -2, {%J + 3], An AM E(n, q) state |p) for n odd, with n = ng + 2, can be
constructed by concatenating all the terms of each subclass with one of the Bell states of the

quantum part, see also Figure[d.1(b).

In general, this configuration leads to AME states for n odd when n < ¢ + 3. To show
that the state |¢) is an AME state we need to check all the reduced states og = Trge |¢) (o]
on up to half of the systems. For the purpose of the proof, we proceed as above and check
three different cases, depending on how the k parties are distributed between the classical and
quantum part. We then use two properties of the construction:, (i) the fact that subsets %’; of
the MDS code are also MDS codes and (ii) the large Hamming distance between codewords
of two different subsets ¢’; and ;.

Proof. In the proof of the theorem, we assume the existence of MDS codes 4 =

[t [%W , {%J + 1], that can be divided into ¢> MDS codes with smaller parameters

Ci = [na, [%W — 2, [%J + 3], where i = 1,... ,q*. For each code ¢;, codewords are

el

presented by ¢; ; with j = 1,. .. ,q(TW_Q. The state

l9) = > 1G4 v (4.30)
i j N~~~

i)
Nel nq
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4. New construction for k-uniform and absolutely maximally entangled states

is a modification of Eq. (4.9), and it is an AME state if all the reduced density matrices
s = Trge |¢)(¢| are proportional to identity for |S| < {%J = [%1 As in lemma we
check three different cases depending on how the subset S distributes between the classical
and quantum part: it may be entirely contained in the support of the classical part C1 =
{1,...,nq}, or it can be split between the classical and quantum parts, Sq and Sgy. For the
last case we have two possibilities, depending on whether the support in the the quantum
part is partial, |Sq| = 1, and then |S¢| = L%J — 1, or or complete, having |Sq| = 2 and

|Sal| = {%J — 2.

Case (i): If the set S is contained entirely in the support of the classical part, the reduced

density matrix can be written as

os = Trse, Trq |9)(d] = > ZTIS&

i gg

G2 Gyl (4.31)

where we used the orthogonality of the states |¢;). Since the codewords with the same

value of © have Hamming distance dy > [%W + 2, which is larger than the size of the

subset .S, the partial trace is non-zero only when j = j’, having

05 = Z(TI‘S&

]

G Eisl) X L) (432)

where we used the fact that the number of free indices of the classical part is equal to
5] -1
2 2]

Case (ii): The subset S splits in two parts such that |Sq| = 1 and |Sq| = [%W -1

I
—
NE
| I

Then the reduced density matrix og simplifies to

o5 = Trse [d) (0] = DD Trse, (165)(Cry]) ® Trag () (i ])- (4.33)
ii' 4.
For the classical part, since |Sci| = {%J is smaller than the Hamming distance of the

code ¢, dy = {%J + 1, only the diagonal terms give a non-zero contribution, getting

o5 =y Trse, (16:;)(C5]) ® Trsg (

1]

i) (i) (4.34)

The trace over the quantum part gives the identity, as |);) are all Bell states, getting

o5 < Y Trge (1G;)(Cis]) @ 14 (4.35)

1,J

The remaining sum in the classical part is the same as the reduced state obtained from

the superposition of the all codewords of the MDS code %, i.e., Zz}j |5”> which is an
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4.7. Constructions of previously unknown AME states

AME states of n parties and all its reduced density matrices up to V“J are maximally
mixed. Putting all this together, we conclude that the reduced density matrix og is also

maximally mixed.

Case (iii): We consider a subset S that |Sq| = |Q| = 2 and | S| = [%W —-2= {EJ —1. We
then have the following formula

05 = TI‘S(,

ZZTrs (1G5 (Cir]) @ (|eba) (wbw]). (4.36)

i 5.5’
As for case (ii), the Hamming distance between the terms of the classical part,
dy = an]J + 1, is larger than the size of the subset |S¢i| = {EJ — 1, therefore

2
Trse, (|€5)(Crj[) = 0 whenever i # i" and j # j" and Eq. (#.36) simplifies to

o5 =3 T (163)(G 1) @ (1) (W]). (4.37)

As explained, all the codewords with the same value of ¢ define MDS codes with pa-

rameters [ng, [nlw 2, dy = [nl] +2],. They all give raise to (VQ‘J — 1) -UNT states,

that is, all the reduced density matrices up to {%J — 1 are proportional to the identity.
But the sum over index j in is precisely equal to one of these reduced states for

the set of parties S¢y, that is

> Trse, (6ig)(Ggl) o Lyna)y - (4.38)
J
Then, we get
q2
05 =2 L ma) @ ([a){dil) - (4.39)
=1

The quantum part is a complete orthonormal basis, therefore > [1;)(¢;] o< 15. Then,

the reduced density matrix in this case og o< 1 e =1 2]
2

]

What remains to be shown is that the construction can find an application, that is, that there
exist MDS codes that can be partitioned into ¢* subsets forming MDS codes. We proved
this for MDS codes with parameters € = [ng, [na/2] , [na/2] + 1], where ng < ¢, whose
codewords can be partitioned into ¢> MDS codes €; = [na, [na/2] — 2, [na/2] + 3],. This

result then allows us to construct AME(n < ¢ + 2, q) states, while ¢ is an odd prime power.

Lemma 4.4 (Subcode of MDS codes). For ng < q it is possible to find MDS codes € =
[na, [na/2], [na/2) + 1], whose codewords can be partitioned into q* subsets each forming
MDS codes €; = [na, [na/2] — 2, [na/2| + 3],
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4. New construction for k-uniform and absolutely maximally entangled states

Proof. We restrict our analysis to the biggest size ¢ = |[q, [¢/2], |q/2] + 1], as the other
codes can be constructed in the same way. As we discussed in Preliminaries |2} in general, to
find an MDS code [n, k, n—k], we need to provide a suitable generator matrix Gy, = [1x|A].
To do that, we first recall the Singleton arrays (3.9)

1 1 1 ... 1 1 1
1 o ay ... Qg—3 Qg2
1 ay as ... Qg—2

Sg = : : , (4.40)
1 a3 a4
1 ag-
1

with
a; ‘= 7 —1*yi' (4.41)

It is also known that by taking a rectangular sub-matrix A of size £ x (n — k) of S, one can
construct a suitable generator of an MDS code [MS77/, Chapter 11] [RGRA1S].

Theorem 4.5. Let G, = [Li|Apx(n—r)] be the generator matrix of a code € with parameters

[n, k,dp|, The following statements are equivalent:
(i) € is MDS.
(ii) every square submatrix of A is nonsingular.
(iii) any k column vectors of Gyx,, = [1|A] are linearly independent.
(iv) any n — k column vectors of H ,,_y)xn = |—A”|1] are linearly independent.
For ¢ being an odd prime power dimension, the biggest submatrix A has size [¢/2] x [q/2].

o = (1 la/2] |A] has size
[q/2] % (¢ + 1), and equivalently the MDS code has parameters ¢ = [¢ + 1, [¢/2] , |¢/2]],-

Using this construction, the biggest generator matrix G(q /2] x(

We start from an MDS code ¢ = [q + 1, [¢/2] , |¢/2]], and generator matrix G [a/2] x(a41) =

1 [4/2] |A], by puncturing we get (the basic definition of puncturing method is presented in

Preliminaries section [2.6.8))

G [9/2]xq — A [a/2]x[a/2] | ° (4.42)
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4.7. Constructions of previously unknown AME states

where column [¢/2] has been removed. This generator matrix is not in the standard form but

it constructs an MDS code.

The second step is showing that codewords of the constructed MDS code ¢ distribute into
subsets forming MDS codes €; = [q¢, [¢] — 2, |¢] + 3];- In order to do this, we use the
shortening procedure (for details of the method see Preliminaries section [2.6.8)). We take an
appropriate subcode by choosing the codewords which have all the same value in the deleted
coordinate, for instance 0. Thanks to this, all the differences between codewords must be
in the coordinates that we did not delete, and thus the Hamming distance cannot decrease,
dy > dpy.

We first show the existence of a subset %’y and then we will discuss the rest of subsets. We
define the matrix ()

1
“ar2]
Q I_q/2-| x2 T ) (443)
Qg—2 0
L O 1 |

that contains two columns, called )1 and Q2. The [¢/2] — 1 elements of (); are exactly the
same as for the ([q /2] + 1) -th column of the Singleton array .S,,. The biggest rectangular sub-

matrix of the singleton array .S, is used to construct the generator matrix G la/2] xa* Eq. @.42),

and the ((q/ 2] + 1)—th column contains [¢/2] — 1 many elements that we used as (); (we

added a zero for the last element). The column ()5 is the only column of the matrix ]1(

that is missing in G [4/2]

Now, let’s consider the following matrix

q/2]

xXq"®
- X 0 -
1 (q/Q‘I _1 a [q/Q‘I 0
Gl [a/2]x(a+2) = A [4/2] % [a/2] : : (444
Qg—2 0
0 0 0 1

G is the generator matrix of the MDS code ¢ = g, [¢/2],|q/2] + 1],- The matrix [G|Q)]
does not define an MDS code, Theorem can show that its parameters are 4 = [¢ +
2,1q/2], |q/2] + 2],. Now, we repeat the shortening process two times to get the subset €.
Every time we remove one of the last two columns of the [G|Q] matrix because G is the
generator matrix of the code % and we are looking for a right set of its codewords to form the

code €. After one step of shortening, removing the last row and the last column of the [G|Q)]
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4. New construction for k-uniform and absolutely maximally entangled states

matrix, we get

1 1 1
é 1 aq e a(q/ﬂ
([a/2]-Dx(a+1) = | Las2]-1 | . : S (4.45)
]- al'q/z—l g9 v aq_2

Theorem [4.5] tells us that the above matrix is the generator matrix of an MDS code with
parameters [¢ + 1, [¢/2] — 1, |¢/2] + 3],. To perform the shortening process for the second
time we need to find the right combination of rows of the generator matrix. To that end we

define the following matrix

1 a
2] -2 /
C( IV(I/Q‘I*I)X(IV(]/2—| 71) = [q/ —| ’Vq: 2—‘ (446)

0 c 0 Qg—2

We perform the C'~! matrix on the generator matrix G to get the right combination of the rows

of the generator matrix to do the shortening process. We get

0
5 1 c-'B |:
c'G = [4/2] -2 , (4.47)
0
0 . 0 1
where B is a submatrix of G
[ 1 1]
aq oea (q/z-l _1
By -nx([as2]+1) = : (4.48)
01 a[q/ﬂ 3 e Qg—a
11 a[q/ﬂ _9 e Qg3

Now, the matrix C~'( is presented in a form in which the rows are in the right combination

to easily perform the shortening process. By removing the last row and the last column we
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4.7. Constructions of previously unknown AME states

get the following matrix of size([¢/2] — 2) x ¢

where D( [a/2]-2)x([a/2] +1) = C~! B removing the bottom row, and G is the generator matrix
of the shortened code, ¢y. We performed a shortening that keeps or grows the Hamming
distance. Since we started with a MDS code [¢ + 1, [¢/2] — 1, |¢/2] + 3],, thus the shortened
code is an MDS code €y = [q, [¢/2] — 2, |q/2] + 3],. It is in fact easy to check that the
Singleton bound continues to saturate. Moreover, one verifies that the generator matrix Gy is
a linear combination of the rows of the generator matrix GG [a/2] xa Eq. (4.42)). This implies
that the codewords of MDS code %' are a subset of the codewords of the original MDS code

¢ =lq,[q/2],q/2] + 1],

It remains to show that all of the codewords of the MDS code % can be partitioned into subsets
each forming ¢; = [q, [¢/2] — 2, |¢/2] + 3],. So far we were able to show that q[q/ 2] =2 of
its codewords distribute into an MDS code with parameters €y = [q, [¢/2] — 2, |¢/2] + 3],.
The fact that both MDS codes % and %, are linear codes implies the existence of the other
subsets. Each of these subsets €’; can be achieved by adding a different codeword ¢; of code
% that is not inside the code % to all the codewords of code €. [

In the following, we present the AME states AME(7,4), AME(19, 17), and AME(21, 19). To
our knowledge, the states AME(19, 17) and AME(21, 19) were not known. For the simplest
case ¢ = 4 we also provide a closed form of states AME(7,4). Table of known AME(n, q)
states for different local dimension g can be found in [GR15, HW 19, HESG18]]

The state AME(7,4) can be constructed by using an MDS code with parameters [5, 3, 34
and showing that all the terms can be divided into 4? subgroups each forming an MDS code
[5, 1, 5]4. Thus, the following closed form expression is an AME(7,4)

)= > li,ili+ti+tlit+aj+(1+2))® |pas) . (4.50)

i,jl€GF(4)
where ¢,3 represents one of the Bell states such that & = i + j, 5 = ¢ + 2l over finite field
GF(4) = {0,1,z,1 + x} generated by > = x + 1. The detailed description of the subcodes
[5,1, 5], connected to the Bell states ¢,z are presented in Table Note that, in order to
achieve the AME state, it is important to have different Bell states for different subclasses but

the pattern of the states is not important.

For the other two states, AME(19, 17) and AME(21, 19) we can only provide the closed form
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4. New construction for k-uniform and absolutely maximally entangled states
expressions of the AME states |¢) with the G and () matrices

)= Y. |UG) [¥wg), (4.51)

7eGF(q)[9/?]
with

q—1
[Yag) = X" @ 27 N |11) . (4.52)
=0

The G and () matrices to construct AME(19, 17) are as follows

1 0000O0O0OO0O1 1 1 1 1 1 1 1
01 000O0O0OO0O1 8 2 15 7 4 6 9
001 o0o00O0OO0OT1T 2 15 7 4 6 5 9 13
0O000100O0OO0ODT11LB 7 4 6 5 9 13 12
G=|000O010001 7 4 6 5 9 13 12 14 |, (4.53)
0 00OO0OO0O1O0OO0ODT1T 4 6 5 9 13 12 14 11
0O 000OO0OO0OT1TO0OT1T 6 5 9 13 12 14 11 3
00 00O0OO0OO0OT1TT1 5 9 13 12 14 11 3 16
00 00O0OO0OOODTI1T 9 13 12 14 11 3 16 10
and, _ }
1 0
13 0
12 0
14 0
Q=111 0 (4.54)
3 0
16 0
10 0
0 1
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4.8. Conclusion

To produce the state AME(21, 19) the G and ) matrices are

10000O0O0OO0OCO0OCT1 1 1 1 1 1 1
01 000O0O0OO0OO0OT118 6 5 11 3 16 7 10
001 00O0O0O0OO0OT1 6 8 1 3 16 7 10 13
00010O0O0O0O0T1 5 11 3 16 7 10 13 4
G 0oo0o0o01oo0oo001 5 11 3 16 7 10 13 4 17 (4.55)
0Ooo0o0oo0oo01oo0oo0111 3 16 7 1013 4 17 9
0000001001 3 16 7 1013 4 17 9 15
0000O0OO0OO0O0T1O0T116 7 10 13 4 17 9 15 12
0000000011 7 1013 4 17 9 15 12 14
0O 000O0O0OO0OO0ODO0ODT1TT10 13 4 17 9 15 12 14 2
and, i i

1 0

13 0

4 0

17 0

9 0

Q= 5 0 (4.56)

12 0

14 0

0

1

Both AME states are constructed using G matrices that generate MDS codes
lg,[q/2], |q/2] + 1],, for ¢ = 17 or 19 respectively, whose codewords are partitioned into
subsets each forming MDS codes [q, [¢/2] — 2, |¢/2| + 3],. We found the right combination
of the MDS codes, or alternatively the G and () matrices, using a Python code.

Before concluding this part, we would like to mention that the C1+Q method can be general-
ized in a different way where the same quantum part is concatenated several times with the
classical part. With this method, if r is the number of times that each state of the quantum part
concatenates to the terms of the classical part, the k-UNI state contains n = ng + 7 nq many

parties.

4.8. Conclusion

We have presented a method that combines a classical error correcting code with a basis of

k-UNT states to generate other £-UNI states. We have shown that our construction is different
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4. New construction for k-uniform and absolutely maximally entangled states

from the other systematic construction previously known based on MDS codes: they belong to
different SLOCC classes and have a different graph-state representations. Then, we have used
our method to construct £-UNTI states of n parties with smaller local dimensions ¢ compared
to MDS codes, and examples of AME states with its closed expression, such as AME(19,17),
AME(21,19) and AME(7,4), that were unknown so far. Due to the importance that k-UNI
and AME states have, it is an interesting avenue to explore how to use the method presented
here for quantum information tasks and, in particular, in the context of quantum error correc-

tion.
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©o1

©03

P11

©13

V21

23

P31

©33

AME(7,4), Eq. (.50), formed by concatenating codewords of one subset to one of the Bell

Table 4.2.: Codewords of MDS code [5, 3, 3], are partitioned into ¢*> = 16 subsets [5, 1, 5],.
states.
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5. Entanglement and quantum
combinatorial designs

5.1. Introduction

Quantum information theory offers interesting connections with other scientific disciplines.
In previous chapters, we discussed the connection between k-UNI states and error correction.
Here, we focus on combinatorics and see how combinatorial designs extend to the quantum

domain.

In this chapter, we introduce novel classes of combinatorial designs by extending classical
symbols to pure quantum states. Our starting point is the notion of quantum Latin squares
(QLS), which we generalize to quantum Latin cubes (QLC) and hypercubes (QLH). We also
introduce a notion of orthogonality between them and identify a crucial ingredient missing in
previous approaches: two orthogonal QLS could be entangled, in such a way that they cannot

be expressed as two separated arrangements.

These entangled designs are intrinsically associated to a larger class of quantum designs that
include all previous quantum Latin arrangements: quantum orthogonal arrays. After setting
up the quantum combinatorial tools we apply our method again to the problem of constructing

k-UNT and AME states for multipartite systems having an arbitrary large number of parties.

5.2. Latin arrangements and orthogonal arrays

We first recall some basic combinatorial concepts that will be used later. As we discussed in

Preliminaries [2| a Latin square LS(q) is a square arrangement of size ¢ such that every entry,

taken from the set {0,...,q — 1}, occurs once in each row and each column. For instance,
arrangements
0123
012 1 03 2
5 201, ; (5.1)
2 3 01
120
3210
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5. Entanglement and quantum combinatorial designs

are Latin squares of size ¢ equal to two, three and four, respectively.

An orthogonal array, denoted as OA(r,n, q, k), is an arrangement composed by r rows, n
columns and entries taken from the set {0, ...,q — 1}, such that every subset of k& columns
contains all possible combinations of symbols, occurring the same number A of times along
the rows. Here, parameters k£ and A are called strength and index of the OA, respectively
[HSS99]. Two OA are called equivalent if one array can be transformed into the other by

applying permutations or relabelling of symbols in rows or columns.

An OA is called irredundant orthogonal array denoted as IrOA if every subset of n — k
columns contains no repeated rows [GZ14]. In particular, an OA(r, n, g, k) is irredundant if
by removing any k& columns from the array all remaining r rows, containing n — k different

symbols. For examples we can consider

OA(4,3,2,2) = (5.2)

_ = O O
_ O R O
O~ = O

5.2.1. Orthogonal Latin squares from orthogonal arrays

It is simple to show that any LS(q) is equivalent to an OA(¢?, 3, ¢, 2) [HSS99, Chapter 8]. For
example, the array OA (4, 3, 2, 2) produces a LS(2), as shown below:

0 0 0
0 1 1
1 0 1 0 1
OA = = LS= : (5.3)
1 1 0 10
7 j LS

Here, the first two columns of the OA identify coordinates (i, j) of symbols for the LS, whose
values are determined by the third column LS of the OA.

Two Latin squares LS* and LS? of size q are orthogonal if the set of pairs [(LS?),;, (LS®)y;]

is composed by all possible ¢*> combinations symbols, where 7,7 € {0,..., ¢ — 1}.

A collection of m LS of order ¢ is called mutually orthogonal (MOLYS) if they are pairwise or-
thogonal. For instance, any OA(¢?, 2+m, ¢, 2) defines a set of m MOLS of size ¢ [HSS99]. In
particular, an OA(9, 4, 3, 2) implies two classical OLS of size 3. As before, first two columns
(i, 7) of the OA address entries of OLS, while the two latter yield the values of the squares A
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and B,
0 0 0 0
0 1 2 1
1 0 2 2
1 1 1 0
1 2 0 1
0A(9,4,3,2)= 2 1 0 2 (5.4)
2 2 2 0
2 0 1 1
0 2 1 2
i 7 A B
021 01 2
= LS*'=2 1 0 LSP= 2 0 1
10 2 1 20

Entries of two OLS are typically denoted as ordered pairs in a single array. For instance, the
two OLS of Eq.(5.4) are denoted as

00 21 12
OLS= 22 10 01 . (5.5)
11 02 20

The elements consist all possible ¢ = 9 pairs. Also, a Latin square is called orthogonally

isolated (or simply isolated) if there is no Latin square orthogonal to it [HSS99].

5.2.2. Orthogonal Latin cubes from orthogonal arrays

Orthogonal arrays can be associated to Latin cubes. An OA(¢3,4, q,3) defines a Latin cube
LC(q), which consists on a cubic arrangement composed by ¢ rows, ¢ columns and ¢ files,
such that every entry taken from the set {0, ..., ¢ — 1} occurs once in each row, each column

and each file.

For instance, OA(8,4,2,3) defines a LC of size 2, where now the first three bits (4, 7, k)

determine the position of a given element of the cube L.C, while the last bit determines its
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value,

0 0 0 0

0 0 1 1

01 0 1 1o 0

0 1 1 0 - o
0---1--—-1 |

1 0 0 1 | |

OA(8,4,2,3) = L LC= | | | (5.6)

10 1 0 o 0---1---1

1 1 0 0 | L

11 1 1 1------- 0

i j k LC

In general, an OA(¢*, k+m, ¢, k) defines m mutually orthogonal Latin hypercube (LH) of size
q in dimension k, denoted MOLH (q). Figure summarizes the existing relations between

OA and Latin arrangements.

To emphasize the differences between the above described standard combinatorial designs
and their quantum generalizations discussed in subsequent sections we will refer to OA, LS
and MOLS and MOLC as the classical arrangements. An OA having r rows, n columns
and ¢ symbols can be associated with a pure quantum state of n qudit system having r terms
[GZ14]]. Each row of the array corresponds to a single term of the state, so the left hand side
of the arrangement yields the unnormalized state of AME(4, 3)

#) = ]0000) + |0121) + [1022) +
1110) + |1201) + [2102) +
12220) -+ [2011) + 0212). (5.7)

This state is maximally entangled with respect to the (3) = 6 possible balanced bipartitions
and it is an AME(4, 3) state.

5.3. Quantum Latin arrangements

These concepts are used to define unitary error bases [MV16] and mutually unbiased bases
[Mus17]]. In this section, we extend those results by introducing some classes of quantum

Latin arrangements.

5.3.1. Quantum Latin squares

Recently, quantum Latin squares (QLS) [MV16, Musl7] have been introduced, where clas-

sical symbols appearing in entries of arrangements were extended to quantum states. The
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OA

MOLS LS

MOLC LC

Figure 5.1.: Orthogonal arrays generalize some classes of combinatorial arrangements:
Latin squares (LS), Latin cubes (LC), and mutually orthogonal LS and LC (MOLS and
MOLC, respectively). These arrangements can be generalized to Latin hypercubes (LH) and
mutually orthogonal LH (MOLS), respectively. Along this work, we develop a theory of
quantum combinatorial designs and show that quantum Latin arrangements arise from QOA
in the same way as classical Latin arrangements arise from OA.

following notion of quantum Latin squares was introduced by Musto and Vicary [MV16].

Definition 5.1. A quantum Latin square of size q is a square arrangement,

|¢0,0> s |w0,q71>
QLS(q) = : (5.8)

|1/Jq—1,0> s |1/}q—1,q—1>

composed of ¢* single particle quantum states |1;;) € H,, i, € {0,...,q — 1}, such that

each row and each column determines an orthonormal basis for a qudit system.

For instance, the following example of a quantum Latin square was given in Ref. [MV16],

0) 1) 12) 3)
3) 120 1) |0)
IX-) [6-) &) Ix+) ’
IX+) [&4) 1&2) Ix=)

(5.9)

where two lower rows contain entangled states, |x4) = %(!1) +0)), |&4) = %(z|0> +2|3))
and [{_) = % (2|0) +14|3)). As a first observation, we realize that any QLS is naturally related

to a tripartite pure state having maximally mixed single particle reductions.

Proposition 5.1. A set of ¢* vectors |i;;) € H, forms a QLS(q) if and only if every single
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particle reduction of the three qudit state

Z ’ |J B|’¢z] (510)

4,j=0

is maximally mixed.

PmOf Let [¢yj) € M, be the ¢* entries of a QLS(g) and let us define the state [©) =
ZJ 0| )|7)|%:;)- Therefore

pa = Trpc|®)(P|

q—1
= Tch( Z \ij>AB<i'j’!®Wij)OWi'j/\)
,5,4,5'=0
q—1
= Z<ww|¢u Bcli)a ‘—Z i) 4
1,3,4'=0 1,3,8'=0

where we used the fact that |¢;;) € H, defines a QLS(¢) and denoted A, B, C for first, second

and third party, respectively. Analogously, one can check that pp = 1,. Furthermore, we have

q—1
pc = Tl"AB( > |Z'j><i'j'|®|¢ij><¢i'j'|)

i7j7i/7j/:0
q—1
= D> W)Wyl =1, (5.11)
4,7=0
and, therefore, state (5.10) has every single particle reduction maximally mixed. O

Let us exemplify Proposition. [5.1] by considering the 1-UNT state of a three qudit system,

q—1
¢) = Fy @ Fy @ 14|GHZ) = Y |lm) [thim) - (5.12)

I,m=0

Here |GHZ,) = Y074 |nnn> denotes a generalized GH Z state of three subsystems with ¢
levels each, F; = >} .- 1, w|i)(j] is the discrete Fourier transform of size ¢ containing an

unimodular number w = 2™/ and the state reads
q—1
Wrm) = D w" ™ n), (5.13)
n=0

This construction works for any g > 2. The ¢ states from Eq. determine a QLS of size
¢, which is equivalent to the classical [L.S(q)];,, = [+ m modulo ¢ with [, m € {0,...,¢—1},
as the classical arrangement can be obtained by applying suitable local unitary operation to
all elements of columns of the QLS. The state is 1-UNI and it is equivalent to the
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5.3. Quantum Latin arrangements

three-qudit GHZ state, in agreement with Proposition [5.1] Let us generalize this fact in the

following observation.

Observation 5.1. A QLS(q) is equivalent to a classical LS(q) if and only if one arrangement
can be transformed into the other by applying the same local unitary operation to all elements

of every column.

Furthermore, note that a unitary operation U applied to a single column of a LS implies a
controlled U operation acting on the third party of the corresponding three-partite 1-UNI state
(see Proposition. [5.1I). As a consequence, the entanglement of the state is changed and the

Latin arrangement is changed by a single column unitary operation.

Let us now introduce the notion of orthogonality for QLS, which is not equivalent to orthog-

onality for two separated quantum arrangements.

Definition 5.2. A set of ¢* pure quantum states of two parties |1; ;) € H?Q arranged as

[Yo0) oo |Yog-1)
: : (5.14)

[Vg-10) -+ |Yg-14-1)
forms orthogonal quantum Latin squares (OQLS) if the following properties hold:
1. The set of ¢* states {|1; ;) } are orthogonal and form a basis in H, ® H,.
2. The sum of every row in the array , ie. Z?;(l) |¢i j), is a 1-UNI state.

3. The sum of every column in the array , Le. 23;01 |9 j), is a 1-UNI state.

A8) = ndy @ [nB) for every

i,j € {0,...,q — 1}, imply than both arrangements {|n;;)} and {|n>)} determine QLS,
according to Definition

Observation 5.2. Two OQLS composed of separable states,

Indeed, single party reductions to A and B of the states defined in items 2 and 3 above are pro-
portional to the maximally mixed state, so that every row and every column of arrangements
A B . . . .
{In;;)} and {|n;7)} form an orthonormal basis. Moreover, if entries of each QLS are given
by elements of the computational basis then Definitions [5.1] and [5.2] reduces to the classical

definition of LS and OLS, respectively.

5.3.2. Quantum Latin cubes
Let us go a step forward and introduce quantum Latin cubes.

Definition 5.3. A quantum Latin cube (QLC) of size q is a cubic arrangement composed of ¢>

single particle quantum pure states ;) € Hg, i, j, k € {0, ...,q — 1}, such that every row,
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5. Entanglement and quantum combinatorial designs

every column and every file form a set of orthogonal states.

For instance, in the case of a cubic arrangement composed by qubit quantum states, i.e. ¢ = 2,
we have the cube (5.6). Let us introduce a notion of orthogonality between cubic arrange-

ments.

Definition 5.4. A set of ¢* tri-partite pure states |1, .) belonging to a composed Hilbert

3
space H,, arranged as

|wq—l,0,0>_ o _|¢q—1,0,q—1>
S s

|¢0,0,0>_ e |77b0,0,q—1>

’¢q1,q1,0>4' o _|d}q71,q71,q71>
s/ .

|¢0,q—1,0>_ e _‘wo,q—l,q—1>

forms a triple of mutually orthogonal quantum Latin cubes (MOQLC) if the following
properties hold:

1. The set of ¢* states {|1)s,..)} are orthogonal.

2. The sum of every row in the array , ie. 397 |Vsy.2), is a 1-UNI state.

3. The sum of every column in the array , ie. Z;’;é |V2y.2), is a 1-UNI state.
4. The sum of every file in the array , i.e. 020 [$ny.2), is a 1-UNI state.

Analogously to Deﬁnition if the ¢ states forming a set of MOQLC are fully separable, i.e.

[Vays) = 1ey.2) © gy ) @ g, ), then each set of states {7, )}, {nz,.)} and {|ng, .)}
forms a QLS according to Definition

Furthermore, in such case a fully separable MOQLC is equivalent to a classical MOLC, in
the sense that one can be connected to the other by applying local unitary operations acting in
columns of the arrangements. This is so because any single-party orthonormal basis can be
transformed into the computational basis by applying a suitable local unitary transformation.
Also, if the states forming the cube (5.4) are biseparable with respect to a given partition,

e.g. [WiD9) =1Ind,.) ® InfS.) for every z,y,z € {0,...,q — 1}, then the single-party

"E7y’z
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arrangement {|nZ', )} defines a QLC according to Definition It is important here to

note that the bipartite arrangement {|779]335 ;

)} not necessarily forms a pair of OQLC. This
surprising fact is closely related to the lack of some classes of multipartite absolutely maximal
entanglement, e.g. AME(n, 2) states exist only if the number of qubits is given by n =
2,3,5,6 [Sco04, HGS17].

5.3.3. Quantum Latin hypercubes

As the concepts of OQLS and OQLC are settled, let us define an arbitrary dimensional kind
of quantum combinatorial arrangements, called quantum Latin hypercubes. These quantum
arrangements can be connected to k-UNTI states for n qudit systems having ¢ levels each for

any k, n and ¢, as we will show later.

Definition 5.5. A quantum Latin hypercube (QLH) of size q and dimension k, denoted
QLH(q, k), is an arrangement composed of ¢* single particle quantum states |1;, ;) €
H?k, i1y ..y i, € {0,...,q — 1}, such that all states belonging to an edge of the hypercube

are orthogonal.

In particular, for £ = 2 quantum hypercube Q) LH (g, 2) reduces to the square ) L.S(q), while
for k = 3 they form a cube, QLH(q,3) = QLC(q).

We can extend the sets of OQLS and OQLC to sets of m mutually orthogonal quantum Latin
hypercubes (MOQLH) of size ¢ and dimension k£ < m. The following definition contains all

previously defined combinatorial designs.

Definition 5.6. A set of m mutually orthogonal quantum Latin hypercubes of size q in dimen-
sion k, denoted m MOQLH q), is a k-dimensional arrangement composed of m-qudit states
[Viy,ooin) € HE™, A1, - ooy im € {0, ..., q — 1} such that the following properties hold:

1. The set of ¢* states {|1;, . i.)} are orthogonal.

2. The sum of q states belonging to the same edge of the hypercube, i.e. Z?S—:lo Vi1 )
forevery 1 < s < m, forms a 1-UNI state.

In particular, a set of m MOLS are also MOQLS, e.g. the classical arrangements (5.4)) agree
Definition[5.6] In Section[5.4] we introduce a suitable tool to generate quantum Latin arrange-
ments, called quantum orthogonal arrays, and also establish its connection with quantum

Latin arrangements.
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5. Entanglement and quantum combinatorial designs

5.3.4. Bounds for mutually orthogonal quantum Latin
hypercubes

Let us now study upper bounds for the maximal number of classical and quantum Latin ar-
rangements. The theory of orthogonal arrays provides a bound [Bus52] for the maximal num-
ber of columns of an OA(¢*,2 + m¢, q, k), that has index unity. Therefore, it is easy to
derive an upper bound for the maximal allowed number m¢ of classical MOLH of size ¢ and

dimension k:

k—1 ifq <k
me <9 qg+k—4 if3<k<q (5.15)
qg+k—3 in all other cases.

For example, in dimension &£ = 2 we have that m MOLS of size ¢ can only exist for m¢g <
q — 1, for any ¢ > 2. The upper bound m = g — 1 can be saturated for ¢ being a prime
power number. These results, well-known in standard combinatorics, motivate us to derive
similar results for quantum Latin arrangements. However, derivation of such a generalized
bound requires solving a complicated optimization problem formalized (see Egs. (39)—(41) in
Ref. [Sco04]). Given the set of parameters n, g, k (or triple n, D, d in the original notation)
these equations can be solved by considering linear programming techniques. The particular
case k = |n/2], for which the arrangements are associated to AME states, can be analytically
solved. Therefore, we are able to provide an analytic bound for the maximal number mg of

MOQLH in the case of maximal possible dimension k¥ = |n/2] as follows:

2(¢* - 1) if n is even

mo < s (5.16)
2q(¢g+1)—1 if n is odd.

For instance, for n = 4 and k& = 2 we have that mg < 2(¢? — 1) MOQLS exist for any size
q, which is 2(q + 1) times larger than the classical bound m¢ < ¢ — 1. It is important to note
that bounds are not tight, as the bounds provided by Scott [Sco04]] are not tight (see
also [HESG18]).

Inequalities (5.15)) and (5.16) can be useful to detect genuine quantumness in MOQLH. In
general, given a set of m MOQLH it is hard to detect inequivalence to a classical set of
MOLS. Typically, such kind of comparison would require to consider a full set of entangle-
ment invariants. However, for those cases where m > m it is ensured that a MOQLH is
essentially quantum. For instance, a single LS of size two exists and there are no two QOLS

of size two.
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5.4. Quantum orthogonal arrays

In this section, we introduce quantum orthogonal arrays. This concept allows us to derive a

simple rule to generate infinitely many classes of k-UNI states and AME states, in particular.

Definition 5.7. A quantum orthogonal array QOA(r,n, q, k) is an arrangement consisting of
r rows composed by n-partite normalized pure quantum states |;) € ’H?", having q internal

levels each, such that
r—1

B Tri i (l03)(05]) = 7 L, (5.17)
=0
for every subset of n — k parties {i1, ... i, }-

In words, a QOA is an arrangement having n columns, possibly entangled, such that every
reduction to k£ columns defines a Positive Operator Valued Measure (POVM). We recall that a
POVM is a set of positive semidefinite operators such that they sum up to identity, determining

a generalized quantum measurement [NCOO].

We can also provide a view to error correction codes that suggest us to consider generalized
measurements instead of projective measurements in QOA. We know that any AME state
(or k-UNTI state) are related to a certain quantum error correction code [Sco04]. An AME
state of n parties with local dimension ¢, corresponds to a quantum code. This code can be
considered as an injective mapping from the space of K = 1 messages to a subset C of the
set of codewords with length n, denoted by (n, X = 1,d = [n/2] + 1)),. Knill-Laflamme
theorem Eq. implies that a subspace C of the Hilbert space H = CJ™ generates an
error correcting quantum code, if there exist recovery operators R, R, ... such that for any
state p with support in C and any collection of error operators with >, ETE, = 1, we have
dore R.E.pEIRl = p ® 1. In this case R, Ry, ... are a finite sequence of operators in #
satisfying the relation 3°, Rl R, = 1. This theorem combined with the fact that an AME state
yields an error correction code allows us to define quantum orthogonal arrays in a way that

every reduction produces a POVM.

Definition |5.7| forms a natural extension of the classical concept of orthogonal arrays to quan-
tum theory: the classical digits from (0,...,q — 1) are generalized to quantum states from

H,, while the classical concept of subsets of columns are replaced by partial trace.

From now on, we assume that columns of quantum arrangements are connected by the Kro-
necker product. Also, QOA having the minimal possible number of rows, i.e. r = ¢*, are

called index unity, as occurs in the classical case.

Let us introduce equivalent classes of QOA as a natural generalization of its classical counter-
part, defined in Section [5.2] Two QOA are equivalent if one can transform one arrangement

into the other one by applying suitable local unitary operations to columns and permutation
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of rows or columns. Note that permutation of columns in quantum states produce states in-
equivalent under LOCC, in general. Nevertheless, as interchange of particles does not change
the amount of entanglement in quantum states, from now on we will restrict our attention to

QOA inequivalent under swap operations.

Note that the only allowed local unitary operations in classical OA are permutation matrices,
equivalent to relabelling of symbols. In contrast to quantum Latin arrangements, in QOA we
are allowed to apply any local unitary operation to any column without spoiling the orthogonal

array. To illustrate these ideas let us consider the following example:

oo :(1» 0 _ I 1

VIV O

where o, is the Pauli X operator. In this way, we obtain two equivalent classical OA. Instead,

by applying the Hadamard gate H = {{1, 1}, {1, —1}} to the second column, i.e.,
(5.18)

with |[£) = |0) £ |1), we obtain a QOA which is equivalent under local unitary operations to

a classical OA.

One example of QOA is
0) 10) 10) [¢)
0) 1) 1) [¢F)
OA(4,5,2,2) = , 5.19
QOREE22 =00 o) 1y ) 19
b1 10 e

where, |¢*) = |00) & [11) and |)*) = |01) & |10) denote the Bell basis. To emphasize that
some of these columns are separable (classical) and some of them are entangled (quantum),
we shall also write QOA (4, 3., + 2,, 2, 2), as the second argument denotes three classical and
two quantum columns. Note that the number of classical and quantum columns, i.e. n. and

nq such that n = ng + ng, are invariant under local unitary operations acting on columns of
the QOA.

A QOA is equivalent to a classical OA if and only if nq = 0, thus also implying a classical
set of MOLS and a classical error correction code [HSS99]. Roughly speaking, the parameter
nq quantifies the difference between QOAs and OAs. As a further comment, note that every
reduction to two columns of the arrangement (5.19) form a POVM, where partial trace should
be considered for entangled columns. The fact that QOA (5.19) is not equivalent to a classical

OA is in correspondence with the fact that AME(5,2) state cannot be written as a linear
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combination of ¢* elements of the 5-qubit computational basis.

5.4.1. Orthogonal quantum Latin squares from quantum
orthogonal arrays

We have seen in Section OLS arise from OA. First the two columns of the OA specify the
entries of the first and second LS, whose values are determined by the third and fourth column
of the OA, see Eq. (5.4)). In the same way, as an example one can derive three MOQLS of size
2 from QOA(4,5,2,2) of Eq.. A triple of mutually orthogonal quantum Latin squares
reads,
_0)le*) )
D) [0)]e)
The first two columns of QOA specify the entries of the three MOQLS (5.20). Note
that these three MOQLS are entangled, which is a direct consequence of the fact that QOA
(5.19) is not equivalent to a classical one. Indeed, QOA (5.19) contains entangled columns.

MOQLS(2) (5.20)

According to the results shown in Section [5.3] a single party arrangement belonging to a set
of MOQLS determines a QLS, what can be seen from Eq.(5.20) after tracing out the second
and third party. However, the bipartite arrangement obtained from taking partial trace over the
first subsystem of the QOA (5.20), i.e.

6°) 1) 51)

Y7 o)
is not a pair of orthogonal QLS. This is simple to observe if we take into account Definition
Indeed, the sum of every column of the arrangement determines a 1-UNI state but
the sum of every row gives a separable state. It is possible to prove that such QOA(r, 4,2, 2)
does not exist for any € N, which is related to the fact that an AME(4, 2) state does not
exist [HSOO].

5.4.2. Orthogonal quantum Latin cubes from quantum
orthogonal arrays

We will discuss later that OQLS are closely related to 2-UNI states. In order to achieve
higher classes of multipartite entanglement, i.e. k-uniformity for £ > 2, one has to generalize
quantum combinatorial arrangements to higher dimensions. Now, let us introduce orthogonal

quantum Latin cubes (OQLC). To study this, we consider the following array consisting of
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three classical and three quantum columns,

0} 10) [0) |GH Zooo)
0) 10) [1) |GHZoor)
0) 1) 10) [GH Zoo)
0) |1) |1) |GHZ
QOA(8,3¢ + 34,2,3) = 00 1) 11) o) (5.22)
1) 10) [0) |GHZioo)
1) 10) [1) |GHZyo)
1) 1) [0) |GHZyo)
1) 1) 1) |GHZn)
This QOA produces three MOQLC of size 2:
MOQLC(2) =
‘GH2100> ,,,,,,,,,, ‘GH2101>
|GHZ000> ,,,,, 3 77777 |GHZ001> 3
i | i ! (5.23)
3 |GH12110> ,,,,, 3 77777 |GH1lel>
|GH2010> 7777777777 |GH1ZOII>

Here, the tri-partite orthonormal basis is composed by eight states locally equivalent to the
3-qubit GHZ state. These states form an orthonormal basis in Hg = Ho @ Ho ® Ho,

where i,j,k = {0,1} and oy and o, represent the Pauli matrices o, and o, respectively.
Global phases given by o, = 1if ¢ = j = k and «;j;, = 0 otherwise are added to states
(5.24) forming the GHZ basis, in such a way that the construction (5.23)) forms a quantum

Latin cube.

5.4.3. Orthogonal quantum Latin hypercubes from quantum
orthogonal arrays

Any set of m mutually orthogonal Latin hypercubes, in particular any set of m MOQLS, is
linked to a QOA (see Figure. [5.2). As a natural generalization of this result, we have the

following proposition.
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Proposition 5.2. A QOA(¢*, k + m, q, k) generates m MOQLH of size q in dimension k.

We generate MOQLH from QOA in the same way as MOLH arise from classical OA. That
is, first k classical columns of a QOA address the location of entries and the remaining m

columns determine the values of every entry of the quantum Latin arrangement.
Now we are in position to establish the following result.

Proposition 5.3. A set of m MOQLH{|¢;,
by ¢* states of m qudit systems having q levels each, defines a k-UNI state forn = k +m

iV} of size q defined in dimension k, composed

-----

qudit systems, given by
q—1

)= D ity i) [ Pirinn)- (5.25)

i1,0myip=0
Even more, if k' < k subsystems belonging to the first k qudits are measured then the remain-
ing entangled state is (k — k')-UNL

Proof. The state |¢) defined for n = k + m subsystems with ¢ levels each is k-UNI, since the
following two facts hold:

(i) the set of m MOQLH defined in dimension k define a QOA(q", n, ¢, k) and (ii) Proposi-
tion. [5.4] applies. O

For instance, the state AME(5,2) defined in (5.26), constructed through MOQLS (5.20)), sat-
isfies C = 1, and defines a 1-dimensional subspace protected under decoherence [LMPZ96b].

5.4.4. Comparing orthogonal arrays with quantum orthogonal
arrays

We can show that a QOA(r, n, ¢, k) determines a k-UNI state of n qudits, in the same way
as an irredundant OA(r, n, q, k) implies a k-UNI state of n subsystems with ¢ levels each
(GZ14].

Proposition 5.4. The sum of rows of a QOA(r,n, q, k) produces a k-UNI state of a quantum

system composed of n parties with q levels each.

Proof. Every reduction to k columns of a QOA(r, n, ¢, k) defines a POVM, and thus the sum

of its elements produces the identity operator. 0

For instance, QOA(4, 5, 2, 2) of Eq.(5.19), related to the squares (5.20), produces the 2-UNI
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five-qubit state [LMPZ96b|

[¥) = 1000)[¢™) + [011)[¢") +
1101)[¢7) + 110)]¢™). (5.26)

Furthermore, the array QOA(8, 6, 2, 3) presented in Eq.(5.22)), and related to the cube (5.23)),
produces the AME(6, 2) state [BPBT07],

1

0) = > |v,y,2)|GHZ,,.). (5.27)

%%220

Proposition [5.4] reveals that QOA generalizes the notion of irredundant OA and not the entire

set of OA. For instance, the non-irredundant classical array,

OA(4,3,2,1) = : (5.28)

_ = O O
_ O = O
_ = O O

is not equivalent to a QOA(r, 3,2, 1) for any . This is so because OA does not pro-
duce a 1-UNI state and, by definition, any QOA produces at least a 1-UNI state. The key
difference existing between classical and quantum OA relies on the fact that the action of
removing columns in classical OA is not equivalent to taking the partial trace in the quan-
tum case. Precisely, these operations are equivalent only if the orthogonal array considered is

irredundant.

Furthermore, the juxtaposition of two OA is still an OA, whereas the same statement does not
hold for QOA. This is connected to the fact that the sum of two k-UNI states is not necessarily
a k-UNI (see in Section . Nonetheless, all classical OA(¢*,2 + m, g, 2), associated to m
mutually orthogonal hypercubes of size ¢ are irredundant [GZ14].

Let us summarize some important connections existing between classical and quantum ar-
rangements and k-UNT states derived along this section. First, we start considering previously

known connections. The following standard (’classical’) notions are equivalent:
1. QOA with fully separable columns (= OA)
[e-g~ QOA(97 4normalfontcl + Oqa 37 2) EOA(9,4,3,2) in Eq "

2. Sets of m separable MOQLH(q) in dimension k
(= MOLH) [e.g. classical LS 4 and LS5 in Eq.(5.4)]

3. n qudit £-UNTI states with minimal support
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QOA

MOLS LS QLS MOQLS

MOLC LC QLC MOQLC

Figure 5.2.: Generalization of orthogonal arrays (OA) to quantum orthogonal arrays (QOA).
This extension allows us to naturally generalize some classical arrangements to quantum me-
chanics: Quantum Latin squares (QLS), Quantum Latin cubes (QLC) and Mutually orthogo-
nal quantum arrangements (MOQLS and MOQLC).

[e.g. AME(4,3) state in Eq.(5.7)]

Here, the symbol = denotes equivalence under local unitary operations applied to columns of
an array. Connection /-2 is well known in mathematics since the early times of orthogonal
arrays theory (see Chapter 8 in Ref. [HSS99]). Connections /-3 and 2-3 have been recently
established, see Refs. [GZI14]] and [GAL™15], respectively. Furthermore, in the case of n =

2k there exists a link between AME states and multi-unitary permutation matrices [GAL™15].
In a similar manner, the following generalized (’quantum’) notions are equivalent,
a. QOA with entangled columns (# OA)
[e.g. Eqs.(5.19) and (5.22)]
b. Entangled MOQLH (# fully separable MOQLH)
[e.g. Egs. (5.20)]
c¢. n qudit k-UNTI states with non-minimal support. (# to minimal support states)
[e.g. Eqs.(5.26) and (5.27)]

Note that a QOA having at least one pair of entangled columns necessarily implies the exis-

tence of entangled OQLS that cannot be separated, in the same way as entangled states cannot

be represented as the tensor product of two single party pure states.

5.5. k-UNI states from quantum orthogonal arrays

As we have seen in Proposition quantum arrays QOA(r, n, g, k) imply the existence of

k-UNT states for n qudit systems having ¢ levels each. In this section, we derive k-UNI states
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with the maximal possible value k = [n/2] for n = 5 and arbitrary ¢ > 2 from QOA. Those
states determine AME states for 5-qudit systems.

Let us present a simple construction for AME(5, ) states for every g > 2 derived from QOA.
These states are known to exist [Rai99al] but its explicit closed form has not been presented
before, as far as we know. We first define the state AME(3, q)

q—1
1) =i, 4,1+ J), (5.29)

1=0

which has associated a classical array IrOA(¢?, 3, ¢, 1). As usual in the Thesis, sums inside
kets are understood to be modulo q. By considering this state and the generalized Bell basis
for 2-qudit systems, we are going to construct a QOA composed of 5 columns and ¢ rows

that defines an AME(5, q) state for every integer g.

The first three classical columns of the quantum arrangement are induced by the state (5.29),

whereas the remaining two quantum columns are given by the elements of the Bell basis
-1
[6ig) = D_w"ll+4,1), (5.30)
1=0

where w = e?™/9. We are now in position to establish the following result.

Proposition 5.5. The following three existing quantum objects, determined by a collection of
q° states |¢; ;) € HE? are equivalent:
(A) QOA(q27 3cl + 2q7 q, 2)

0010 e
o e .

lg—=1) [¢=1) [¢—2) |pg-14-1)

(B) Triple of MOQLS of size q

0)|b0,0) oo g —=1)|bog-1)
. .. : (5.32)

g = Dldg-10) -+ ¢ —2)|Pg-1.4-1)
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(C) Quantum state AME(5, q)

q—1
Wy = " i, 4, i+ 5| i), (5.33)

i,j=0

for any integer q > 2.

Proof. Proof of (A) follows from two facts: (i) every subset of two columns produces an
orthonormal basis (ii) every reduction to three columns contains orthogonal rows. These con-
ditions ensure that every reduction to two columns produces a POVM. These two properties
are an extension of the so-called uniformity and irredundancy, considered to construct £-UNI
states from classical OA (see Section IV in Ref. [GZ14]).

Equivalence between (A) and (C) follows directly from Propostion while the last relation
between (A) and (B) can be obtained by Propostion 5.2 O

In the case of ¢ = 2, this construction reduces to QOA (5.19), MOQLS (5.20) and AME(5,2)
state (5.26). Note that the QOA (5.31) has its last two columns entangled, implying that MO-
QLS (5.32) are necessarily entangled and AME state (5.33) does not have minimal support.

This is consistent with the summary of results presented at the end of Section[5.4]

Observation 5.3. QOA allow us to add a classical column to the arrangement in order
to define the following 2-UNI states of 6 qudits, i.e.,

q—1
) = D lisg.i+ 4,1+ 2)) i), (5.34)

i,j=0
where q is an odd prime number and both sums in kets are taken modulo q. When q is a
prime power number, it is convenient using polynomial representation based on irreducible

polynomials. In such cases, the 2-UNI states of 6 qubits is written as

q—1
Z ’7’7.]72 +]72 + a1j>|¢i7j>7
i,j=0

where a, is the first element of the finite set using the polynomial representation for which

aj 7é O, 1.

Here, note that the classical and quantum parts are composed of four and two columns, re-

spectively. It is simple to check that the underlying arrangement is a QOA(¢?, 4. + 24, ¢, 2).

In the constructions presented above, the key point was to produce a QOA from combining
a classical OA and an orthonormal basis composed of generalized Bell states. It is simple

to realize that the multiplication of quantum columns produce another QOA having a larger
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number of columns. For example, the QOA (5.19) can be extended by considering m copies

of the quantum part in the following way:

1 11 [¢pF) ... |¢h)
001 |¢7)... |¢7)
01 0 |[F) ... [¢ph) > (5.35)
1 00 [¢)... %)
NI

which produces a 2-UNI state of 3 + 2m qubit systems. Furthermore, constructions (5.33)
and (5.34) can be generalized in the same way. That is, we construct 2-UNI states for an odd

number of n = 5 + 2m qudits

q—1
3,j=0 _—

m

and also 2-UNI states for an even number of n = 6 + 2m qudits

q—1
Z ’Z7.]7Z+.]72+2.]> ’¢i,j>”"¢i,j>7
%0 —_—

where ¢ is a prime number. As we described in (5.34)), when ¢ is a prime power we should
consider the set of polynomial representation of the finite sets. For these constructions it is

straightforward to check that every reduction to two parties forms a POVM.

5.6. Conclusions

A generalization of classical combinatorial arrangements to quantum mechanics has been
established. We studied the notion of quantum Latin squares (QLS), quantum Latin cubes
(QLC), quantum Latin hypercubes (QLH) and introduced a suitable notion of orthogonality
between them. We also introduced the notion of quantum orthogonal arrays (QOA), that
generalizes all the classical and quantum arrangements. Moreover, we derived quantum Latin
arrangements from QOA in the same way as classical Latin arrangements can be obtained

from classical OA.

Our findings allowed us to realize that a pair of orthogonal quantum Latin arrangements not
necessarily implies existence of two separated arrangements satisfying an orthogonality cir-
terion. Indeed, orthogonal Latin arrangements can be entangled in the same way as quantum
states are entangled. This astonishing property is one-to-one related to the fact that columns
of QOA can be entangled. This turned out to be a crucial property in order to reproduce some

classes of highly entangled multipartite states, the so-called AME states with non-minimal
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support, for instance the states AME(5,2) and AME(6,2) consisting of five and six qubits, see
Eqgs. (5.26) and (5.27), respectively.

Furthermore, QOA define k-UNI states. We demonstrated that k-UNTI states constructed from

quantum Latin arrangements have high persistency of entanglement, which makes them ideal

candidates for quantum information protocols.

We constructed three genuinely entangled MOQLS of size ¢, QOA composed of five columns
and an arbitrary number ¢ of internal levels and AME states for five parties with ¢ levels each,
for every ¢ > 2. This result evidences the usefulness of the quantum combinatorial designs

introduced along the work.
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6. Optimal quantum error correcting
codes from absolutely maximally
entangled states

6.1. Introduction

Quantum error correction provides promising techniques to solve the inherent fragility of
quantum systems interacting with the environment. AME states are linked to quantum codes
as well. In particular, AME states are formally shown to be equivalent to a special QECC that
has only one codeword , i.e., [n, 0, [n/2] + 1], [Sco04]. However, having just one codeword
in the code space may not be useful for communication purposes as we need to encode a

number of qudits into different codewords.

In chapter [3] we discussed the direct correspondence between minimal support AME states
and classical MDS codes. In this chapter we conjecture the existence of a family of QECC
whose code spaces are spanned by AME states. We show that our conjecture is equivalent
to the existence of a Pauli string satisfying a compressibility condition. A Pauli string is in-
compressible in the sense that its weight cannot be decreased by multiplying it with stabilizer

products of the code.

Further we construct such codes for all n up to n = 8 by finding several suitable incompress-
ible operators. In the corresponding QECCs, a logical qudit is encoded in a g-dimensional
subspace spanned by AME states of n parties. Our proposal has a very clear physical motiva-
tion and complements other constructions of non-binary QECC. In particular our construction
is very explicit and works with a smaller local dimension ¢ given n than previous codes with

similar code parameters.
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6. Optimal quantum error correcting codes from absolutely maximally entangled states

6.2. Properties of stabilizer quantum error-correcting
codes

A given stabilizer QECC, C = [n, k, d], appends physical qudits to logical qudits that we
want to protect (details discussed in Preliminary section (2.8])). For the code to be useful, the
code space must be chosen such that the expected errors never map a state from the code space
to a state that could also have been produced by a different error from a different code state.
This would introduce an unrecoverable error. One should always take the state out of the code
space in a away such that a subsequent correction can bring the system back into its original

state.

An error E € & that affects a given encoded quantum state either commutes or anticommutes
with any particular element of stabilisers S;. One can say the error £ is detectable by comput-
ing an error syndrome, for this, we need to check if £ commutes or anticommutes with each
element S;. The syndrome r is a vector with length n — k whose elements identify whether the
error £/ commutes or anticommutes with each .S;. The error E is correctable if (i) it anticom-
mutes with an element .S; or (ii) it is one of the stabilisers. It corrupts the encoded message if

the weight of |E| < ¢ and it commutes with all S; but does not lie in the stabiliser group.

In the following we present one examples of stabilizer QECC.

6.2.1. AME(4, 3) state and QECC with 1-UNI codewords

Here, we discuss an example of constructing a QECC with parameters [n — 1,1, [n/2]], from
a given AME(n, q) state. For this, we consider the AME(4, 3) state constructed from the
classical MDS code [4, 2, 3|3

2
Wy = " i, 4, i+ 4,0+ 2))

4,j=0
= |000) + |0112) + [0221) + [1011) + |1120) + |1202) + |2022) + [2101) + |2210)
6.1)

In this example the local dimension ¢ = 3 is prime so that the finite field GF'(3) is simply the
set {0, 1,2} with the standard arithmetic modulo 3. The state |¢/) is a QECC with parameters

[4,0,3]5 and our purpose is constructing a quantum code [3, 1, 2]s.

We take the first party of the state |¢)) as the logical qudit, and encode it with the projection

onto the remaining particles. The resulting codewords are

2
i) = lji+4,i+25) =012, (6.2)
7=0
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or, equivalently,

2

ltho) = > 17.4,27) = [000) + [112) + [221) (6.3)
j=0
2

1) =S 15,7 + 1,25 + 1) = [011) + [120) + [202) (6.4)
j=0
2

s) = S 14,5 + 2,25 + 2) = [022) + |101) + [210) . (6.5)
7=0

One can simply check that the above states are orthogonal 1-UNI states and the minimal
number of single-qudit operations that are needed to create a non-zero overlap between any

two states is equal to 2.

6.3. Quantum error correcting codes from AME states

In this section we show that the AME(n, ¢) states of minimal support constructed from linear
MDS codes allow to construct QECC with parameters [n, 1, |n/2|],. As we show below, we
need to find suitable incompressible operators that when applied to a given AME(n, ¢) con-
struct the code space of the QECC. In this QECC, a logical qudit is encoded in a ¢ dimensional
subspace spanned by AME(n, q) states.

Our construction provides codes that are different from the example presented in the previ-
ous section. In this example, one starts from an AME(4, 3) and by eliminating one of the
parties derived a QECC with codewords containing n = 3 parties and consequently code pa-
rameters [3,1,2];. In our construction one want to start from an AME(n, ¢) and by using
the incompressible operators and without eliminating any parties construct stabilizer QECCs.
Our construction is comparably simply, very explicit, physically motivated, and works with
a smaller local dimension ¢ given n than previous codes with similar code parameters (we

provide a detailed comparison at the end of this section).

First we recall that a subspace C spanned by a set {[t)m)},,( 5 of orthonormal states is a
[n, k, d], QECC, i.e., a code that encodes k logical qudits into n physical qudits, if it obeys
the Knill-Laflamme conditions, Eq. (2.48) [KL97, Got97]

vm,m' € [¢*]: (Wm|ETF|Yn) = fF(ETF) 6 (6.6)

for all E, F with wt(ETF) < d. Thereby wt is the weight of an operator, defined to be the
number of sites on which it acts non-trivially. The parameter d is the distance of the code,

which is the minimal number of single-qudit operations that are needed to create a non-zero
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6. Optimal quantum error correcting codes from absolutely maximally entangled states

overlap between any two orthogonal states from the code state space C, i.e.,

4= (W) (@[W1e') # 0 A (g]¢) = 0} . 6.7
i (V) (0IW16') # 0 A (6l0') = 0} 6.7)
Such a code can correct all errors that act non-trivially on up to ¢ := |(d — 1)/2] physical

qudits (for more details see Preliminaries section (2.8)).

The code space of the QECC that we are going to construct will be spanned by AME states
generated by acting with a Pauli string M onto a given minimal support AME state | V) con-
structed from an MDS code. Let us first introduce the notion of different realizations of such
a Pauli string M. Recall first that AME states generated by Eq. (3.0)) are stabilized by a set of
q" Pauli strings, the elements of the stabilizer group, denoted by

S(on,....an) =] ($")", (6.8)
=1
where S} are the stabilizers defined in Eq. (A.7) and the «; € [g]. This implies that, for a

given Pauli string M acting on |V), there are ¢" — 1 other Pauli strings that perform exactly

the same action on | V), namely, since

M|T) = M S(ay, ..., an)|0), (6.9)
all M(ay,...,0p) = MS(ay,..., ) act identically on |¥). All such realizations
M(av,. .., o) of a Pauli string form an equivalence class.

The elements of such an equivalence class act on different subsets of the sites. For example,
the operator X ® 1 ® - - - ® 1, when acting on an AME state generated from a generator matrix
in standard form, can be pushed to the second half of the system by inserting the operator
(SP)T as then

X@1...1|¥) = (X ®1...1)(S})!|v) (6.10)
4]
=1...1® X et g. @ X 9" |U). (6.11)

For the EPR state & := >, |j)|j) this property is well known. For every unitary U acting on
site 1 there is another unitary that transforms this state in the same way but acts only on site
2,ie, (U®1)|®T) = (1 ® UT)|®). In the case of AME states, any Pauli string can always

be pushed to act non-trivially only on sites inside any subset of size [n/2]:

Lemma 6.1. Consider a minimal support AME state |V) constructed from a linear MDS code
according to Eq. (3.6) and a Pauli string M acting on n q-level systems. For every set S of

at least [n/2] of the systems there is a realization Moy, . .., ay) that transforms |U) in the
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6.3. Quantum error correcting codes from AME states

same way, i.e., M |V) = M (aq,...,a,)|V) and acts non-trivially only on the systems in S.

Proof. This is a direct consequence of the fact that the tensor of coefficients of a minimal sup-
port AME state is a perfect tensor. More explicitly, constructing a realization M (a1, ... )
that acts trivially on [n/2] sites is equivalent to solving two systems of each |n/2| linear
equations, one for the powers of the X operators and one for the powers of the Z operators,

because

M(ay, ..., «ap) (6.12)

- M (® le\ﬁ{ﬂ o gl,m) (® ZZLLWJH (%) hz,m) )
m=1 m=1

As any subset of up to |n/2] columns of the generator and any subset of up to [n/2] columns

of the parity check are linearly independent, this can always be done. [

When pushing Pauli strings around, as the example above demonstrates, their weight can
change. In particular, it can happen that after pushing a Pauli string into a certain set of sites,
it doesn’t actually act non-trivially on all sites in this set. We define the minimal weight of an
equivalence class of operators as the weight of the “lightest” element within the class. When
a given M belongs to a class of minimal weight w, this means that it cannot be pushed into

any subset of less than w sites, i.e., it can not be compressed to have weight less than w.

For the sake of simplicity we now restrict our considerations to the case n even. In the fol-
lowing theorem we show how a Pauli string M, belonging to a class of minimal weight w,
defines an AME state based QECC.

Theorem 6.2. Let |V) be an AME(n,q) state constructed from a linear MDS code via
Eq. (3.6) with n even and ¢ > n — 1 prime and M a Pauli string. The subspace C =

Span({\\lfmﬁ,;lo ) C (CH®™, with
0,,) = M™| D) (6.13)

is a QECC code parameters [n,1,w], if and only if M belongs to an equivalence class of
Pauli strings of minimal weight 0 < w < n/2. Moreover, generators for the stabilizers group

of the code state space can be constructed explicitly.

Proof. The subspace is manifestly spanned by orthogonal AME states, as the |V,,) are part of
an orthonormal basis of AME states. This is a direct consequence of the fact that, because of
Lemma [6.1] for n even, a Pauli string acting on an AME state either stabilizes it or produces
an orthogonal state, i.e., (U|(M|¥)) € {0, 1}. Further, C is a QECC that can correct all errors
from a set £ if and only if there exists some function f such that for all £, F' € £ and all
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m,m’ € [q] [Got09]
<\Ijm’|ET F|\I/m’+m mod q> — Om,0 f(ET F) (614)

In our case, &£ is the set of all operators with weight at most [(w —1)/2| < [(n —2)/4].
We first prove the “only if”” part. Assume that M could be compressed into some subsystem
of size less than or equal to w — 1. As the compressed M would still be a Pauli string and
therefore product, there would be some error operators £, F' such that E ' = M and hence
the above condition would be violated. This proves necessity. We now turn to the “if”” part. If
m = 0, then because |V,,/) is an AME state

(Ut |ET F| ¥ in mod q) = ¢"* Tr(ETF). (6.15)

Consider now the case m # 0. As n is even, we know that we can push any Pauli string into
any subset of size n/2. Denote the result of pushing A/™ with the product of stabilizers S into
some subset of size n/2 that completely contains the sites on which ET F' acts non-trivially
by M™ .= M™S. As |U,,/) is AME

(U |ET Fl W im mod g) = (U |ETF M™| W) (6.16)
= Te(ET F M™) ¢/, (6.17)

Notice that M™ is not the m-th power of M pushed into the same subset, but |]\f4vm| =
|M™ S| = |(M SY™)™| = |M S*/™| (as the Pauli matrices commute up to a phase, which
does not change the weight) and so M™ can be compressed into a certain number of sites if
and only if M can be compressed into the same number of sites. Thus M™ is, up to possi-
bly a phase, a product of traceless Pauli operators that act non-trivially on at least one site

on which E' F' does not act, and therefore Tr(E! F M™) = 0. This proves Eq. (6.14) with
f() =g Ta().

It remains to show how to construct the generators S¢ of the stabilizers group of C =
span({|¥,,)}%1)). The generators have to satisfy
Vr,om:  SCM™|U) = M™ ). (6.18)

The special case m = 0 of this condition implies that they must be products of the stabilizers
of |¥), i.e., that there exist vectors @, € [q]" such that S¢ = [T/, (S}¥){@):, hence they are in
particular also Pauli strings. Further, the above condition implies that the s¢ must commute
with M (and hence M™) when acting on |V), i.e,

SEM™|W) = M™ SC|W). (6.19)
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The commutator of two Pauli strings, however is, up to a phase again a Pauli string. More

precisely, any Pauli string A can be brought into the standard form
A=) AT 4T (6.20)

where ¢(A) is a phase, and AL = X (@) and equivalently for A% . As can be verified

by direct computation, for any two Pauli strings A, B it holds that

AB =i p A (6.21)

where @ = (a*,a?) and b is defined in the same way in terms of the standard form of 3 and

® is the bilinear symplectic inner product
aob=a’ -b< —a* v’ (6.22)

This implies that Eq. (6.19) is satisfied if for all m it holds that 5. ® (mm) mod g = 0,
which is equivalent to just s, ® m mod g = 0, where s, is the vector coming from the

standard representation of s¢ and 77 that of M. More specifically

. G" 0 .
S, = ( 0 HT) o (6.23)

and as M has weight less than n/2 + 1 the condition s, ©® m = 0 imposes a non-trivial
constraint, so that there are n — 1 linearly independent &, that satisfy it and are of the form

given above. A Mathematica code to find all these @, is given under [ame]. O

In order for the code resulting from the above construction with a given Pauli string M to
yield the maximum distance allowed by the Singleton bound the minimal weight w of the

Pauli strings equivalence class has to satisfy

w = V;l +1J - m (6.24)

2

which precisely matches the lower bound set by Lemma We conjecture that for any n,
and any AME states constructed in the above way from a linear MDS code, an equivalence

class of Pauli strings exists that saturate this bound (for n even):

Conjecture 6.1. Given an AME state |V) produced by a linear MDS code of n sites and

q > n — 1 prime, there exists at least one equivalence class of Pauli strings with minimal
weight |n/2]|.

As a side remark, note that our proof of Theorem|[6.2]in any case only works for n even.
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QECC q M (first primitive element and smallest q)
[3,1,1], | 2,3,4,5 191®~Z

[4,1,2], | 3,4,5,7 11X ®Z

[5,1,2], | 4,5,7,8 I®IIX®Z

[6,1,3], 1 5,7,8,9,11,13 | I®1®X®ZR1® Z

[7,1,3], 17,8 ZR1IRZ1011 72

[8,1,4], | 7.8 I1RIRXI®ZIQLIVKZLZRLZRX

Table 6.1.: List of QECCs whose existence we have verified by symbolic computation and
exemplary M matrices that generate a code form the respective family. All codes for n even
have the highest distance allowed by the quantum Singleton bound for the given n and &,
moreover the code [7, 1, 3], is able to correct errors on the same amount of subsystems as the
QMDS code [7,1,4],. We do not obtain the codes [5, 1, 3]457s from our construction, but
we have found M operators not compressible to less than d = 3 sites.

We have not been able to prove the above conjecture for all even n, but using the computer
algebra system Mathematica we were able to construct all incompressible M operators with
the conjectured properties for all n € {2,4,6,7,8}, where n = 8 is the largest n for which
we can exhaustively check all ways of pushing [ame].

In all cases we were able to find such M operators for ¢ down to ¢ = n — 1, except in the case
n = 7, where we had to chose ¢ = 7, because n — 1 = 6 is not a power of a prime, and the
case n = 2, where our conjecture is known to be true for ¢ > 2 and the case ¢ = 1 does not
make sense. For n = 6, the existence of the extended Singleton array S (see Eq. (3.11))) for
g = 4 might give one hope that in this case an incompressible M might exist for ¢ = n — 2,

but our calculations show that no such M exists. We summarize our results in Table

Further we can prove that Pauli strings containing only X or only Z operators and that have

weight ~ n/4 can not be compressed to have weight less than ~ n/4:

Lemma 6.3. Any Pauli string M of weight wt(M) = {( In/2| +1)/ 2J and consisting of only

X oronly Z operators is incompressible.

Proof. Any product S of stabilizers is again a stabilizer. Any such product S, apart from the
trivial stabilizer, the identity, hence necessarily has weight at least wt(S) > |n/2]| + 1 (if it
contains at least one Z stabilizer, it actually has weight at least [n/2] + 1). If the weight of
M is wt(M) = |(|n/2] + 1)/2|, then for any S we have wt(M §) > min(wt(M), (|n/2] +
1) —wt(M)) = wt(M). O

The above lemma shows that both the X part My and the Z part M, each consisting of
{([n/ 2] +1)/ 2J many X and Z operators of an operator M = Mx My are individually
incompressible. If Mx and M act on two disjoint sets of sites, and n is even, then wt (M) >

n/2. Unfortunately, the above lemma is not enough to guarantee that such an M is also
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incompressible as a whole. When pushing it into some subset of sites, its X and Z part can in
principle start to overlap and thereby its weight can shrink. Our numerical calculations show

that M operators exist for which this does not happen up to the largest n that we can check.

In this chapter we were able to find all possible incompressible operators M for all codes with
n =€ {2,3,4,5,6,7,8} parties. In the next chapter, we present a general construction of an
incompressible M operator for a given AME state constructed from MDS code. This provide
a systematic method that prove the conjecture (6.1)). We call this method modified-Shortening
in an analogous way as the Shortening method which constructs new codes from existing ones

in the classical case.

6.4. Joint weight enumerator

There is an interesting connection between incompressibility of M matrices that contain both
X and Z operators and a concept known as the joint weight enumerator of two non-linear
codes that are derived from the code generated by the GG /2] xn matrix and its dual code with

generator matrix /2] The joint weight enumerator ¢, » of two classical codes .7 and

n-
2 is a function of four real variables that encodes information about the overlap of zeros in
the codewords of the two codes [MMS72] (see also [MS77/, Chapter 5]. To relate this to the
situation at hand, let " be the code generated by the GG /2] xn matrix and ¢ its dual code
with generator matrix H /2] - Now let <7 be the non-linear MDS code constructed from
¢ by adding to each codeword the vector of exponents of the X operators in M and £ the
non-linear MDS code constructed by adding to each codeword of 4+ the vector of exponents
of the Z operators. Then the maximum number %,,,, of positions in which both a codeword

from .o/ and a codeword from Z have zeros is given by
Tmax = alggl() log Z.,#(a,1,1,1). (6.25)

The minimal weight of the class of operators equivalent to M is given by n — 4 pax.

6.5. Comparison with existing QECCs

Let us return to the QECC we construct and compare its properties to known QECCs. Many
other QECC for various combinations of parameters are known (see for example [KKKSO06,
GR13]] for an overview and [Gra] for tables of known codes with ¢ = 2). In some cases the
achievable distances are limited by d < ¢ or some fraction of ¢ [SKOQS, Theorem 5] or scale
only like v/n [KKKS06, Theorem 40 and 41]. In general, it is difficult to construct QECC that
saturate the quantum Singleton bound and have a large code distances [JX14]. For example in
[KKKSO06, Corollary 32] a QMDS code with a code distance of the order of n/2 was shown
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to exist, the proof however requires that ¢ grows faster than exponentially with n. Families of
QMDS codes with a code distance up to d = g + 1 have been constructed in [JX14, IGR135]]
(for an earlier construction with d = ¢ see [GBRO04b]]), but all of these (as well as the code
from [SKOS, Theorem 5] when d is chosen to scale linear with ¢) have code lengths n that

scale quadratically with q.

Our construction only requires n < ¢ + 1 to achieve a code distance that scales like /2 (or
equivalently like ¢/2). We can show the existence of these codes with n = ¢ + 1 explicitly
for n = {4, 6, 8}, and in the next chapter when we show that the above conjecture holds true,
an infinite family of such codes for arbitrarily large and even n exists. A priory, for physical
implementations with independent local noise it appears to be important to achieve a large
ratio d/n. In this respect our codes perform well compared with the constructions discussed
above. However, in practice, of course, one might rather want to use code especially tailored

to the predominant type of noise in a system.

There are two construction that are similar to ours in terms of code parameters. The first
was presented in [ABO97] and later used in [CGL99]. It yields QECCs for all prime ¢ with
g >n = 2d — 1. The second is based on [KKKS06, Lemma 70], which shows that the
existence of a pure stabilizer QECC [n, k, d], with n,d > 2 implies the existence of a code
[n—1,k+1,d— 1],. The possibility to construct stabilizers for AME states with ¢ prime
and the fact that such AME states are QECCs of the form [¢+ 1,0, [(¢ + 1)/2] 4+ 1], [Sco04,
Proposition 3] implies the existence of QECCs of the form [g, 1, | (¢ + 1)/2]], for all ¢ prime.
The first construction requires ¢ > n+1 and the second works in the case ¢ = n, but neither of
the two can straightforwardly be expanded to the case ¢ = n — 1. To sum up, as a function of
q, there are constructions that achieve larger code distances d and larger £ than our proposal,

but all such constructions we are aware of require (asymptotically) larger code lengths n.

6.6. Conclusions

For every n < ¢ + 1 we show how to construct QECCs that encode a logical qudit into a
g-dimensional subspace spanned by AME states of n parties with local dimension ¢ prime.
Under a conjecture for which we provide numerical evidence and later a proof, this construc-
tion produces an infinite family of quantum error correcting codes for £ = 1 and arbitrary
large n that achieve the maximum distance allowed by the quantum Singleton bound, i.e., the
no-cloning theorem. For n mod 4 = 3 these codes can correct arbitrary errors on the same
number ¢ of subsystems as a QMDS code with the same n and k. We construct such codes for
all n up to n = 8 by finding suitable incompressible operators. Our proposal has a very clear
physical motivation and complements other constructions of non-binary QECC. In particular
our construction is very explicit and works with a smaller local dimension ¢ given n than

previous codes with similar code parameters.
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7. Quantum codes from highly
entangled states

7.1. Introduction

Quantum error correction is one of the main challenges in the field of quantum computation
and one of our attempts to use multipartite entangled states in applications [Ste96a, Rai99a].
Investigation of the connection between stabilizer quantum codes and existing classical er-
ror correcting codes led us to understand the structure of quantum codes [Ste96b, (Got09,
CRSS98. Sco04]]. In particular, there are two well-known methods for constructing stabilizer
QECC:s. First, a general framework is constructing QECCs from known classical codes and
the associated entangled states [RGRA18]]. The second method is constructing new codes
from existing ones [Got97, (CRSS98].

It is now well understood that a given k-UNI state represents a stabilizer QECC [Sco04].
As we discussed before one method of constructing these states is based on the connection
between them and MDS codes [RTGA19, Hell3]]. This represents a method of constructing
QECC:s from classical codes (CSS construction Preliminaries section[2.8.4.2). Moreover, the
extra knowledge on code parameters of classical codes provides a great advantage to construct

quantum codes [Got97]].

The second method that simplifies the task of finding quantum codes is to use existing codes to
construct new ones. Implementing some modification techniques on a given code can produce
new code with different parameters [Got97,|(CRSS98]]. A non trivial manipulation is to remove
the last party of a given stabilizer code and convert it into a new code with one fewer party. In

this method, the derived code from a stabilizer code is a stabilizer code [Rai99a].

Combining the two methods leads to a family of QECCs. With this technique, one starts from
a k-UNTI state of n parties and constructs the QECC by taking partial trace over one particle,
1.e., generates a code with n— 1 parties. Repeating this technique produces a family of QECCs
with a different set of code parameters [HG20,|AR935)]. This method can be called Shortening
which refers to the connection it has with the classical codes and the subspace of constructed
quantum codes which are spanned by the highly entangled states [CRSS98, KKKS06, GR15}
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SKO3J].

So far, in the previous literatures, the description of the stabilizer formalism of the codes con-
structed from the Shortening process was in the center of attention [Got97, |AR9S5]. There, in
order to construct the quantum codes one needs to find the generators of stabilizer of the state
in the way that one of them ends to X, one other ends to Z and the rest of the stabilizers end
1, for details see [Got97]]. This could be done more easier for the binary codes but for higher
local dimension ¢ finding this specific pattern needs effort. Also, we aim at using quantum
codes in quantum communication and computation applications, therefore, we need to know
the form of the codewords and logical operators. In this chapter, we work on constructing a
set of QECC:s starting from a k-UNTI states. Unlike previous construction, we present the list
of the codewords and logical operators as well as presenting the stabilizer formalism. We also

discuss the structure of the highly entangled subspaces of the quantum stabilizer codes.

Moreover, we introduce a new systematic way of constructing quantum codes from exist-
ing ones. This method that we call modified-Shortening, produce QECCs without removing
any party (without taking the partial trace). Therefore, quantum stabilizer codes with larger
codespace can be constructed that improve the achievable rate compared with the existing
construction. For this, we start from an AME state and without removing any party we con-
struct a QECC whose codewords are all AME states. More precisely, starting from an AME
state or alternatively the quantum code [n, 0, [n/2] + 1],, we show how to produce a family
of quantum error correcting codes [n, 1, |n/2]]q. We present the codewords and stabilizer

formalism.

7.2. Classical codes, k-uniform states and optimal
quantum codes

The Stabilizer QECCs are attractive as they have a close connection with classical linear
codes, so that, the knowledge on the code parameters of the classical codes provides a great
advantage that one can use to construct quantum codes. We know that k-UNI states of
minimal support can be constructed from MDS codes and are a set of stabilizer QECCs
[CRSS98, KKKS06, [Got97, (Got09, Sco04]. Stabilizer quantum codes have also the prop-
erty that they can be shortened, which means that the existence of a quantum pure stabi-
lizer code (in this case a k-UNI state), implies the existence of a stabilizer QECC with
larger code dimension whose spanning vectors are (k — 1)-UNTI states, see [CRSS98, The-
orem 6][KKKS06, Lemma 70] and [[GR15SKOS]. Shortening process of the quantum stabi-
lizer code C = [n, 0, k + 1], yields the following code

Proposition 7.1 (Shortening). The existence of a pure stabilizer code [n, k=0,d=Fk+ 1],
associated to a k-UNI(n, q) state guarantees the existence of a pure stabilizer QECC, [n —
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7.3. Explicit construction of the Shortening process
1,1,d — 1 = k], with a non-trivial subspace spanned by a set of (k — 1)-UNI states.

The Shortening process guarantees the construction of a new quantum code from an existing
code C = [n,0, k+1], (or k-UNI state) with larger code dimension. Repeating the Shortening

process yields codes with k > 0 and hence q'~€ > 1 dimensional subspace.

7.3. Explicit construction of the Shortening process

After recalling the theory of the Shortening process, in this section we show explicitly how
to find the codewords of the quantum codes. For this, unlike the previous works where one
needs to find specific patterns for the stabilizers to compute the partial trace, we start from
the generator matrix of a given k-UNI state and describe what the partial trace does on the
corresponding generator matrix. This leads us to an explicit closed form expression of the
codewords and the logical Pauli X and Z operators of the code. More specifically, we con-
struct the code space of a quantum code [n—r, r, d—r],, with r > 0, from a given k-UNI(n, q)
state, such that the subspace are spanned by (k — r)-UNI states of n — r parties. This con-
struction requires n — r < ¢ + 1 [GBRO4a]], which refers to the existence condition of the
classical MDS codes.

7.3.1. First step:

As the first step, the Shortening procedure can convert the code [n, 0, k + 1], into a code with
parameters [n—1, 1, k], such that a logical qudit of dimension ¢ is encoded in a ¢-dimensional
subspace spanned by (k — 1)-UNI states. In the following we show how to find the code
space C = span({|¥m) }mejq). We start with the generator matrix Gy, = [Li|Akx (n—k)] and
remove the last row. Because the generator matrix has the standard form, the k-th column of
the resulting matrix contains only 0Os, so we remove this column too. With these changes the

generator matrix now transforms into a matrix of size (k — 1) x (n — 1)
Grxn = [kl Arxn-r)] — Gp = [Te-1|Ag-1)x(n-k)] ; (7.1)

where we denote by G the result of removing the i-th row and column from the original
matrix GG. GG; contains & — 1 linearly independent columns, therefore G+ is a valid generator
matrix to construct an MDS code ¢ = [n—1, k—1,n—k+ 1], (while obviously every square

submatrix of A(;_1)xn—&) is non-singular). Hence, the state

o)y = > UGy, (7.2)

TEGF(q)F 1
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is a (k—1)-UNI state. Now, we define the operator M which is a string of powers of X where

the exponents correspond to the removed last row of matrix (G, concretely

M=1® - - Q1R X% Q X%2®-. R X%Mn-kK (7.3)
k—1 n—k

where we denoted elements of matrix Ay, ,—x) by a;;. In the following lemma, we show
how the Pauli string M, defines a QECC made of (k — 1)-UNTI states.

Lemma 7.1. Consider the (k — 1)-UNI state |1)o), Eq. (1.2)), constructed from the generator
matrix G; and the M operator constructed from the elements of the last row of the Gyxy
matrix, Eq. (T.3). The subspace C = span({|¥m)mefq }) C CI" " with

[hm) = M™|hy)  0<m<gq-—1, (7.4)

is a QECC with parameters [n — 1, 1, k],

Proof. First of all we need to show that any two codewords from the code space are orthog-
onal. To do this, we recall that all rows of the GG, matrix and every linear combination of
them form codewords with specific Hamming distance, dy = n — k + 1 [MS77, Chapter 11].
The state |t)y) and operator M are formed by combination of the rows of the G matrix after
removing the k-th column. Performing the operator M™ for a given m € [¢] on the state
|1p) is the same as adding a specific codeword (linear combination of the last row of Gj.«,,) to
the set of codewords that form the state |1/). Hence, performing two different M™ and M™

operators for all m, m’ € [g] on the state |¢)y) produce two states such that

(Um|tm) = O (7.5)
(U |[W ) =0, (7.6)

where wt(W) < dg — 1 = n — k. Note that all the states |¢,,,) are (k — 1)-UNI, as acting
with local unitaries does not change the entanglement properties.

The code space C = span{|t¢,,) } is a QECC if and only if it satisfies two conditions. (i) In the
presence of errors one should be able to distinguish two different codewords [Got09, |Got97/]].
Considering this, Eq. implies that the minimum number of single-qudit operations that
are needed to create a non-zero overlap between any two orthogonal states is n — k. Therefore,
for all errors F and F' with weight such that 1 < wt(ETF) < n — k and all m,m’ € [q] with
m # m’ we have

<¢m|ETF|¢m’> =0. (7.7)

The above condition is a direct consequence of the fact that the minimum distance between
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two different codewords [¢,,,) and |1),,,/) is dg — 1 = n — k. (ii) In addition, one should also
be able to distinguish different errors when they act non-trivially on a given codeword |1,,)
(see Eq. (28) of [Got09]). As the states [1),,) for every m € [q|, are (k — 1)-UNI state, then
one gets

(Y| ETF|tpy) = Te(ETF) =0,  Vm€[q]. (7.8)

for errors £ that act non-trivially on any subset of less than k — 1 sites, i.e., wt(ETF) <
k —1. As we always have n — k > k — 1, then, considering the conditions (i) and (ii) the code
distance is d = min(n — k + 1, k) = k. By the definition Eq. (2.48)), one can conclude that
the subspace C is a [n, 1, d = k], QECC. O

As a side remark, note that if the M operator, (7.3)), contains only % of the X operators with
the vector of exponents described above, the distance of the code is still d = k. The stabilizer

formalism is presented in Appendix [A.1]

Now that the codewords and the code distance are determined, we can find logical X and
Z operators. Logical Pauli operators are unitary operators which act non-trivially on the
codeword space or logical states |1,,), but preserve it. The logical Pauli operators X and 7
preserve the codeword space since they commute with all the stabilizer generators. The logical
operators anti-commute with each other. It can always be useful if one expresses X and Z in

terms of their action as Pauli operators X and Z on the physical qudits used in codespace.

In the Shortening construction, the logical qudits are the set of the states {[v) }mejgh)s
Eq. (7.4), which are constructed by performing the powers of M operator on the state |1)g).
This shows that the M operator is the logical X pauli operator that by starting from the logical
qudit |10), Eq. (7.2), it can construct entire codespace

X" o) = M™[tbo) = thm) . (7.9)

for all m € [¢"]. In this construction, we started from a k-UNI state constructed from MDS
code that has stabilizers involving X or Z operators, namely X stabilizers or Z stabilizers
respectively. The X stabilizers are powers of X where the exponents corresponding to every
row of the generator matrix Gy, = [1x|A], and the Z stabilizers are Z Pauli string that the
exponents correspond to the rows of parity check matrix H = [AT|1,_;] (for more details
see Chapter 4.6). After eliminating one row and column of the G matrix to construct the 1/
(or logical X) operator, the stabilizer that corresponds to the last row of matrix H does not
commute with M any more while it communicates with the rest of the stabilizers. Therefore,

Z is a string of powers of Z where the exponents correspond to the last row of the parity check
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matrix H,_p)xx = [AT|1,_x] when the k-th column is removed, i.e.,

7 =7 Mok Q7 20k R...Q L W-Dr-nRQL1R---QLKXZ . (7.10)
k—1 n—k

7.3.2. Second step:

The second step of the Shortening procedure converts the code [n — 1, 1, k], into a code with
parameters [n — 2,2, k — 1], with a ¢>-dimensional subspace spanned by (k — 2)-UNTI states.
For that we proceed in a similar way and remove the £ — 1 and the k-th columns and rows of

the original generator matrix
Groxn = [LklArxn-r] — G5 = [Le-2Ap-2)x(n-n)) - (7.11)

The structure is the same as the first step, and hence, it is obvious that Gk/_\1 2 is the generator
matrix of an MDS code [n — 2,k — 2,n — k + 1],. Therefore, a (k — 2)-UNI state |1/y) can

be constructed via

Yoo) = D TG (7.12)

TEGF (q)*~2
Two Pauli strings M; and M, that involve X operators can be defined such that the vector

of exponents are the £ — 1 and the k-th rows of matrix G, while both the k£ — 1 and k-th

columns are removed:

M =10 - 1l®X% 11 @ X% 12g...Q X%k1Ln-k (7.13)
k—2 n—k

M2 =1l® - QIR X%k QX%2 Q... Q XIkn-k (7.14)
k—2 n—k

Finally, the code space C is spanned by the (k — 2)-UNTI states
[WYmima) = MI" M3 [hoo) 0 <my,me <gq—1. (7.15)

By the same argument as above, the fact that the state |iqy) and operators M, and M, are linear
combination of the rows of the matrix Gy, (or codewrods of the MDS code [n, k, n—k+1],),

where two parties are removed, leads us to the first Knill-Laflamme condition (1):

(W ma [Vmt amt,) = Oy !, Oy (7.16)
(Y ma | BT F g ) =0, (7.17)
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with wt(ETF) < dy — 2 = n — k — 1. The second condition can be satisfied because: (ii) the
subspace C is manifestly spanned by orthogonal (k — 2)-UNI states |1, m,) so that,

(Yo | EVF [y my) = Te(ETF) = 0, (7.18)

for wt(ETF) < k — 2. This implies that the code distance of the QECC with code space
C = span{|¥m, m,) tisd =min(n — k. k —1) =k — 1.

The two operators M; and M,, Egs. (7.13) and (7.14)), are the logical X operators for the
two qudits of the code. And the logical Z operators are Pauli strings of powers Z where the
exponents correspond to rows n — k- and n — k — 1-th of matrix H. More specifically the two

operators

Zl =7 7Nk @ T2k QLo Q4T W ED -k QTR - QIR (719)

k—1 n—k
Zoy =2 0k Q@ Z20H Q...Q Z WDk R1Q---QQ1lQ 7, (7.20)
k—1 n—k

commute with all the stabilizers, yet anti-commute with M; and M.

As an example of our construction, we start with AME(6,5) which is constructed from an
MDS code [6, 3,45, over GF(5) [RGRA18]. The generator matrix G35 of the MDS code,

and the reduced generator matrix G5 are

10

G3><6 = 0 1

w)

b (7.21)
1 2 3| '

o O =
o = O
_ O O
—_ =
W NN =
I S

l

)

Matrix (73 is the generator matrix of an MDS code [5, 2, 4]5. After the second step we get

Gixe = — Ggz=[1|11 1], (7.22)

o O =
o = O
— o O
— =
S NCR
= W =

which is the generator matrix of the code [4, 1, 4]5. By taking the coherent superposition of its

codeworks one has the 1-UNTI state of 4 parties

4
Woo) = Y [0G33) =D lii,4,4) . (7.23)
=0

TEGF(5)
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Starting point: Step 1: Step 2:
k-UNI state = [n,0,k + 1], — [n—1,1,k], — [n—2,2,k—1],
1-dimensional subspace g-dimensional subspace q?-dimensional subspace
(k — 1)-UNI states (k — 2)-UNI states
Step r: Step k£ — 1:
— ... — [n—-rrk-r+1], — ... — [n—k+1,k—1,2],
q"-dimensional subspace ¢*~!-dimensional subspace
(k — r)-UNI states 1-UNI states

Table 7.1.: Shortening process: List of the stabilizer QECCs one can construct from a given
k-UNTI state.

As it is discussed above in this case there are two operators

Mi=1®XX*@X? (7.24)
My=10X e X3® X*. (7.25)

States [V, my) = M{™ My"*|1hog), where 0 < my,my < g — 1 form the subspace C =
span (|t m,) ), which is a QECC with parameters [4,2, 2]5. And the logical Z operators are

Z1=7'19Zx21 (7.26)
Zo=7'101 2. (7.27)

which are the last two rows of the parity check matrix Hsxs = G4, when the second and

third columns are removed.

In general, the Shortening procedure can be repeated £—1 times and codes with fewer particles
and higher code dimension & can be obtained (see Table [7.1). Note that these codes can be
optimal, saturating the quantum Singleton bound, only if & = |n/2]. For that the starting
point should be an AME state.

7.4. Optimal quantum codes from AME states without
tracing out particles

Shortening is an example of a method of finding new QECCs from existing ones. The structure
of the Shortening process is based on removing one particle (taking partial trace) from a given
stabilizer QECC at each step. In the previous section, we introduced a different view of
constructing new QECCs from a k-UNTI state, that allows us to produce codewords and study
the structure of the code space. In this section, we discuss a method of constructing new codes

from previous ones without tracing out any parties starting from an AME state. We name this
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7.4. Optimal quantum codes from AME states without tracing out particles

method modified-Shortening. To introduce the method, we first review a systematic way
of constructing generator matrices to construct classical MDS codes which provide explicit
constructions and closed form expressions for AME states, i.e., K = [n/2]|-UNI, or code
[n,0, |n/2| +1],. Then we present the modified-Shortening which is a systematic method to
construct QECC with parameters [n, 1, |n/2]], from an AME state defined by an MDS.

In chapter we defined the Singleton array for any finite field GF'(q)

1 1 1 1 1 1
aq a9 a Lq/2J 1 a Lq/2j Ag—2
Sq = 1 a (q/Q"I 1 a(q/ﬂ Qg3 Ag—2 — A
1 a[q/Q—l a[q/2‘| 11 e () — usefor M
1 Qg—2
1
with )
a = — (7.28)
11—

We discussed that by taking rectangular sub-matrix A, a suitable generator matrix G = [1|A4]
for an MDS code can be constructed. The largest A matrix this method constructs over G F'(q)
has size Lq—;lJ X {%ﬂ By taking n = ¢ + 1, one can construct the generator matrix
GI_"/2J «n = [1|A] and hence an MDS code with parameters [n, [n/2|,[n/2] + 1],. The

corresponding AME state |¢) has the closed form expression (chapter 3)

do) = D TG 2] sn) (7.29)

FeGF(q)ln/2]

Now, we consider the [(¢+1)/2] + 1-th row of the Singleton array S, containing
[(¢+1)/2] —1 elements (1, [ 4/2]> O q/a] 410 , @g—2). Using this, we define the Pauli string
M of length n, such that, the first |n/2] elements are identity matrices (as we have in each
row of the generator matrix GL" /2] .n)» the vector of exponents of the X operators is the

(¢ +1)/2] 4 1-th row of S, and it contains one Z operator as the n-th element, i.e.,

M=1® - QLleX QXM g X r+g.. X227, (7.30)
5] [51-1

where n = ¢ + 1. In the following lemma we show that the AME states generated by act-
ing with the Pauli string M onto the state |¢g), Eq. (7.29) from a QECC with parameters
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[, 1, [n/2]]-

Lemma 7.2. From the AME state |¢,), or equivalently quantum code [n,0,|n/2] + 1],
Eq. (1.29), a QECC with parameters [n, 1, |n/2]], can be constructed defined by the subspace

C = span({[¢m)mefq }) C CI™ with

|Om) = M™|po) 0<m<gqg-—1. (7.31)
All |¢,,) are AME states of n parties withn = q + 1.
Proof. The Codewords are produced by applying the M™ operators for m € [¢] on the AME

state |¢g). M contains X operators with the vector of exponents | (¢ + 1)/2] + 1-th row of .S,
and one Z operator. More explicitly, M = Mx M, where,

My =1®---®1lX@X" Q. .. X gl (7.32)
3] [3]-1
Mz =191®1---919191Q---01Q18Z. (7.33)

n—1

For the purpose of the proof we discuss how My and M act on the state |¢,) separately.

First, we show that the application of MY for m € [g] provides states with distance [n/2] — 1.

. . /
To do this, we take sub-matrix A(L%lj fx([2]-1)

1 1 1 1 1 1
aq a9 an/zJ 1 an/2J Qg—2
Se= il O] Oy e 3 | G2
b el ] ™
: ! A
1 Qg—2 A
1

of S,. Comparing it with the largest submatrix A of size {q;r—lJ X [%W , the matrix A’ con-

tains one more row and one less column. Using A’, one can construct the generator matrix

G/(Ln/zjﬂ)xn =1 Ln/2j+1‘Al] and MDS code ¢’ = [n, |n/2] + 1, [n/2]],. After one step of
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Shortening we get

/ _ / ’ _ /

Gl = M A ap o1 -0] = G g = By A s g -0)-
(7.34)

which is the generator matrix of an MDS code [n — 1, [n/2], [n/2]],. Hence, an AME state

|1f) of n — 1 parties can be written as

|1bo) = Z |0 G/LA ) (7.35)

a1t

G’L/J\ is the same generator matrix as G [n/2]xn = [1]|A] if one deletes the last column, as
7]+

well as the state |1/()) is the same as state |¢), Eq. (7.29), without considering the last party.
As we discussed in the Shortening procedure, the M operator that produces a subspace with
specific distance d is a string of only powers of the X operators with the vector of exponents
defined by the last row of the generator matrix. In this case, M is the Pauli string of X
operators with the exponent vector (| (¢ + 1)/2] + 1)-th row of S,,. Therefore, M contains the
first n — 1 Pauli operators in M, Eq. (7.32)). We can get the set of states

) =M™y 0<m<qg—1. (7.36)

The same proof as that of Lemma(7.1]establishes that the distance between every two different
states of the above set of states is dy — 1 = [n/2] — 1. This shows that because |, is the
same as |¢,,) if one removes the last party, the distance between any two states |¢,,) and |¢,,/)
isatleastd = [n/2] — 1.

Let us now consider the operator My, Eq. (7.33). For two different powers m and m/’, per-
forming M and M} on the state |¢,) increases the distance by one, because it adds different

phases for different powers m and m’. Therefore, for two different codewords, we have
(Om|ETF|p) =0  if wt(ETF) < [n/2] . (7.37)

This is one of the Knill-Laflamme conditions Eq. (2.48)), in which two different codewords
should be distinguishable in the presence of errors that act non-trivially on wt (ETF) < d

sites.

Moreover, errors E and F' should not be able to change an encoded state for the weight
wt (ETF) < d, i.e., for two given codewords it is necessary to have {¢,|EF|¢,) =
(G| ETF | ¢y ). As the unitary operator M is local, its application does not change the en-

tanglement properties of a state, therefore all the states |¢,,) are AME states, then

(¢m|E'Flom) =Tr (ETF) =0  Vme|[q], (7.38)
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Shortening
AME(n, q) — [n—1,1,|n/2]], g-dimensional Subspace
[4,0,3]¢>3 — [3,1,2]¢>3 AME(3, q)
[5,0,3] ;>4 — [4,1,2] ;>4 1-UNI(4, q)
[[6, 0, 4]]q24 — [[5, 1, 3]]q24 AME(5, q)
[[7, 0, 4]](127 — [[6, 1, 3]](127 2—UNI(67 q)
[8,0,5]¢=7 — [7,1,4]¢>7 AME(7, )
[9,0,5],55 — 8,1, 4] s 3-UNI(8, q)
[0, | 3] + azns — [n =11 3]l %52 -UNI(n = 1,9)
Modified-Shortening
AME(n, q) o [n, 1, n/2]], g-dimensional Subspace
[[4, 0, 3]]ng — [[4, 1, 2]],123 AME(4, (])
5,0, 3] >4 — [5,1,2] >4 AME(5, q)
[6,0,4] >4 — [6,1,3] 54 AME(6, q)
[[7, 0, 4]](]27 — [[7, 1, 3]]q>7 AME(?, q)
[8,0,5] =7 — [8,1,4] ;=7 AME(S, ¢)
[9,0,5]>s — [9,1,4]>s AME(9, q)
[[na 0, | % ‘ + 1]](1271—1 — Hn7 L, Z “]qzn—l AME(”7 Q)

Table 7.2.: Comparison between code parameters and subspaces one can construct starting
from AME(n, q) state over GF'(q), Eq. (7.29), using Shortening and modified-Shortening
processes.

for wt (ETF) < |n/2]. In general, based on the knill-Laflamme condition the subspace
C = span({|dm)mefq }) is a QECC [n, 1, [n/2]],. O

In Table [7.2) we compare the QECCs one can construct from AME state |¢o) Eq.(7.29)), using
the Shortening and modified-Shortening processes. We can see that the modified-Shortening
provides quantum codes with smaller local dimension ¢ given n than previous codes. With

this method we also provide explicit codewords besides stabilizer formalism.

7.5. Conclusions

In this chapter we have studied the relation between classical optimal codes, maximally mul-
tipartite entangled states, and quantum error correcting codes. This study, in general, can lead
to the construction of optimal quantum error correcting codes from highly entangled sub-
spaces. We discussed a method that starts from a £-UNI state and by removing one party
constructs a set of stabilizer QECCs. Our construction provided the list of codewords besides

presenting the stabilizer formalism. Along the way, we have also shown that this method
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can be iterated and how to find the codewords in each step. Then, we extended the connec-
tion between classical codes, k-UNI states and quantum codes to provide codes with larger
code subspace compared with the existing constructions. We have shown how to modify the
method to produce QECCs starting from an AME state without removing any party. Our
method, called the Modified-Shortening construction, is explicit, physically motivated and
works with a smaller local dimension than previous codes. This has led to a proof for the
conjecture of the previous chapter, Conjecture (6.1)), therefore to a method of constructing
stabilizer QECCs [n, 1, |n/2|], starting from AME state or quantum code [n, 0, |[n/2] + 1],.
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8. Conclusions and outlook

Quantum information science is the research field that has become an active research area
in the last two decades. There, entanglement is recognized to be one of the key resources
for quantum information tasks. The theory of multipartite entangled states plays important
roles in many fields of physics which deal with many-body systems like quantum optics, high
energy physics, and condensed matter physics. In quantum information science itself multi-
partite entanglement plays an essential role in quantum communication and computation,for
instance in measurement-based quantum computation, metrology, quantum error correction,

secret sharing, multi-party teleportation, and quantum networks.

This thesis deals with three main topics. The first is the connection between classical error
correcting codes and highly entangled k-uniform (or for short £-UNI) states which leads us to
construct complete orthonormal basis made of these states and providing their stabiliser for-
malism. This also provides necessary ingredients to present a systematic method to construct
other examples of k-UNI states and show that the states derived through our construction are
not equivalent to any k-UNI state constructed from classical error correction codes. Further-
more, we use this method to construct several examples of absolutely maximally entangled
states whose existence was open so far. The second main topic is studying combinatorial de-
signs and introducing a class of quantum combinatorial designs called quantum orthogonal
arrays (QOA). Finally, the third topic is quantum error correcting codes, whose code spaces

are spanned by highly entangled quantum states.

Our results provide new methods to study and insights into quantum many body physics. In

the following we briefly review the main conclusions of this thesis.

8.1. Constructing AME states from MDS codes

Presenting the closed form expression, stabiliser formalism, graph state representation and
complete orthonormal basis of maximally multipartite entangled states gives a better under-
standing of the non-local properties of quantum states and also a better view for quantum
applications. In chapter [3] we explored the relation between AME states, which have the
property that all reduced states of at most half the system size are maximally mixed, and clas-

sical error correcting codes. This relation allowed us to systematically construct AME states.
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We showed that k-UNTI states derived through our constructions are stabiliser states. Further,
we showed how starting from an AME state one can construct a complete orthonormal basis
of AME states. These results can also be found in [RGRA18]].

AME states are pure multi-partite generalizations of the bipartite maximally entangled states
that will play important roles in many applications. Thus, an important line for future research
is finding AME states of n parties and local dimension ¢ that belong to different local unitary
(LU) classes. So far, as an example we could find two non-LU equivalent AME(5, ¢) states
for GF(q) for ¢ > 4 [BR20]. This will also lead us to study the graph states of AME states

that belong to different LU-equivalent classes.

8.2. New construction for k-UNI and absolutely
maximally entangled states

In chapter 4] we have presented a method that combines a classical error correcting code with
a basis of k-UNI states to generate a set of £-UNI states. The obtained states are examples of
non-minimal support k-UNI states. The structure and associated ingredients we used in our
method prove to be particularly fruitful in understanding the structure of these quantum states,
and their graph-state representation. This shows the difference between our method from the

other systematic construction previously known.

In fact, we showed our construction provides states that cannot be obtained from any state
of minimal support by SLOCC and have a different graph-state representation. Another ad-
vantage is that our method constructs k-UNTI states of n parties with smaller local dimensions
q compared to the existing methods. Finally, some examples of AME states with its closed
expression, such as AME(19,17), AME(21,19) and AME(7,4) are presented that were un-
known so far. These results can also be found in [RTGA19].

We know that changing a given graph state corresponds to performing controlled-Z opera-
tor on two parties. In this chapter, we showed that £-UNTI state of minimal support can be
represented by a complete bipartite graph. One future research is to study the manipulations
that one can implement in this graph such that the entanglement property does not change or

increases in some cases.

8.3. Entanglement and quantum combinatorial
designs

It is always important to explore the connection between related scientific areas like mathe-

matics and quantum physics. This is particularly important because there are lots of overlaps
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between them that allow designing methods to construct and study quantum states and their

applications.

In chapter [5| we have introduced several classes of quantum combinatorial designs, namely
quantum Latin squares, cubes, hypercubes and a notion of orthogonality between them. We
have also introduced quantum orthogonal arrays (QOA), generalizing all previous classes of
designs. We showed that there is a one to one correspondence between QOA and k-UNI
states. We presented new mathematical tools and described original techniques to construct
multipartite quantum states with remarkable properties. And then, we summarized the ex-
isting relations between the studied concepts and the results derived along the work. These
results can also be found in [GRDMZ18]].

It is well known that OAs can be classified into two classes, irredundant (IrOA) and redundant
(simply denoted as OA). In chapter 5] our main focus was presenting the notion of QOAs and
using them to construct £-UNTI states, so we didn’t introduce any classification for QOAs. In
the future, we want to study on different classes of QOAs and present a way of constructing
them by concatenating two orthogonal arrays (OA) or one OA and one quantum Latin square
(QLS). This might have some overlaps between the results we got in chapter (@), but it can
be useful to construct more examples of QOAs, also it will lead to different classes of QOAs,
like irredundant QOAs like the classical counterpart [GZ14]].

8.4. Optimal quantum error correcting codes from
absolutely maximally entangled states

In chapter [6] we explored aspects of multipartite entanglement by drawing connections to
quantum error correcting codes. A QECC distinguishes a code space of the Hilbert space
of a physical system as the space of admissible code states, that is, quantum states of the
system that are in a one to one correspondence (via the encoding and decoding maps) with
the messages. For the code to be useful, the code space must be chosen such that the expected
errors never map a state from the code space to another state. Moreover, it should always take
the state out of the code space in such a way that a subsequent correction can bring the system

back into its original state.

In the theory of QECCs, stabilisers are a useful tool to construct and analyse codes. The
stabiliser group of a code space is the abelian sub-group of the Pauli group that leaves every
element from the code space invariant. Conversely every abelian sub-group of the Pauli group
that does not contain —1 has a non-trivial subspace spanned by computational basis states that

is left invariant.

In this chapter, under a conjecture for which we provide numerical evidence, this construction
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produces an infinite family of quantum error correcting codes for & = 1 and arbitrary large
n that achieve the maximum distance allowed by the quantum Singleton bound, i.e., the no-
cloning theorem. For n mod 4 = 3 these codes can correct arbitrary errors on the same number
¢ of subsystems as a QMDS code with the same n and k. These results can also be found in
[RGRAI1S].

8.5. Quantum codes from highly entangled states

In chapter [/, we focused more on the remarkable relation between classical optimal codes,
maximally multipartite entangled states, and quantum error correcting codes. This study, in
general, can lead to the construction of optimal quantum error correcting codes from highly
entangled subspaces. We have presented a method that starts from a k£-UNI state and by re-
moving one party constructs a set of stabiliser QECCs. Our construction provided the list of
codewords besides presenting the stabiliser formalism. We extended the connection between
classical codes, k-UNTI states and quantum codes to provide codes with larger code subspace
compared to the existing constructions. We have shown how to modify this method to pro-
duce QECCs starting from an AME state without removing any party. Our method, called the
Modified-Shortening construction, is explicit, physically motivated and works with a smaller
local dimension than previous codes with similar parameters. This has led us to construct sta-
biliser QECCs starting from AME states that encode ¢ logical qudits into a subspace spanned
by AME states, i.e., constructing quantum codes with parameters [n, 1, |n/2]], starting from
an AME state or alternatively quantum code [n,0, |n/2] + 1],. These results can also be
found in [Rai20].

Using the modified-Shortening method we can construct [n, 1, [n/2]], from a given AME
state constructed from MDS codes. In the future, we want to take r steps forward and construct
QECCs with code parameters [n, 7, [n/2| + 1 —r],.

8.6. Future research

In this section we present other future research plans based on and stimulated by the results
of this thesis.

8.6.1. Holographic states and codes

AME states are the fundamental building blocks for the construction of holographic codes
using tensor networks [ADHI5, ILS15, PYHP15)]. We showed that AME states can be clas-
sified into different locally unitary equivalent classes, therefore, a fundamental question will

be comparing tensor network constructed from those set of states. We will also develop ten-
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sor networks to construct optimal quantum error correction codes with subspace spanned by
entangled tensor networks. The advantage will be having quantum codes with larger code sub-
space. Moreover, based on the stabilizer formalism we want to search for new encoding and

decoding techniques for transmitting both quantum and classical information (hybrid codes).

8.6.2. Characterizing quantum networks

Studying networks is one of the most challenging and fundamental problems in science. The
problem is especially very important in the quantum case. Therefore, we want to work on
graph states represented in different quantum networks. We want to characterize them by
their robustness against losses and local noises. It is also our plan to find a list of figure of
merits to specify purity for different networks like regular, random, small-world, and scale-
free networks. Characterizing the figure of merits will be based on the clustering coefficients,
average degree and degree distribution, network diameter, and average path length of the

different networks.

8.6.3. Locally maximally entangled states

We will consider pure states such that its subsystem dimensions are different, and with the
property that all reduced states of at most k£ of the system size are maximally mixed, called
locally maximally entangled states. The general case of constructing these states is still open
[GBZ16, BLRVRI19]. These states are useful for algebraic geometry and geometric invariant
theory [WDGCI13, BLRVRI19]. We realized that it is possible to extend the construction
method, stabilizer formalism, and graph representation we have for AME states to construct

and formulate locally maximally entangled states.
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A.1. Stabilisers group of the code state space

The k-uniform state of minimal support constructed from MDS code, recall

Wy =" > |0Grxn) (A.1)

TeGF(q)"

is the plus one eigenstate of n stabilizer operators. The generators are divided into two sets,
X stabilizers, Sy, and Z stabilizers, Sy,

IN

Sy =@, X%i 1<i<k
g P =@ = , (A.2)
Sy = ?:1 Zhii 1 <i<n-—k

IN

where the matrix elements of G, are denoted by g; ; and that of the code’s parity check
matrix H,_p)xn by h;j. The first k generators involve the X operators (the X stabilizers).
This forms a set of stabilizers, because adding the same codeword to all other codewords is
just a relabeling of the terms in the summation. Another set of stabilizers, n — k of them, can
be constructed from the Z operators (the 7 stabilizers). The action of product of stabilizers Sz
leave state |¢)) invariant because of the fact that Gy, (H(—k)xn)’ = 0, (see also [RGRAITS,
Got97])).

The stabiliser formalism of the state |1y), Eq. (7.2)), can be found by taking advantage of the
connection to the classical coding theory. Therefore, based on Eq. (A.2)), one can find n — 1

generators of the stabilizers of the state [t),

Pl X% 1<i<k-1

®'=} ZMi k<i<n-—1

SYo = , (A.3)

where the matrix elements of G; are denoted by g; ; and that of the code’s parity check matrix
by Ei, g

For the code C = span({|¢m)mejg}) C C" " with [ih,) = M™1y), Eq. (7.4) to be a
stabilizer code, we need to generate a stabilizer group that stabilizes the given subspace. The

set of the stabilizers S¢ should satisfy the following equality
Vi,m: S M™ o) = M™ [tho) (A4)

The above condition implies that every S¢ € S¢ must commute with M (and hence M™)
operator and stabilize the state [1)0). The M operator is a vector of exponents of the X
operators. Therefore, the k — 1 generators of the stabilizer group of the state |t) that involve
X operators, S%0. (first equation of Eq. (A.7)), commute with M and hence leave the state
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|4, ) invariant. In order to find the stabilizers S¢ that involve the Z operators, we first consider
direct computation for any two Pauli strings. For two Pauli strings A and B the commutator

follows
AB=uwPB A, (A.5)

where A = (ff X, A z) and bis defined in the same way and,

—

EQEIZEZ'EX—AX'Bz. (A6)

This implies that the stabilizers of |t)y) that involves Z operators,Sg0 (the second equation
of Eq. (A7), satisfies the Eq. (&4) if for all m it holds that mmx - S/° = 0 mod q.
This is also equivalent to just having mx - S +° =0 mod ¢, where the vector 7 x represent
the vector of exponents in the M operator. The vector of exponents 530 of the Z stabilizers
is constructed from linear combination of the rows of the parity check matrix F(n,k)x(n,l).
Therefore, S,/° = #H, represent the vector of exponents of the S°, where 7 € GF(q)" .
The string of Z operators that leave [i,,) = M™|1y) invariant are those vector of exponents

such that 77y . ¥H = 0. In general, the generator S¢ of the stabilizer groups of C are

ol X 1<i<k-1

SC = ok - o :
®1-) ZXi vl where iy . 0H =0, 7 € GF(q)""

(A.7)

The number of generators for the stabilizers group that involve X operators is £ — 1 and that

involve Z operators is n — k — 1, in total, they are n — 2 generators.
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