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Abstract This paper proposes a solution for the path following problem of a
quadrotor vehicle based on deep reinforcement learning theory. Three different
approaches implementing the Deep Deterministic Policy Gradient algorithm are
presented. Each approach emerges as an improved version of the preceding one.
The first approach uses only instantaneous information of the path for solving
the problem. The second approach includes a structure that allows the agent to
anticipate to the curves. The third agent is capable to compute the optimal velocity
according to the path’s shape.

A training framework that combines the tensorflow-python environment with
Gazebo-ROS using the RotorS simulator is built. The three agents are tested in
RotorS and experimentally with the Asctec Hummingbird quadrotor. Experimen-
tal results prove the validity of the agents, which are able to achieve a generalized
solution for the path following problem.

Keywords Unmanned Aerial Vehicles · Trajectory Control · Path Following ·
Deep Reinforcement Learning · Deep Deterministic Policy Gradient · Quadrotor

1 Introduction

It is well known that unmanned aerial vehicles (UAV) are prepared to undertake a
large number of applications in the upcoming future (e.g. transportation, surveil-
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lance, mapping, exploration, search & rescue, maintenance, filming). It is for this
reason that the research on these vehicles is constantly growing and keeps devel-
oping and implementing the most innovative solutions of control theory, computer
vision and artificial intelligence. To accomplish the final applications, the research
on UAVs tackles several different problems which derive in diverse research fields,
such as the stabilization control, trajectory control, obstacle detection and avoid-
ance, path planning, mission control, fault tolerant control, formation control and
many more.

In the last few years the authors of this paper focused their effort on the path
following problem, studying and developing the latest techniques to solve this
problem. Path following (PF) is a control approach to solve the trajectory control
problem that removes the time dependence from the problem resulting in many
advantages over the standard trajectory tracking approach [1][2]. In [3] a survey
of quadrotor path following algorithms is presented. Several control-oriented and
geometric algorithms are reviewed and compared. The most prominent are im-
plemented in a realistic quadrotor model. Conclusions reveal that, in spite of its
slightly worse performance in comparison with the control-oriented algorithms,
geometrical algorithms are easier to implement, require less state information and
result in a lower computational and control effort. Therefore, they become a wise
solution for the PF problem. Nevertheless, the main problem of geometric PF algo-
rithms is that tuning their control parameters, which define their performance and
stability, depends on factors such as the velocity of the vehicle and the path’s shape
[4][5]. Thus, those parameters need to be retuned when experimental conditions
change.

Machine learning is an interesting research field to address the mentioned prob-
lem of geometric algorithms. Its application would aim to achieve an adaptive and
tuning-less approach while preserving the control structure and the advantages
of the geometrical algorithms. Amongst the diverse machine learning techniques
the emerging deep reinforcement learning theory appeared as a promising option
to accomplish those objectives. In recent years, a significant progress has been
made in the fields of reinforcement learning (RL) and deep learning. Thus, now
RL is no longer constrained to discrete and small environments. Deep Q-Network
(DQN) [6] and Deep Deterministic Policy Gradient (DDPG) [7] are two of the
most popular deep RL algorithms. In DQN the inputs of the agent are images,
while DDPG is especially designed for continuous state-action spaces. Both algo-
rithms have been used to solve diverse computer science and engineering problems
[8][9][10][11][12]. DDPG has been also implemented on a quadrotor vehicle to solve
the landing problem [13] with successful results. Other quadrotor applications of
deep reinforcement learning can also be found in the literature [14][15][16][17][18].

The authors implemented the standard DDPG algorithm to solve the path
following problem in a quadrotor simulation environment in [19]. That approach
implemented the same structure and concept of the geometrical algorithms. The
agent was trained in the Gazebo-RotorS environment in ROS. Simulation results
in ideal conditions (without wind and noise) confirmed the potential of the DRL
agent. The present paper continues with this research. The contributions of this
paper are: (i) the previous approach is improved to deal with noisy sensor measure-
ments and it is trained to perform well when the vehicle is far from the reference
path; (ii) a new improved version of the agent, which is able to compute the
optimal velocity of the vehicle depending on the path’s shape, is presented; (iii)
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the resulting agents are implemented and validated in the experimental quadrotor
platform; (iv) the approach presented in this paper is a straightforward application
of the DDPG algorithm and the contribution relies on the definition and formu-
lation of the states, the actions, the reward function and the agent structure and
parameters.

2 Problem Statement

The aim of this paper is to develop a deep reinforcement learning agent capable of
solving the path following problem for a quadrotor vehicle. Moreover, this agent
must compute the proper velocity of the vehicle which, according to the defined
reward, best adapts to the shape of the given path. This agent will be implemented
with the Deep Deterministic Policy Gradient algorithm. It will be trained in a
simulated environment and tested experimentally.

2.1 Path Following Problem

Path following is an approach to solve the trajectory control problem. The ob-
jective of path following is to make the vehicle follow a predefined path in space
with no preassigned time information. That is, contrarily to the trajectory control
approach, any time dependence of the problem is removed. A formal definition of
the path following problem [20][21][2] is given in Definition 1.

Definition 1 Path Following Problem: Let the desired path be described by a
curve in the three-dimensional space pd(γ) := [xd(γ), yd(γ), zd(γ)]T , parametrized
by the virtual arc γ ∈ [0; γf ], where γf is the total virtual arc length. The control
objective is to ensure the convergence of the vehicle’s position p(t) to the path
pd(γ) and p(tf ) = pd(γf ) for a finite time tf .

In this paper, the path following problem is solved by implementing a Sepa-
rated Guidance and Control (SGC) structure (Fig. 1). That is, a structure based on
a separation between translational dynamics and rigid-body rotational dynamics.
An inner controller, known as the autopilot, is used to track the attitude, altitude
and velocity commands. The path following controller is in charge of computing
the altitude command (zcmd), the yaw angle command (ψcmd) and the longitu-
dinal and lateral velocity commands (vcmd and ucmd). More information about
quadrotor inputs, states and dynamic equations in Sec. 3.1.

2.2 Deep Deterministic Policy Gradient

Deep Deterministic Policy Gradient [7] is an actor-critic RL algorithm. It is off-
policy since the policy that is being improved is different from the policy that
is used to generate the action to compute the loss function. And it is model-free
because it makes no effort to learn the dynamics of the environment. Instead, it
estimates directly the optimal policy and value function.

Fig. 2 shows a common structure of an actor-critic agent, where the policy
(actor) is represented independently from the value function (critic). According
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Fig. 1 Separate Guidance and Control structure.

to the learned policy function (µ(s)), the actor computes the optimal action de-
pending on a state of the environment. The critic estimates the value function
(Q(s, a)) given the state and the action. The value function gives us information
of the expected cumulated future reward for this state-action pair. The critic is
also in charge of calculating the temporal-difference error (TD) (i.e. the loss func-
tion) that is used on the learning process for both the critic and the actor. In deep
reinforcement learning the policy function and the value function, actor and critic,
are approximated by neural networks.
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Fig. 2 Actor-Critic agent structure.

DDPG is an improvement of the standard Deterministic Policy Gradient [22]
algorithm including new concepts of deep learning theory. One of its major ad-
vantages is that it is able to provide good performance in large and continuous
state-action space environments, which motivated its selection for the particular
problem addressed in this paper.

DDPG uses two characteristic elements of Deep-Q-Network [6]; the replay
buffer and the target networks, which are used to stabilize the learning of the
Q-function. A replay buffer is a finite sized memory that stores the transition tu-
ple at each step. This tuple is formed by the current state (si), the action (ai), the
obtained reward (ri), the next state (si+1) and a boolean variable that indicates
if the next state is terminal or not (ti). A terminal state is understood as a state
where the experiment ends. At each timestep the critic and the actor are trained
from a minibatch obtained by sampling random tuples of the replay buffer. This
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way of training reduces time correlation between learning samples and facilitates
convergence in the learning process.

On the other hand, a target network is a network used during the training
phase. This network is equivalent to the original network being trained and it
provides the target values used to compute the loss function. Once the original
network is trained with the set of tuples of the minibatch, the trained network is
copied to the target network. Nevertheless, in DDPG the target network is mod-
ified using a soft update, rather than directly copying the network weights. This
means that the target weights are constrained to change slowly. The use of target
networks with soft update allows to give consistent targets during the temporal-
difference backups and makes the learning process remain stable. Note that DDPG
requires four neural networks; the actor and the critic and their respective target
networks.

When the agent states or actions have different physical units it can be dif-
ficult for the neural networks to learn properly and to generalize the solution of
the problem. The batch normalization technique [23] is included in the DDPG
algorithm to avoid this issue. This technique is widely used in deep learning and
consists, essentially, on normalizing each dimension of the samples in a minibatch
to have zero mean and unit variance.

Eqs. (1 - 2) show the gradient functions used to update the weights of the
critic and actor, respectively. φ are the set of weights of the critic network and θ
the weights of the actor, ηφ and ηθ are the learning rates of the critic and actor,
B represents the minibatch of transition tuples and N its size. Target networks
are represented with the prime symbol. yk (Eq. 3) are the target Q-values (Not
to be confused with target networks) and are used to compute the loss function.
The weights of the critic are updated to minimize this loss function. The discount
factor, a value between 0 and 1 that tunes the importance of future rewards to
the current state, is represented by γ. Note that the target Q-Values (Eq. 3) are
obtained from the outputs of the actor and critic target networks, following the
target network concept.

∆φ = ηφ∇φ

(
1

N

∑
i∈B

(
Q(si, ai | φQ

′
)− yi

)2)
(1)

∆θ = ηθ∇θ

(
1

N

∑
i∈B

Q(si, µ(si | θµ) | φQ)

)
(2)

yi = ri + γQ′(si+1, µ
′(si+1 | θµ

′
) | φQ

′
) (3)

Eqs. (4-5) show the update of the weights of the target networks from the
trained networks. Parameter τ indicates how fast this update is carried on. This
soft update is made each step after training the main networks.

φQ
′
← τφQ + (1− τ)φQ

′
(4)

θµ
′
← τθµ + (1− τ)θµ

′
(5)
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Fig. 3 Asctec Hummingbird Quadrotor with the Odroid XU4Q on-board PC (center bottom
of the UAV).

3 Agent Environment

The environment of the agent includes the robot together with the robot’s environ-
ment [24]. In this paper the robot is the Asctec Hummingbird quadrotor vehicle
(Fig. 3). This section gives details of the quadrotor model and the simulation
environment wherein the agent is trained.

3.1 Quadrotor Model

The quadrotor model has twelve states: the position on each axis in the world frame
(x, y and z), the Euler angles (φ-roll, θ-pitch and ψ-yaw), the body velocities (u, v
and w) and the angular velocities (p, q and r). It has four inputs, that are related
to the thrust force (uz) and torques on each axis (uφ, uθ and uψ). Axis labels and
rotational conventions as well as the defined frames of reference of the model are
shown in Fig. 4.

Fig. 4 Axis labels and conventions.
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3.2 Training Environment

First training steps of the agent are unpredictable and can become unsafe for the
real platform. That is why having a simulated environment is very important in
order to maintain the integrity of the experimental platform. Training the agent
in a realistic and complete simulated environment will strengthen its effectiveness
on real experiments.

In this work a simulation environment was built in the Gazebo-ROS (Robot
Operating System) platform, making use of the RotorS simulator [25]. RotorS is a
multirotor simulator integrated in Gazebo-ROS which, among the available mul-
tirotor models, has a model of the Asctec Hummingbird quadrotor, the vehicle
studied in this work. Since certain modifications were made in the real Hum-
mingbird vehicle of our platform, some parameters of the simulation model were
updated too (some sensors, pc and other items where placed on the vehicle in such
a way that inertias and mass changed). Furthermore, a model of the sensors was
included and adjusted to resemble the sensors of the actual quadrotor platform.
Nevertheless, simulations assuming ground truth measurements (i.e. ideal sensors)
can still be made.

The autopilot was implemented as a package in ROS and it is formed by a set
of PID-based controllers. That is, three controllers for the attitude (φ, θ and ψ),
one for the altitude (z) and two more to control the velocities on the x and y axis
(u and v). The parameters of these controllers are shown in Table 1. This autopilot
was already tested in real experiments with success, and it presents a very similar
response on the RotorS simulated environment, thus proving the validity of the
model.

Table 1 Constants of the PID controllers of the autopilot.

Kp Ki Kd

u 0.32 - 0.1

v 0.32 - 0.1

φ 4 2.2 2.4

θ 4 2.2 2.4

ψ 8 1 7

z 4 2.2 6.6

The DDPG agent was programmed in python 3.5, using the tensorflow and
tflearn libraries to generate and train the neural networks. These libraries permit
to save (and restore) the trained nets in order to perform tests or retrain them.
Since ROS is only prepared for version 2 of python, the agent was implemented as
a regular python script and it communicates with ROS (to subscribe and publish
topics) by means of the rospy library.

The scheme of the simulated environment is shown in Fig. 5. The main advan-
tage of building this environment in ROS is that, since the real platform also runs
under ROS, the same code of the autopilot and the DDPG agent can be trans-
ferred to the real quadrotor platform. Thus, the real environment is equivalent to
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Fig. 5 Scheme of the training environment.

the one presented in Fig. 5, except that RotorS simulator is substituted by the
real vehicle and sensors.

4 DDPG for Path Following

This section presents the main characteristics of the DRL agents that are devel-
oped in this paper. That is, states, actions and rewards are defined. Other details
regarding the structure of the networks or the type of noise added to the actions
are introduced as well. Three different approaches are presented. Each approach
is an improved version of the preceding one and is implemented using the Deep
Deterministic Policy Gradient algorithm.

4.1 First Approach: Two States

According to the structure of Fig. 1, the path following algorithm must compute
four control commands (zcmd, ψcmd, ucmd and vcmd). Nevertheless, in this first
approach the deep reinforcement learning agent is only in charge of computing
the reference of the yaw angle (ψcmd). Actually, the action (a) produced by this
agent is not directly the yaw command but a desired correction (ψcorr,k given in
rad/s) over the current yaw angle. Eq. (6) shows how the yaw reference at step k is
produced, where ∆t is the time step. The reason to use the angle correction and
not the angle itself as the agent action is to avoid undesired fast angle changes.
Moreover, note that the correction is made over the current value of yaw and not
over the last yaw reference, which would lead to an incremental control action.
Having an incremental control action is equivalent to adding a new integral to
the plant, which in this case results in an unstable behaviour. Hence, the selected
action achieves a smooth movement while keeping the stability of the system.

ψcmd,k = ak∆t+ ψk | ak = ψcorr,k (6)

The other commands defined by the path following controller will depend on
the path specifications; zcmd is given by the altitude of the path at the closest
point to the vehicle (hereafter named pct, for cross track error point) and ucmd
is set to the desired path’s velocity. Velocity on y axis (vcmd), as in most of the
geometrical algorithms, is fixed to 0 m/s.

The basic structure of the DDPG algorithm determines that, given a state of
the environment, the agent will always choose the best action according to the
learned policy. This may not lead to a proper exploration of the action space while
training the agent. To enhance the exploration of the agent an Ornstein–Uhlenbeck
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Fig. 6 States of the agent are with respect of the tangential frame {T}.

noise (Eq. 7) is added to the action at training time. nk is the value of the noise at
the kth iteration, θn is a parameter that defines the speed rate of mean reversion,
µn is the drift term which affects the asymptotic mean, ∆t is the time of a step
and dWt is the standard Wiener process scaled by volatility σn.

Yaw command (ψcmd) including the noise signal is computed as shown in
Eq. (8). The exploration rate decreases continuously with the number of training
episodes (j) in such a way that a smooth transition between exploration and
exploitation is achieved while the agent keeps learning. Parameter κ indicates the
speed of this transition.

nk = nk−1 + θn (µn − nk−1)∆t+ σndWt (7)

ψcmd,k =

(
ak +

nk
j/κ + 1

)
∆t+ ψk (8)

In this first approach, the state vector (s) is formed by two states (Eq. 9); the
distance error (ed) and the angle error (eψ), both with respect to pct (Fig. 6).
Subscript T is referred to the tangential frame of reference {T} that is placed on
pct with x pointing to the path’s tangential direction, z pointing up and y pointing
to the resultant direction of x× z.

s = {ed, eψ} | ed = yT , eψ = ψT (9)

The reward defined for this agent is shown in Eq. (10). This is the reward
function that achieves the best performance and fastest convergence among the
numerous types of rewards that were evaluated (i.e. continuous or discrete, pe-
nalizing bad behaviour or rewarding good path following performance, and mixed
strategies). The term −k1|ed| penalizes the cross-track error (ed). The term k2vT
gives positive reward when the vehicle is moving forward on the path and negative
otherwise, where vT is the velocity of the vehicle projected in the x axis of the
tangential frame of reference. k1 and k2 are constants that define the importance
of each of the two terms. In this approach these constants take the values of 20 and
10, respectively. Being those the best values amongst several that were evaluated.

r = −k1|ed|+ k2vT (10)

The structures of the actor and critic neural networks consist on four layered
feed forward networks with 400 neurons in the first hidden layer and 300 neurons in
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the second one. However, while in the actor’s network both the state and the action
vectors are connected to the first hidden layer, in the critic networks the action
vector is connected directly to the second hidden layer, following the structure of
the original algorithm [7]. Making the actions to skip the first layer improves the
stability and performance. The neurons of both networks are rectified linear units
(ReLU). Batch normalisation technique is used in the two layers of the actor nets,
while it is only used in the state input layer in the critic networks.

Table 2 presents the relevant parameters and their values of this first proposed
DDPG agent.

Table 2 Parameters of the DDPG agent.

Symbol Description Value

ηθ Learning rate of actor network. 0.0001

ηφ Learning rate of critic network. 0.001

τ Soft target update parameter. 0.001

γ Discount factor for critic updates. 0.99

- Replay buffer size. 1,000,000

N Minibatch size. 64

- Maximum steps of one episode. 300

∆t Agent time step. 0.1 s

κ Ratio of exploration-exploitation tran-
sition.

200

The agent proposed in this subsection can solve the path following problem
properly (see Sec. 6). In fact, it is the best agent setup in terms of PF performance
that we were able to obtain among numerous and diverse agent setups that were
tested with only two states. However, notice that these two states of the agent
(Eq. 9) only provide instantaneous information about the path. In other words,
states are computed only from the point pct in the path and they provide no infor-
mation about the path shape to come. Therefore, it is not possible for the agent to
anticipate the curves of the path. Next subsection presents an improvement over
this approach that handles this issue.

4.2 Second Approach: Anticipation State

To deal with the anticipation, the issue mentioned in the previous subsection, a new
form of the state vector is proposed. The rest of the parameters and structure of
the agent of the first approach are maintained. In addition to the two states defined
in Eq. (9), another state is included (ψT2

). This state is an angle error between the
vehicle’s yaw angle and the path’s tangential angle. However, in this case the angle
error is not computed from the point pct but in a point that is forward on the path,
as represented in Fig. 6. This new state gives information about future orientation
of the path with respect to the vehicle and makes it possible for the agent to
anticipate curves to come, improving substantially its path following performance
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Fig. 7 States of the second approach; angle error with respect forward tangential frame {T2}.

(see Sec. 6). The state vector of this approach is presented in Eq. (11), where T2
subscript indicates that the state is computed from the tangential frame on a point
that is forward on the path.

s = {yT , ψT , ψT2
} (11)

The distance at which the second tangential frame, {T2}, is placed on the path
is named anticipation distance and it is represented by da. To obtain the best
possible performance of the agent, it is necessary to choose a proper anticipation
distance. From different tests, it was proven that da depends on the velocity of the
vehicle on the path. That is, with higher velocities it is necessary to have a larger
anticipation distance. For instance, the optimal anticipation distance (according
to the obtained PF performance) at a velocity of 1 m/s is 0.6m.

4.3 Third Approach: Adaptive Velocity

The main drawback of the previous approaches is that, with the defined structure,
the agent can only learn to solve the problem at one specific velocity. That is, if
during the training process the velocity of the vehicle is changed every episode,
convergence cannot be achieved. In other words, the policy depends on the vehicle’s
velocity. This subsection presents an improvement that permits the agent to work
at different velocities and also makes it capable of computing at each step the
velocity of the vehicle that best adapts to the shape of the path according to the
defined reward.

In order to have an agent that is resilient to different velocities and path’s
shapes, the first step is to include the velocity of the vehicle (‖v‖) as a state of the
agent. Nevertheless, this modification is not sufficient to accomplish our goal. In
DDPG it is necessary to define a state vector that fulfils the deterministic property.
This means that, knowing the current state vector and action the next state can
be estimated. Therefore, since the velocity of the vehicle is an exogenous variable
of the system (defined by the user) it is not possible to predict its value, and thus,
it is not a deterministic state. To make it deterministic, the action vector must
act on the velocity state.
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In this third approach, in addition to the yaw correction action defined in
Eq. (6), a new action that computes a velocity correction (ucorr,k) over the current
velocity of the vehicle is included. Eq. (12) shows how the velocity command on
the x axis is produced from this action (including exploration noise of Eq. 7, only
used during the training phase). Again, with the aim of avoiding fast changes on
the velocity and to assure the stability of the system, a correction action has been
used rather than a velocity action or an incremental action of the command.

ucmd,k =

(
ucorr,k +

nk
j/κ + 1

)
∆t+ uk (12)

Introducing this new state (‖v‖) and new action (ucorr,k) to the agent may
seem to be enough to solve the problem. However, as mentioned in Sec. 4.2, no-
tice that the path’s position where the future angle error state (ψT2

) is computed
depends on the velocity of the vehicle. Therefore, having only this state computed
with a fixed anticipation distance (da) does not provide enough information to
solve the path following problem at different velocities. Rather than that, two
solutions were considered: Adding more future angle error states at different an-
ticipation distances or modifying at each step the anticipation distance at which
the angle error is computed in function of the vehicle’s velocity.

Including several future angle states at different distances resulted disadvanta-
geous for two reasons: first, having more states makes the training process much
slower; second, since at a given velocity only the information of 1 or 2 future angle
states is exploited, the remaining states become irrelevant. Having many states
that do not provide significant information to solve the problem leads the agent to
lose effectiveness. For this reason, in this approach the mentioned issue is solved by
having only one future angle state (ψT2

), which is computed with an anticipation
distance adapted according to the vehicle’s velocity.

Several tests at different velocities were performed in order to find the relation
between the velocity of the vehicle and the optimal anticipation distance (da,opt).
Optimal in the sense of being the distance that provides more information, and
thus, results in a higher performance of the agent. The results obtained from these
tests were approximated by the linear piecewise function shown in Eq. (13). This
function computes the optimal anticipation distance as a function of the current
velocity of the vehicle.

da,opt =


‖v‖ − 0.3 if ‖v‖ ≥ 1

0.6‖v‖+ 0.1 else
(13)

Summarizing, in this approach the velocity of the vehicle is added as part of the
state vector and the future angle state is computed with an adaptive anticipation
distance (da,opt). A velocity correction is included in the action vector. Eqs. 14
and 15 present the state and action vectors, respectively. The agent computes the
velocity command on the x axis in such a way that it adapts to the path’s shape.
Velocity on the y axis is still fixed to 0. The reward function of the first approach
(Eq. 10) is also maintained. Weights of the reward (k1 and k2) acquire a significant
role in this approach, since they define the priority of the trade-off between having
small path distance error or travelling at high velocities. All parameters of Table 2
are preserved except for the ratio of the exploration-exploitation transition (κ),
which is set to 1000. This is because the training process of this approach is slower.
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s = {yT , ψT , ψT2
(da,opt), ‖v‖} (14)

a = {ψcorr,k, ucorr,k} (15)

The ingredients that make the agent capable of following a trajectory in space
with adaptive velocity have been defined. Nevertheless, it is of utmost importance
to design a rich training environment that allows the agent to converge to an
efficient and robust solution. Details of this training process are given in Sec. 5.

5 Training Process

The training process of the agents has been performed in the training environment
detailed in Sec. 3.2. This training environment is integrated in a linux Xubuntu
virtual machine with a dedication of 8GB RAM and four 1.80GHz processors
(i7-8550U CPU). The training process is performed in real time.

5.1 Training of 1st and 2nd approaches

The first and second approaches followed the same structure in the training phase.
That is, the vehicle is required to follow a half lemniscate (8-shaped) path at a
constant velocity of 1 m/s in the x body axis (ucmd). This path is defined in
Eq. (16), where A is the radius of one of the circumferences of the path, fixed
to 4m, and γp is the virtual arc, which ranges from 0 to 2π rad. The path is
discretized with a precision of 0.01m between each path point.

xd (γp) = 2A cos (γp)

yd (γp) = A sin (2γp)
(16)

Both agents were trained following the specified path in ideal conditions, mean-
ing that the system uses ground truth measurements and the vehicle starts each
episode at the initial position of the path with the yaw angle oriented tangen-
tially to it. As denoted in Table 2, each episode has 300 steps of 0.1 seconds. The
learning evolution of the first and the second approaches are shown in Figs. 8 and
9, respectively. These figures show. for each episode, the average path distance
error (|d|) and the accumulated reward (

∑
r) in all the steps of the episode. As

the agents keep training the average error decreases and the accumulated reward
grows until training converges.

It is important to mention that, as the training process is stochastic, even if
the same parameters and structure are maintained, the performance of the trained
agents can vary. The agents presented in this paper are the ones that achieve the
best performance, in terms of path distance error, among a set of different trained
agents that were obtained. In this particular case, the 1st approach converged
around the 120th episode while the 2nd approach did it approximately at episode
90.

The resulting agents were tested in the RotorS simulation platform (see Sec. 6.1).
They proved to perform well with ground truth measurements. However, if a model
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Fig. 8 Average distance error and accumulated reward on each episode during training phase
of 1st approach agent (2 states).

Fig. 9 Average distance error and accumulated reward on each episode during training phase
of 2nd approach agent (3 states).

of the sensors is added, the agents present some difficulties to follow the path prop-
erly. Particularly, when the vehicle moves far from the path (due to drift or jumps
on sensor measurements) and needs to converge back, the vehicle can start loitering
around the path without being able to converge to it.

The solution to the mentioned problem could be to train the agent with the
model with sensors. However, to capture the dynamics of the system with noisy
measurements becomes challenging for the agent and, sometimes, training does
not converge in these conditions. Alternatively, this issue is tackled by retraining
the agents to learn the policy when the vehicle is far from the path. To do so, the
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agents are first trained as explained before, and then, they are retrained following
the same path but starting at random positions and orientations different from
the initial point of the path. In this way, the agents learn how to behave out of
the path. Thus, if the vehicle occasionally moves out of the path because of the
noisy sensor measurements, the agent will be able of driving the vehicle back to
the path.

Both agents (1st and 2nd approaches) were trained 100 more episodes follow-
ing the specified lemniscate path (Eq. 16) with random initial conditions. That
is, in each episode of this training phase the starting position of the vehicle is set
at a distance of −2m to 2m from the initial position of the path, and the initial
orientation is incremented an angle between −π/2 to π/2 from the initial path tan-
gential angle. The initial position and angle are selected randomly with a uniform
probability distribution in the defined intervals.

Fig. 10 Average distance error and accumulated reward on each episode during training phase
with non-ideal initial conditions of 2nd approach agent; gray dashed lines are real values and
black lines are a 20-episodes moving average.

Fig. 10 shows the learning evolution of the 2nd approach with the 100 new
training episodes. Since the initial position and orientation change randomly in
each episode, the obtained average distance error and accumulated reward also
vary arbitrarily. For this reason, to show better the progression of this learning
phase, a 20-values moving average is presented in both plots. That is, episode val-
ues are represented with gray dashed lines, while the moving average is represented
with solid black lines in Fig. 10. The learning results show how this training phase
permits the agent to learn to perform better in diverse initial conditions. This
acquired knowledge will notably improve the performance in real experiments, as
revealed in Sec. 6.
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5.2 Training of 3rd approach

The 3rd DDPG approach developed in this paper requires training in a richer
environment than the previous versions. That is because the agent needs to train
with different curves in order to learn the optimal vehicle’s velocity and the yaw
angle’s policy according to the path radius.

In the training process of this agent the vehicle will be required to follow an
asymmetrical half lemniscate path. This is an 8-shaped path where each circle
has a different radius. This path is defined in Eq. (17), where A1 and A2 are the
radius of each circumference of the path, respectively. The value of this radius
is changed every episode, taking a random value between 0.5m and 10m with
a uniform probability distribution. Again, the virtual arc parameter (γp) ranges
from 0 to π/2 rads, and the path is discretized with a precision of 0.01m.

xd (γp) =

 2A1 cos (γp) if 0 ≤ γp ≤ π/4

2A2 cos (γp) if π/4 < γp ≤ π/2

yd (γp) =

A1 sin (2γp) if 0 ≤ γp ≤ π/4

A2 sin (2γp) if π/4 < γp ≤ π/2

(17)

The first training attempts of the agent with the stated environment resulted to
be quite unfruitful. Concretely, after hundreds of episodes, the agent just learned
that the best way of maximizing the reward (reward function in Sec. 4) was to
keep the vehicle static. The reason for this strange behaviour can be explained as
follows: since turning around arbitrarily is not penalized when, due to the lack of
exploration the policy is not defined yet, whenever the agent starts moving the
vehicle forward, as it is rotating, it ends up moving in the opposite direction of
the path, receiving a penalty for that policy; therefore the best action is to keep
ucmd = 0.

A simple but effective solution for such issue is proposed in this paper. It
consists on forcing the vehicle to move constantly by establishing a minimum
velocity of 0.1 m/s. Even if this condition initially produces negative rewards, it
ends up promoting the agent to learn the policy of the yaw action. At the same
time, as soon as the velocity vector of the vehicle starts to be parallel to the path,
the agent can start learning that higher velocities lead to greater rewards. Hence,
a successful learning process is achieved.

The training results of this agent are shown in Fig. 11. This figure shows the
average distance error (|d|), the average velocity on the x axis (u) and the accu-
mulated reward (

∑
r) on each episode. A 50-episodes moving average is applied

to episode values to help the interpretation of each of the three plots. Again, gray
dashed lines represent episode values while black lines show the moving average.

It may seem that training converged around episode 400. However, even the
average error or reward appear to be constant, evaluating the trained agents with
simulation tests showed that they kept learning and improving their performance
until around episode 1000. The reason for that is because training more episodes
permits to learn the policy on unusual states.
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Fig. 11 Average distance error, average velocity and accumulated reward on each episode
during training phase of 3rd approach agent; gray dashed lines are real values and black lines
are a 50-episodes moving average.

Such long and complex training process allows the agent to learn the policy out
of the path. Thus, unlike the 1st and 2nd approaches, this approach does not need
any additional training with diverse initial conditions to improve its performance
on experimental results.

6 Results

This section presents the results obtained with the three trained agents while
following a path in different conditions. The agents were tested in simulation and
experimentally with the Asctec Hummingbird platform.

6.1 Simulation

The simulations presented in this paper were performed in the same framework
where the agents were trained. That is, the RotorS simulator integrated in the
ROS-Gazebo platform.

First, the three approaches were tested following a lemniscate path (Eq. 16),
the same path used in the training phase. Again, the radius of the path is A = 4m.
However, this time the vehicle was required to follow a full lemniscate, with the
virtual arc parameter, γp, ranging from 0 to 4π rads. The vehicle started at the
initial point on the path with the yaw angle oriented tangentially to it.
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Table 3 shows the results obtained while following this path with ground truth
measurements. That is, in the same conditions used for training. This table shows
the average cross-track error (d), the average velocity (‖v‖) and the total time
taken to perform a full lap of the path by each agent. Also, to evaluate the 3rd

approach agent in the same conditions of the two other agents, another simulation
was made with this agent limiting its maximum velocity to 1 m/s. Note that 1st

approach is denoted as Agent 1 in the table, 2nd approach is Agent 2 and so on.
This nomenclature is maintained hereafter in this section.

Table 3 Results for one lap of the lemniscate path, simulations with ground truth measure-
ments.

d (m) time (s) ‖v‖ (m/s)

Agent 1 0.1041 67.10 0.8707

Agent 2 0.0398 54.79 0.8780

Agent 3 0.0671 39.81 1.2276

Agent 3 (vmax = 1) 0.0669 56.10 0.8696

The results performing a full lap of the lemniscate path while using the sensor
measurements instead of ground truth values, are shown in Table 4. Same param-
eters and agents of Table 3 are evaluated. The trajectory on the xy plane followed
by these agents is shown in Fig. 12. Fig. 13 shows the references of yaw angle
(ψcmd) and velocity in the x axis (ucmd) computed by the Agent 3 and the values
of the angle ψ and the velocity u in the same simulation.

Table 4 Results for one lap on the lemniscate path, simulations with sensor models.

d (m) time (s) ‖v‖ (m/s)

Agent 1 0.1123 54.79 0.9476

Agent 2 0.0895 51.70 0.9484

Agent 3 0.0968 40.00 1.2338

Agent 3 (vmax = 1) 0.0816 54.41 0.9111

As observed in the simulation results following the lemniscate path, the Agent
2 appears to be the one that obtains the best results in terms of cross-track error.
However, it is important to recall that this agent was only trained to perform well
at the particular velocity of 1 m/s. On the other hand, Agent 3 achieved a similar
performance while reducing considerably the time taken to perform a full lap of
the lemniscate. That is, this agent computes the optimal velocity at each part of
the path, which allows the vehicle to accelerate in the straight lines, arriving at a
maximum velocity of 1.82 m/s. Thus, it was able to increase the average velocity
while maintaining almost the same error.

To analyse the performance of the agents while following a different path from
the one that was used to train them, a new path was defined. This new path is a
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Fig. 12 Trajectories on xy of lemniscate path, simulation with sensor models: Agent 1 in
green (dotted line), Agent 2 in blue (dash-dotted line) and Agent 3 (dashed line) in red.

Fig. 13 Actions of Agent 3 following a lemniscate path, simulations with sensor models:
references computed by agent (angle and velocity) in red and real values in blue (dashed line).

spiral, stated in Eq. (18). This time, parameter A determined the rate at which
the radius of the spiral grows and takes a value of 1.25. The virtual arc (γp) ranges
from 0 to 2π. Table 5 shows the simulation results obtained while following the
spiral path with ground truth measures, while Table 6 presents the results of the
agents following the same path with sensors measurements.
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xd = −Aγp cos (γp)

yd = Aγp sin (γp)
(18)

Table 5 Results for one lap of the spiral path, simulations with ground truth measurements.

d (m) time (s) ‖v‖ (m/s)

Agent 1 0.2907 34.30 0.8860

Agent 2 0.1840 32.43 0.8872

Agent 3 0.1418 23.52 1.2119

Agent 3 (vmax = 1) 0.0759 32.10 0.8530

Table 6 Results for one lap on the spiral path, simulations with sensor models.

d (m) time (s) ‖v‖ (m/s)

Agent 1 0.3035 32.86 0.9448

Agent 2 0.2540 31.18 0.9366

Agent 3 0.1677 22.62 1.2262

Agent 3 (vmax = 1) 0.0987 30.59 0.8830

The trajectories in the xy plane of the three agents following the spiral path
with sensor measures are shown in Fig. 14. These results correspond to the simula-
tions presented in Table 6. Fig. 15 shows the angle and velocity references obtained
by the Agent 3 and their respective real values during that simulation. In that case
the vehicle reached a maxim velocity of 1.71 m/s.

In the simulation results following the spiral path, the performance obtained
by each agent varies more than in the results following the lemniscate path. With
these results it is clear that, at least in simulation, the Agent 3 is able to outperform
the other agents, reducing the average cross-track error while travelling at higher
velocities.

The simulations results show how the agents, even though having been trained
with ground truth measurements following a lemniscate path, can also solve the
path following problem with sensor measurements and follow other paths such
as the stated spiral path. Next, the agents are tested in the real experimental
platform.

6.2 Experimental

The results shown in this section were obtained with real experiments in differ-
ent sessions during a week. Results were obtained with similar wind (aprox. 5-10
m/s) and GPS coverage (8-10 satellites) conditions. The experimental platform
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Fig. 14 Trajectories on xy of spiral path, simulations with sensor models: Agent 1 in green
(dotted line), Agent 2 in blue (dash-dotted line) and Agent 3 (dashed line) in red.

Fig. 15 Actions of Agent 3 following a spiral path, simulations with sensor models: references
computed by agent (angle and velocity) in red and real values in blue (dashed line).

is the Asctec Hummingbird vehicle with a supplementary on-board PC (Odroid
XU4Q) with ROS framework installed. Fig. 16 shows an image of the experimen-
tal platform. As can be observed, it is a an outdoors platform. The vehicle is
equipped with an IMU sensor which, among other values, provides an estimation
of the orientation of the vehicle, with a pressure sensor that provides the altitude
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measure and with a GPS that provides the position and an estimation of the vehi-
cle’s velocity on the xy plane. In this paper, the states are obtained from the raw
sensor measurements, without the use of any additional filter. Therefore, the im-
plemented controllers must deal with noisy measures, specially the ones provided
by the low-cost GPS sensor, which presents drifts and sometimes jumps in the po-
sition measurements. The autopilot ROS package is implemented in the on-board
PC (attitude controller runs at 100Hz, velocity controller at 50Hz and altitude
controller at 20Hz).

Fig. 16 Outdoors experimental platform.

Since tensorflow library is required to operate at 64 bits and Odroid XU4Q
works at 32 bits, the DDPG python agent cannot run in this PC. Instead, this
program is executed in a laptop that communicates through Wi-Fi with the ROS
master in the on-board PC. The laptop runs with linux Ubuntu with the i7-8550U
intel processor and 16GB RAM. The DDPG python3 program runs at 10Hz.

The three agents were tested with real experiments following the same paths
as in Sec. 6.1. However, although the three agents were able to solve the path
following problem correctly, the results were not as good as expected. That is, the
trajectory of the vehicle was slightly oscillating around the path. After various
tests the authors concluded that this behaviour was due to a slight discrepancy
between the simulation model and the real dynamics of the vehicle. Namely, the
rotational dynamics around the z axis were a little slower in the real vehicle.

In order to improve the performance of the agents two solutions were consid-
ered: the first one consists in training the agents in the experimental platform; the
second one is to adjust the parameters of the agents to modify their dynamics.
Training the agents during real flights can be harmful for the plant due to the un-
expected behaviour of the vehicle. Furthermore, it has been observed that training
with noisy measurements reduces the learning effectiveness. On the other hand,
apparently, it does not exist any methodology for modifying the dynamics of the
agents by changing some of their parameters. Indeed, out of the set of design and
training parameters, involved only in the training phase, the DDPG algorithm
does not have any other parameter to tune. However, in this paper we propose a
form of modifying the control dynamics of the agent by adding a new parameter
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that will scale the output of the agent. That is, since the outputs of the agent are
corrections (angle and velocity corrections), this parameter will regulate the speed
at which the correction is made, and thus, it ends up regulating the dynamics of
the angle and/or velocity reference too.

Since the discrepancy between the two models affects the yaw dynamics, only
the angle action was scaled with the mentioned parameter. This new parameter,
known as the angle correction constant (ka), is apparent in Eq. (19) and it is
set experimentally, ka = 2; the value that provided the best performance from
the different values that were tested experimentally. This correction constant was
included in the three agents that were used to obtain all the experimental results
that are presented in this paper. It is important to remember that this constant
was just used in the experimental phase to improve the performance of the agents.

ψcmd,k = kaak∆t+ ψk (19)

Next, the agents were tested with the same lemniscate of Sec. 6.1 (Eq. 16) with
A = 4 and γp ranging from 0 to 4π. The results of the three agents performing
a full lap of this path are shown in Table 7. The results of the Agent 3 with the
maximum velocity limited to 1 m/s are also included. Again, the table shows the
average cross-track error (d), the total time and the average velocity of the vehicle
(‖v‖). Fig. 17 presents the trajectory on the xy plane of the agents while following
this path. Furthermore, Fig. 18 shows the angle and velocity references computed
by the Agent 3 while following this lemniscate path, where references are shown
in red and real values in blue dashed lines.

Table 7 Experimental results for one lap on the lemniscate path.

d (m) time (s) ‖v‖ (m/s)

Agent 1 0.1739 55.90 0.8859

Agent 2 0.1140 55.01 0.9141

Agent 3 0.1682 39.39 1.6311

Agent 3 (vmax = 1) 0.2275 59.50 0.8829

The experimental results following the lemniscate reveal a behaviour that is
very similar to the simulation results. The Agent 2 displays again the best perfor-
mance in terms of cross-track error, but the Agent 3 achieves a similar distance
error while increasing the average velocity, arriving at a maximum velocity of
2.49 m/s.

Another important remark from these experimental results is found in the last
curve of the trajectory performed by the Agent 3 (bottom-right curve in Fig. 17),
a curve that the agent should clearly undertake better. This behaviour in the
fast counter-clockwise curves appeared in all the experiments that we performed
with this agent, and was even more evident in the counter-clockwise spiral paths.
The cause of that strange pattern was found in the designed training framework.
Although the agent was trained with asymmetrical lemniscates with diverse radius,
this training framework resulted to be incomplete. The reason is that the agent was
trained with a half lemniscate beginning with a counter-clockwise curve and ending
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Fig. 17 Trajectories on xy of lemniscate path, experimental results: Agent 1 in green (dotted
line), Agent 2 in blue (dash-dotted line) and Agent 3 (dashed line) in red.

Fig. 18 Actions of Agent 3 following a lemniscate path, experimental results: references com-
puted by agent (angle and velocity) in red and real values in blue (dashed line).

in a clockwise curve. This way, the first curve is always slower than the second
one and the agent learned to perform fast clockwise curves and slow counter-
clockwise curves. Consequently, it resulted in a bad behaviour while following
counter-clockwise curves at high velocities. The solution to address this problem
consists in changing the training framework of this 3rd agent to have both types
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of curves at slow and fast velocities. It could be done, for instance, with full
asymmetrical lemniscates.

Finally, the agents were tested with the spiral path defined in Eq. (18), with
A = 2.5 and γp ranging from 0 to 4π. Table 8 presents the results of the three
agents plus the Agent 3 with limited velocity, just as in Table 7. The trajectories
of the agents following this spiral path are shown in Fig. 19, and Fig. 20 shows
the angle and velocity references computed from the actions of the Agent 3.

Table 8 Experimental results for one lap on the spiral path.

d (m) time (s) ‖v‖ (m/s)

Agent 1 0.2848 28.81 1.0503

Agent 2 0.2503 27.79 1.0460

Agent 3 0.2257 18.59 1.5844

Agent 3 (vmax = 1) 0.2342 33.10 0.8826

Fig. 19 Trajectories on xy of spiral path, experimental results: DDPG v1 in green (dotted
line), DDPG v2 in blue (dash-dotted line) and Agent 3 (dashed line) in red.

In the experimental results following the spiral path, the Agent 3 outperforms
the other agents by exhibiting a lower cross-track error with higher velocity. Specif-
ically, this agent arrives at a maximum velocity of 2.52 m/s.

The initial trajectory of the agents when following the spiral path (Fig. 19)
evidences a difference of behaviour between each of the three approaches presented
in this paper. That is, the Agent 1 is required to travel at a constant speed of 1 m/s
and only has information of the instantaneous distance and orientation error. Thus,
due to the lack of anticipation, in the initial part of the path it starts going forward,
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Fig. 20 Actions of Agent 3 following a spiral path, experimental results: references computed
by agent (angle and velocity) in red and real values in blue (dashed line).

moving out of the path. The Agent 2 moves also at a constant velocity. However,
this agent has information about the upcoming orientation of the path, which
allows it to anticipate the curve. Hence, in the initial part of the path, this agent
starts moving towards the curve. Finally, the Agent 3 knows the evolution of the
path’s curvature in advance and it is able to modify the longitudinal speed. That
allows it to command slower speeds at the beginning of the path and turn towards
the curve to follow the path as accurately as possible and then, when it is correctly
oriented, start increasing the velocity.

7 Conclusions

In this paper, a deep reinforcement learning algorithm, the Deep Deterministic Pol-
icy Gradient, has been proposed to solve the path following problem in a quadrotor
vehicle. The path following control computes the references for the velocity, the
altitude and the angle in the z axis that are then tracked by the autopilot con-
troller. Three different DDPG approaches with different behaviours are presented.
The first approach solves the PF problem only with information about the instan-
taneous position and angle errors. The second approach adds information about
the upcoming path. Both approaches work at constant velocity. The third ap-
proach permits the agent to compute the optimal vehicle’s velocity that adapts
better to the shape of the path, according to the defined agent reward.

Each of the proposed agents arises as an improved version of the previous one,
that is one of the main strengths of the methodology used in this work. The main
structure, common in the three approaches, permits the incorporation of new func-
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tionalities (such as having anticipation to curves or adapting the vehicle’s velocity)
without changing the core of the agent. This is very promising since it means that
new functionalities (e.g. wind disturbance rejection) could be straightforwardly
integrated to the agent without altering the rest of the functionalities.

The agents were programmed in python using the tensorflow library. The de-
signed training framework integrates the python script with Gazebo-ROS and uses
RotorS, a the realistic multirotor simulator. This simulator includes a model of
the Asctec Hummingbird, the quadrotor used in the experimental platform. Mod-
els of the real sensors of our platform were included in the simulator. The first
and second agents were trained with lemniscate paths of fixed radius. They were
also trained with different initial conditions to improve their performance in the
experimental results. In order to learn the policy of the velocity action with dif-
ferent path’s radius, the third agent was trained with asymmetrical lemniscates
and changing the radius on each episode. The three agents were trained assuming
ground truth measurements. The main advantage of training the agents in ROS
is that it facilitates the transition from the simulator to the real plant. Further-
more, since ROS is a standard platform in the robotics field, it is supported by
a large community, which can be very useful. The only concern to consider when
training in ROS is that, since simulations are made real-time, it may become a
time-consuming process.

The three agents were tested in simulations in the RotorS environment with
realistic models of the sensors. They were evaluated with a lemniscate path and
with a spiral path. Then, the agents were also tested in real experiments with
the Asctec Hummingbird quadrotor following the same paths as in simulation.
Even thought the agents were able to follow the pre-established paths correctly in
the first experiments that were carried out, they performed worse than expected.
The authors concluded that this behaviour was due to the small errors of the
simulated model, which affected mainly to the yaw dynamics. To improve the
performance of the agents a new parameter (angle correction constant, ka) was
included. This parameter scales the yaw action of the agent. And permits to modify
the dynamics of the agent to cope with the model’s discrepancy. Training the
agents experimentally was dismissed since it can be harmful for the plant due
to the unexpected behaviour of the vehicle. Furthermore, it was observed that
training with noisy signals was unfruitful.

The agents were tested experimentally including the angle correction constant,
which improved significantly their performance. In the lemniscate path, the Agent
2 achieved the best performance in terms of average cross-track error (0.114m),
but the Agent 3 exhibited a similar distance error (0.168m) while being able to
significantly increase the vehicle’s velocity. In the spiral path, the Agent 3 stands
out over the other approaches by achieving the lowest average cross-track error
(0.223) while travelling at higher velocities. In conclusion, the experimental results
show how the agents are able to successfully follow the spiral path, a different path
from the one that they were trained with. And thus, it is proved that the proposed
approach is able to find a generalized solution for the path following problem with
adaptive velocity.

Nevertheless, a strange pattern was observed in the Agent 3 while performing
counter-clockwise curves at high velocities (Fig. 17). This behaviour was attributed
to the design of the training environment. That is, since the agent was trained
with half asymmetrical lemniscates, the first curve of the path (counter-clockwise)
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is followed in the transient part of the experiment (velocity is still increasing).
Therefore, the agent ended up training the clockwise curves at faster velocities
than the counter-clockwise ones. This fact highlights the importance of having not
only a proper structure and parametrization of the agent, but also a rich, complete
and adequate training framework. The solution to this issue would be to train with
a different path that permits the agent to learn both curves at different velocities.

Future work is to study the effect of the trained path in the performance of
the agent and to find the best training environment to exploit the benefits of the
agent. Other future work is to improve the presented agent to make it capable of
solving other challenging problems such as wind disturbance rejection or reactive
obstacle avoidance.
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