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Abstract

In a world increasingly connected with equipment permanently attached, the risk

of cybersecurity had rise. Among the various vulnerabilities and forms of exploitation,

the Botnets are those being addressed in this work. The number of botnets related

infections has grown critically and, due to botnets’ increased capacity and potential use

for future infections, a continued development of solutions is needed to strengthen the

protection of networks and systems. Intrusion Detection Systems (IDS) are one of the

solutions that try to follow this evolution. The continuous evolution of tools and attack

forms in order to evade detection, using mechanisms such as encryption (IPSec, SSL) and

diverse architecture and different ways of implementing Botnets create great challenges

to those who try to detect them. In order to better understand these challenges, this

work proposes an architecture to map the behavior of botnets. For this, a topology was

created with several components, such as Network Intrusion Detection System (NIDS)

and Host Intrusion Detection System (HIDS), aided with information from honeypots for

the detection and analysis of attacks. This approach enabled real data to be obtained

from attempts, some successfully, from Malware infections, with the aim of transforming

systems into Bots and integrating them into Botnets. An exploratory analysis of the data

is performed to verify the detection capabilities and the cases where the components do

not provide correct information. Some methods based on machine learning were also used

to process and analyze the collected data.

Keywords: Botnet, IDS, Malware, Machine learning.
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Resumo

Num mundo cada vez mais conectado com cada vez mais equipamentos ligados em per-

manência o risco de cibersegurança tem aumentado. De entre as diversas vulnerabilidades

e formas de exploração continuada as Botnets são as visadas neste trabalho. Os números

de infeções relacionadas com as Botnets têm crescido de forma critica e devido dotar de

maiores capacidades os atacantes e seu grande poder de infeção futura é necessário um

desenvolvimento continuo de soluções para reforçar a proteção das redes e sistemas. Os

Sistemas de Deteccao de Intrusao (IDS) são uma das soluções que tentam acompanhar

esta evolução deste tipo de ameaça. A evolução continua das ferramentas e formas de

ataque por forma a fugir à detecção, utilizando mecanismos como tráfego cifrado (IPSec,

SSL) e arquitectura diversa e formas diferentes da implementação das Botnets levantam

grandes desafios a quem as tenta detectar. Por forma a compreender melhor estes de-

safios, este trabalho propõe uma arquitetura para mapear o comportamento das Botnets.

Para isso criou-se uma topologia com diversos componentes, como Network Intrusion

Detection System (NIDS) e Host Intrusion Detection System (HIDS), auxiliados com in-

formação de honeypots para a deteção e análise de ataques. Esta abordagem permitiu

obter dados reais de tentativas, algumas com sucesso, de infeções de Malware, com o

intuito de transformar os sistemas em Bots e os integrar em Botnets. É efetuada uma

análise exploratória dos dados para verificar a capacidade de deteção e os casos em que

os sistemas não fornecem informação correta. Foram também utilizados alguns métodos

baseados em machine learning para tratamento e análise dos dados coletados.

Palavras-chave: Botnet, IDS, Malware, Machine learning.
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Chapter 1

Introduction

Among the biggest threats that can be found on the Internet, we can highlight Botnets

as one of the biggest risks. They can infect multiple computers and mobile devicse world-

wide, from common users to complete infection of networks of educational institutions,

government departments and companies.

Mobile devices are increasingly being targeted for malware. A trend that is growing in

the first half of 2018, is the malware pre-installed on the devices. The RottenSys botnet

is responsible for infecting almost 5 million devices [1].

Hosts are infected by Malware and are controlled remotely becoming a Bot, Bots are

aggregated in networks (botnets). The Botmaster is the actor that to control all the Bots

in a Botnet.

In the year 2018, Spamhaus posted a note on its Spamhaus Block List (SBL), recording

about 9500 Command and Control (C&C) with a 32% increase. About 68% of those

C&C are found and hosted on cybercriminals managed servers. The Botnet Controller

List (BCL) is a subset of the SBL containing only IPv4 addresses of bots and C&C

detected, compared with 2016 an increase of 40% and more than 90% over the year 2014,

in Figure 1.1 can be visualized the increase of botnets between the year 2014 and 2018 [2].

1
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Figure 1.1: Botnet Listings VC BCL listings [2]

There are several types of Botnets with unique architectures and with different ob-

jectives. As they are scattered in the greatest amount possible in devices connected to

the Internet they give huge resources to the Botmasters. Enabling them to perform Dis-

tributed Denial of Service (DDoS) attacks, to capture personal information in the hosts

and use the victim’s computational resources for any action that Botmaster wants to take.

Due to this great diversity of Botnets, it is essential to understand their operation mode

and ways of detecting them.

In a comparison between the first half of 2017 and 2018, depicted on Figure 1.2, it is

registered a decrease on the number of attacks due to the seasonal slowdown generated at

the beginning of the year, but the H1 indicators show a significant increase in attacks [3].
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Figure 1.2: Change in DDoS attack power, 2017-2018 [3]

1.1 Objectives

This section shows the objectives to this work.

Considering the diversity of botnet infections is important to study in depth how they

works, specially on the infection phase of the bots and their coordination from C&C

hosts. The main objective of this work is to analyze how Intrusion Detection System

(IDS) detects Botnets and foster detection improvement.

Considering the main objective, several phases were considered important in the plan-

ning:

• Build an architecture to analyze the traffic of botnets;

• Redirect all recorded logs to a central log server;

• Infecting hosts where Host Intrusion Detection System (HIDS) are configured;

• Analyze network traffic generated by Network Intrusion Detection System (NIDS);
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• Analyze logs generated by Honeypots;

• Correlation between the data record in the diverse components;

• Implement machine learning algorithms to improve the detection of botnets.

1.2 Document Structure

This document is constituted by five chapters, the first chapter starts with the intro-

duction, objectives and the structure of this work.

In the second chapter, an analysis of the state in art related, along with explanation

of systems and devices used to develop the work presented.

The third chapter consists of describing and explaining the methodology used for the

creation of a topology in order to capture events from the HIDS, NIDS and Honeypots,

and for the infection and analysis phases.

The fourth chapter explains the procedures followed in the analysis phase using ma-

chine learning algorithms and presents the results.

The fifth chapter makes the conclusion of this work and considers future work research

vectors.



Chapter 2

Literature Review

2.1 Cyber-Attack

At the beginning of computer networks, systems were very simple. Over time, the

importance of connectivity grew and systems became more complex. Today there is no

completly invulnerable computer system as it is possible to find many talented hackers,

and consequently, all systems need several ways to ensure security [4]. The following

section describes the Cyber-attacks, their reasons and their types, which can include:

attacks, network scans, malware, Denial of Service and Distributed Denial of Service

(DDoS).

2.1.1 Motivations

The big expansion of computers use and network usage in the last few years promoted

what we, nowadays commonly know as cyberspace. On this space, diverse things are hap-

pening all the time, not all of them are benign, such as Cyber-attacks which are Internet

Crimes. These cyber-attacks have become a serious problem in the 21st century, and

there are several new techniques being developed, always complex to break the security

systems and to obtain an advantage [4].

The Internet services, like E-commerce, Internet Banking, Social Network and others,

5
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create a huge amount of information, which generally is stored in servers and clouds (i.e.

remote servers). In order to have greater availability and agility to compete in the market,

those Internet services usually have weak security techniques, exposing weaknesses in the

system that can be used to invade and hack them [5].

The biggest challenge to enssure security at information systems is how to keep large

quantities of information, that can be simple data, such as photos, or very complex

and important, such as financial transactions. These different applications operate on

different computers architectures, which produce a large amount of data and require

efficient processes to ensure the security of organizations [6].

2.1.2 Types of Cyber-Attacks

There are many types of cyber attacks and, especially, the attacker relies on common

hacking techniques. Usually, these techniques are not highly effective, so every day new

techniques are being invented. so it’s to important study this and understand how this

works and the different ways an attacker can execute [7]. Next, we identify the most

important ones:

• Recognition and Collection: The invader executes a data gathering and data prepro-

cessing of the system that he will attack. This recognition has three types: active,

passive and sniffing [8].

• Backdoor: It is used to open a door inside the system, which means that is possible

to execute remote commands behind the security system. The Backdoor make it

possible to have a connection with the destination network avoiding any kind of

detection. It is also possible to project a backdoor specifically to avoid any type of

IDS [9].

• Network Scanner: A network scanner is performed to find possible targets and se-

curity failures. This process can be legal or illegal. The legal way proceeds through

authorized people or by network security professionals. They aim to find the breaks,
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afterward correct them and then implement a defense process for new possible at-

tacks. The illegal scan proceeds through malicious people who search for failures to

invade the system [8].

• Malicious Codes: Known as malware, their goals are malicious activities. After the

malware is installed, the attacker has access to the computer with administrator

user, therefore, he can access all the information. The reason for an attacker to cre-

ate a malware normally is to stole confidential information, scam practices, attacks

and also the spam distribution. Two examples of programs are: [8].

Virus: It is usually installed on the computer through the Internet. It can self-

copy on the infected files, spreading quickly. The most common source for virus

infections is the E-mail, where the host gets infected when the malicious email is

opened by the user. Then, the malicious software can access all the user contacts

and self-send to them. Multiple types of virus exist and every day new types are

developed. Some of them can be highlighted: False Alarm, Backdoor, Trojan Horse,

Macro [8].

Spyware: Treated as a spy, it can monitor the infected computer activities and

pass along all the collected information. Spyware programs are also classified as

legal and illegal, the ones that are managed to monitor who uses the machine and

those that are managed to steal sensible information, respectively [8].

• Denial of Service (DoS): When services are not available for being consumed, this

attack can be: coordinated and distributed [8].

DDoS Occurs when several hosts direct an attack to the server, achieving a number

of solicitations bigger than it can support, so the system becomes unavailable [8].

DoS cannot modify the content on computer data, networks, and systems. Regularly

the victim has no idea of the attack, due to the fact that they are just to send requests

to the server. The server attacked after suffering several attacks stop responding to

the legal user and starts only to take care of the attacks [8].
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• Social Engineering: a technique that applies persuasion. The attacker will persuade

the victim to perform a certain action or to give some relevant information. These

actions can cause damage in the entire computer or network, and the main vulner-

ability in those cases is the victim, that has no conscience about the danger on the

Internet[4].

2.2 Security Controls and Mechanisms

The following section approaches some security controls and mechanisms considered

important to the execution of the proposed goals. Starts by the explanation of the device

that typically comes first and is used to protect a network against invasions, the Fire-

wall, followed by the concepts and purpose analysis of the IDS and then of the Intrusion

Prevention System (IPS).

2.2.1 Firewall

Firewall is a security device that can monitor the network traffic. Moreover, it can

block a specific traffic flow based on a set of rules. The Firewall is the first implemented

line of defense on computers against possible attackers [10]. An example the firewall can

be seen in Figure 2.1

Figure 2.1: Firewall

A Firewall can inspect the system, and also allow or block traffic based on state, port,

and protocol. These inspection rules are set by the administrator and can match the
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source address, destination address, and access parameters. The inspections use known

information that comes from previous connections and packets [10].

But these Firewall rules are not enough to prevent all the attacks, due to some archi-

tectural limitations. It only prevent the intrusions from traffic as long as the allowed data

matches to the applied set of rules, otherwise, the firewall will not notice the intruder. To

minimize those limitations the IDS and the IPS are created [11].

The main difference between a Firewall and an IDS is in which layer it analyzes the

package. The Firewall analyzes only two layers of the Open System Interconnection (OSI)

model the network layer and the transport layer. Nevertheless, IDS analyzes the package

body. The OSI model was developed to build network protocols . OSI consist of seven

distinct layers with the fundamental ideas of networking [12].

2.2.2 Intrusion Detection System (IDS)

An IDS detects several Internet attacks on computer networks. It can monitor the

attacks in other hosts and determinate if the attack is random, general or to a specific

computer network. The IDS can analyze the Protocol Data Unit (PDU) all OSI layers

and can report an alert to the administrator or add to a logs list. Moreover, the IDS also

can test the vulnerability of the computer to attacks on others monitored host [13].

IDS represents the next step network security system evolution, where the software has

the functionality to prevent known or unknown attacks. IDS is able to decrypts attacks

in layers that a Firewall cannot[14]. Can be seen in Figure 2.2
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Figure 2.2: Intrusion Detection System Architecture

The IDS can be classified into two types:

• Based on signatures;

• Based on anomalies.

The ones that are based on signatures work with a table of known signatures of

possibles attack or with access rule. It has a fast identification mechanism but requires

a database that has to be frequently updated [15]. and regularly are created an large

number new signatures, for this reason the method based on signatures can be limited

The anomalies based method, collects the current network traffic and after a period

the system make an analysis, for all the assumed not regular and the can sends an if

something is wrong. This is a robust method because all the unknown attacks can be

prevented, and it biggest disadvantage are the false positives, because a not regular traffic

is not necessarily an attack [15].

The hybrid system can combine both techniques, but they are more complex systems,

implementing many restrictions or limitations to filter the maximum threats [16].
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2.2.3 Intrusion Prevention System (IPS)

Considered as an extension of IDS, an IPS can be seen in the image 2.3. Can monitor

the network traffic and search for malicious activities. The main difference is that IPS is

installed in-line, which means that it stays in the communication path between the source

and the destination, actively analyzing the traffic and reporting or blocking an intrusion

that was detected [17]

The IPS is an active solution system, unlike the IDS which is passive. IPS analyzes

the Logs generated by the IDS and takes active measures, like blocking Internet Protocols

(IP) packets or alerting the Firewall to block inboard or outboard data [18]. IPS is

able to operate invisibly on a network, and offers deep watch and monitor bad logons,

inappropriate content, bad behavior among others [19].

Figure 2.3: Intrusion Prevention System Architecture
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2.3 Honeypot

Honeypot is a tool to collect information about the attacker through a trap, it can

be just a simulation of a system or a host that can give false access to the attacker. The

following section has the explanation about the Honeypot, its types and where they can

be installed, can be seen in the Figure 2.4.

Honeypot services have basically high and low interaction. High Interaction happens

when the system has all the services simulated. The intruder will hardly notice that the

machine is a Honeypot, that can be dangerous knowing that the attacker will have access

to a machine, likewise, it is possible to obtain extra information about the attacker [15].

The low interaction is the opposite, it is characterized by a system that clones real

services where the attacker will not have real access. The critical issue with this approach

is that a knowledgeable attacker will quickly realize that it is a Honeypot and abort the

attack, however, it is possible to capture some data [15].

Figure 2.4: Honeypot Architecture

There are mainly two types of Honeypots: research and production.
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The function of a research Honeypot is to be an attacking target and to collect infor-

mation and intelligence about general threat organizations. It is often used for academic

research, by enterprises and by all researchers/professionals that want to improve their

skills. It enables to attract and study new methods and tools used by attackers.

Usually, the research Honeypot is from high interaction type, considering that its goal

is precisely to study what the attacker is looking for in the system [20].

The production Honeypot detect and save data from some intrusion that might occur.

With the collected data it is possible to improve the defenses against future threats. Pro-

duction Honeypots an mostly used by companies, due to its immediate security provision,

and easier deployment [20].

The Honeypot can be placed:

• Before the Firewall: Precisely to be the first target, and to capture extended infor-

mation of the attacker.

• Inside the Demilitarized Zone (DMZ): The Honeypot stays together with other

servers, so the attacker can find it, strikes it and falls into the trap.

• After the second Firewall and together to the internal network: This Honeypot

aims to catch possible attackers on the internal network that can be performed by

employees or people with access to the local network.

It is the responsibility of the administrator to analyze which is position to their net-

work. The Honeypot’s risk is the condition where an attacker is able to gain access and

manage the network to arrange more attacks [15].

2.4 Botnet

This section will introduce the Botnets, its function and how it works, the basic

components that integrate its architecture, its infrastructures, that can be centralized,

decentralized and hybrid and the life-cycle of a botnet.
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Botnets are one of the biggest threats to the Internet users. They are formed by several

hosts that work to a determined person: the Botmaster. The hosts that are participating

on the botnet are receiving and transmitting information from a C&C [21].

Botnets are like a computer army waiting for commands to act maliciously and one of

the botnet’s biggest advantage is its anonymity because the infected components do not

belong to the attacker, therefore, identify the actual attacker is difficult. Notwithstanding

each bot can be anywhere in the world acting distributed [22].

To expand the reach of botnets, they infect new vulnerable systems, as more systems

become infected, it becomes a massive activity, and consequentely, offer a significant

threat to the Internet and business companies [23].

2.4.1 Botnet’s Basic Components

Botnets are networks of bots, which are remotely managed by the botmaster through

the C&C. The botnets have some basic components, which are:

• Bot: Malware installed on the user host, usually used to malicious actions.

• User host: Physical or virtual machine infected by the bot.

• C&C: Command & Controler Server it is the way that the botmaster communicate,

sends/receives information and commands to the bots.

• Botmaster: An individual who controls the bots, sending/receiving information and

commands to a possible attack [24].

2.4.2 Infrastructure

A C&C server is the most relevant component for a Botnet infrastructure. Through it

the bots receive the information and mandatory all bots must have an active connection

to the server. This structure has two approaches, centralized and decentralized [22].
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Centralized Architecture

Centralized architecture is compatible with the client-server model Figure 2.5, which

bots are clients sending requests to the server and, consequently, the system gives his

instructions, which brings stability to the network and fast response time [22].

Bots have an individual connection with the server and the Botmaster controls it.

With to this direct connection, it is possible to send simultaneously commands to all

bots, moreover to monitor the number of bots in the network [22].

Figure 2.5: Centralized Architecture of a Botnet

The Internet Relay Chat Internet Relay Chat (IRC) protocol is still widely used to

support the communication in centralized architectures. The main advantage of this

protocol is that the number of bots is not limited, allowing thousands of it being added

to the parallel network [25].

asdasdasdasdad IRC is basically text, so it is possible to create private conversations

with hosts individually, originating a more specific manipulation, consequently needing

to implement only one IRC instruction subset [25].
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Another used protocol for Botnets with a centralized architecture is the Lypertext

Transfer Protocol (HTTP). As it is the most used protocol on the Internet for data

delivery, it has a great availability and its contents are usually rightful. This protocol

uses weak filtration leaving a breach to the Botmaster control the network. These HTTP

Botnets do not hold a connection to a C&C server, the bots uses regular intervals to

contact the server, configured by the Botmaster [25].

Decentralized Architecture

With the advances in detection techniques, the centralized architecture could not

provide a complete protection of the identity, therefore, a new decentralized architecture

was created, shown in Figure 2.6 [22].

Figure 2.6: Decentralized Architecture of a Botnet
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The decentralized architecture has no central C&C servers. Each bot is directly con-

nected to another. The biggest benefit of this approach is the difficulty in locating the

Botmaster, due to the big number of bots. On the other hand, the reaction time is longer

because there is no central command to give the information [22].

P2P is the most common type of decentralized Botnet. In this architecture the bots

work as a client as well as a server. The Botmaster uses a special key to send the commands

to the bots, and even if the bots are off line, the Botnet remains working under the control

of the Botmaster [26].

Hybrid Architecture

The Hybrid architecture uses components of both centralized and decentralized archi-

tectures 2.7. With this architecture, it is possible to obtain the advantages of both: the

efficiency of the C&C server, from the centralized and the practicality of the anonymity,

from the decentralized. This type uses HTTP, IRC, and P2P protocols to attend all the

Botmaster needs [27].

The most progressive and demanding communication to protect a network is consid-

ered the Hybrid P2P, that possess the ability to exchange information and services to

each other. Its three parts that are: Botmaster, Social Websites, Bot Group [28].

The Figure 2.7 shows a diagram explaining the process, that consists of the Botmaster

implementing a malicious code into the website, then the servant bot or C&C obtains the

malware information to send to the client bot. After receiving this information, the client

bot attacks the target [28].
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Figure 2.7: Hybrid P2P Architecture - Adapted from [29]

2.4.3 Botnet Life-Cycle

Usually, the botnets have regular steps or a similar behavior in the recruitment of

vulnerable systems and to managed that, therefore, it has a life-cycle [20]

The typical botnet life-cycle has five phases Figure 2.8. In the initial infection phase,
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the Botnet search for vulnerabilities through a scanner of a possible target and then to

infect with different methods. After the infection, starts the secondary injection phase,

while the target becomes the bot. Through the chosen method to infect, it searches on

a network the actual bot binary malware. The bot binary installs itself on the host, and

after the installation, the host starts running the program making the host into an actual

bot [27], [30].

On the connection phase, the bot establishes a C&C channel, while this process runs

over and over, and this is a critical phase, due to its necessity. In the malicious command

and control phase the target bot becomes a Botnet army, responding to the Botmaster

commands. The last phase is the maintenance and update, the Botmaster needs to

maintain the Botnet active and updated while to avoid new detection techniques [27],

[30].

Figure 2.8: Botnet Life-Cycle - Adapted from [30]

2.5 Machine Learning Algorithms

The Artificial Intelligence (AI) enables machines to learn and think. The machine

apprenticeship is a subfield of the AI study. There are many techniques in Machine
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Learning used to classify data sets: Supervised, Unsupervised, Semi-Supervised, Rein-

forcement, Evolutionary Learning, and Deep Learning [31]. These techniques will be

explained in this section.

• Supervised Learning: It is a very common technique that, can easily deduct a

classification problem. The purpose is to make a computer learn a classification

that the user has created. The supervised is able to map the inputs to desired

outputs. With a pre-determined classification, supervised learning is very used for

training neural networks and decision trees [32].

• Unsupervised Learning: The goal in this technique is to teach the computer how to

solve a problem without knowing patterns. The unsupervised tries to find similari-

ties in the data and classify them [32].

• Semi-supervised Learning: This technique is between supervised where and unsu-

pervised, some provided information is supervised but not necessarily all. A very

relevant prerequisite is whether the distribution of examples, decoded with help

from unlabeled data, will be relevant to the classification problem [33].

• Reinforcement Learning: The process of this technique is essentially when the ma-

chine learns by trial and error, and by this, it can predict and acquire rewards. That

is a complex overview, due to on the computer field action we have long-term effects

on future rewards [34].

• Evolutionary Learning: Through the knowledge that this kind of technique obtain

and exploit, it develop the ability to upgrade itself. The algorithm works better

when is applied to populations instead an individual systems. On evolutionary

learning, to improve its performance, the training on a human-designed environment

is significant [35].

• Deep Learning: Deep Learning is a subset of AI whose function is to try to imitate

the behavior and functioning of the human brain, such as in data processing, pattern

making and decision making based on their knowledge.[36]



Chapter 3

Development

This chapter describes the methodology used on this dissertation. It consists in the

creation of a network topology to detect Malware in a network of the communications

laboratory at Instituto Politécnico de Bragança (IPB), which is a controlled environ-

ment where this implementation was realized. All files can be found in the repository

"https://drive.google.com/open?id=1IVRIhCctw2EV0mVTlGS3X2yETH5dtPhp".

Topology is the definition of how the systems are connected, what is the arrangement

among the devices of the computer network that is developed [37]. The following sections

explain why this topology was used, why these devices where chosen, how it was developed,

also each device function and their operation mode.

The sequence of activities developed were the following:

• Step 1: Creating the Topology;

• Step 2: Host infecting with Malwares;

• Step 3: Centralization of the logs for the central server;

• Step 4: Treatment of raw data for noise reduction and improve classification;

• Step 5: Correlation between the data obtained;

• Step 6: Implementation of Machine Learning Algorithms for Automation in Ana-

lyzes;

21
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3.1 Topology

The first step consists of creating a topology, with the objective of obtaining a complete

and diversified database through the logs and alerts generated by the devices connected

to the network.

The devices have different functions to cover the maximum of Malware behavior,

enabling to find patterns in their activities, to make behavior analysis and to classify the

acquired data with machine learning algorithms. In Figure 3.1 is possible to understand

the connection between the devices used on the proposed topology. The table 3.1 shows

the chosen implementation for each topology components.

Figure 3.1: Proposed Network Topology
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Table 3.1: Chosen implementation for each topology components.

Components Chosen Implementation

NIDS Suricata

HIDS OSSEC-Server

HIDS OSSEC-Client

Log Server Graylog

Intern Honeypot HONEYPI

Extern Honeypot Dionaea

Each implementation is briefly characterized as follows:

• NIDS - Suricata

The chosen NIDS was Suricata version 4.0.5, a new generation Open Source NIDS,

which has a powerful detection motor with signature rules. If these rules are trig-

gered, the network administrator is informed and the alert generated is sent to an

e-mail or to a central server. Suricata is also compatible with many devices, having

a unified platform, that helps interconnections.

Suricata was installed on the gateway together to the Firewall Pf-Sense. This Fire-

wall Pf-Sense was already configured on the network and Suricata is compatible

with it. On this process, a copy of traffic was redirected to Suricata and then it

performed analyzes. As the detection was made on a copy of the traffic no latency

was added to the network.

• HIDS - OSSEC Client/Server

The chosen HIDS was the OSSEC 2.9.9, based on a client-server system and it is

Open Source. Its function is to for instance: actions inside a specific host, the files

activities, monitor the integrity and the initialized processes. The OSSEC has a

detection motor based on signatures, thus it can send the generated alerts by e-mail
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or Syslog, which is a tool for network devices to send alert messages to a logging

server.

– Ossec-Server was installed on a VMWare machine with distribution Ubuntu

16.04

– Ossec-Client was installed on a VMWare machine with distribution Windows

10

• Log Server - Graylog The log server used was Graylog 2, which was installed on

a Debian Server. Graylog 2 is a highly interactive log server, which makes easier

the visualization of registered logs and it is compatible with several devices and log

syntaxes.

On Graylog 2 it is possible to visualize data on graphics (Figure 3.2), is also possible

to do a deep search with specific fields restrictions, as a specific IP, message name,

among others. There is a graphic user interface, which allows users to interact with

it.

• Inter Honeypot - HONEYPI

The honeypot used on the intern network was the HoneyPi. this honeypot was

chosen because the system was configured on a RaspberryPi, as in Figure 3.3, show

that it is possible to obtain an efficient honeypot with a low-cost device. The

HoneyPi is a low interaction honeypot, which registers the connection attempts as:

– Port Scanning Activity;

– Connection FTP attempt;

– Connection Telnet attempt;

– Connection VNC attempt;
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Figure 3.2: Graylog 2

Figure 3.3: RaspberryPi
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• Extern Honeypot - Dionaea

The extern honeypot was the Dionaea. It can emulate and provide services as Semi-

Structured Query Language (SSQL), MY Structured Query Language (MYSQL),

Point-to-Point Tunneling Protocol (PPTP), Session Initiation Protocol (SIP) among

others. Dionaea also makes a copy of the binary of the malware, which has infected.

It was installed on a WMWare machine with an Ubuntu 14.06 distribution.

3.2 Host infection

Step 2, consists on the infection of a Windows Virtual Machine, where the HIDS

OSSEC-Client is installed. The malware was found on the [38] repository site you see in

Figure 3.4, this repository has a huge amount of botnet binaries with more than three

hundred samples.

The Malware used was available from a public repository, it could happen that the

C&C server would be already known and, consequently, it may be disabled. Thus the

virtual machine cannot obtain the answers from the requests to the C&C server. When

an OSSEC-Client rule is triggered, an alert is sent, informing what is happening on the

computer like a new resource installation or a service initialization.
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Figure 3.4: Repository Site "www.stratosphereips.org"

3.3 Logs Centralization

Step 3 consists on logs centralization. After the alert is sent, the messages are redi-

rected to the OSSEC-Server, that is responsible for saving the alerts generated by OSSEC-

client and sending them to Graylog. OSSEC-server is also as a possible victim for the

botnet to infect and perform its actions.

Once that the virtual machine which has the OSSEC-Client is infected, it may scan

the network and try to infect other devices to the botnet. HoneyPi waits for this infections

to register all connection attempts and send the logs to the Graylog server. When the

network scanner happens, HoneyPi sends its alerts, informing about this activity.
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Dionaea, which is the Honeypot on the external network, search for activity from

malware that may try to connect to the IPB network, and when it receives an attack it

logs the messages to the Graylog server.

Suricata remains on the network with the PfSense, receiving a copy of traffic to perform

its analyzes. Once that a Suricata rule is triggered, it sends an alert and the copy of

original PfSense traffic directly to the Graylog. After sending the logs, the Graylog

receives of data from all the devices simultaneously, as represented in the Figure 3.5

Figure 3.5: Graylog 2 - Analyzes of data from the devices

3.4 Data Analysis

Step 4 is the phase where methods and procedures were executed for preparing the

data for analysis. From August sixteen to September nine of 2018, the network traffic was
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stored in Packet Capture (.pcap) files from the host where the OSSEC client was installed,

for future analysis. A total of 1.089.387 suricata alerts were acquired as is shown in the

Figure 3.6 and in the Table 3.2. These data are the records of all alerts that it provided

on the internal network traffic.

Figure 3.6: Suricata alerts

The OSSEC data client and server registered a total of 6.160 alerts, as seen in the

Figure 3.7. These alerts are the records of the activities that the hosts suffered in the

monitored time interval, ans the messages is shown in Table 3.3.

Figure 3.7: Ossec Alerts

The data from the internal honeypot were recorded a total of 30.833 alerts, seen in

the Figure 3.8 and in Table 3.4.

Figure 3.8: HoneyPi Alerts

The data from the external honeypot were recorded a total of 12.803 alerts, as seen

in Figure 3.9 and Table 3.5.
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Table 3.2: Exemple Suricata Alerts

TIMESTAMP SOURCE MESSAGE

2018-09-06T12:52:42.400Z 127.0.0.1

0 2018-09-06T13: 52: 42 + 01: 00 dmz-lc.estig.ipb.pt
suricata 89535 [1: 2019980: 3] ET POLITICAL
Possible IP Check myexternalip.com
[Classification: Possible Corporate Privacy Breach]
[Priority : 1]
{TCP} 192.168.0.162:59137 ->78.47.139.102:80

2018-09-01T00:43:57.698Z 127.0.0.1

0 2018-09-01T01: 43: 57 + 01: 00 dmz-lc.estig.ipb.pt
suricata11939 [1: 2402000: 4924] DROP E DROP
Blocked Listing Source Group 1
[Classification: Mixed Attack] [Priority: 2]
{TCP} 89.248.174.55:64348 ->193.136.195.94:34

2018-09-01T00:44:29.332Z 127.0.0.1
1 0 2018-09-01T01:44:29.332464+01:00
suricata dhclient 473 DHCPDISCOVER
on enp3s0 to 255.255.255.255 port 67 interval 6

2018-09-01T00:44:35.502Z 127.0.0.1
0 2018-09-01T01:44:35.502554+01:00
suricata dhclient 473 DHCPDISCOVER
on enp3s0 to 255.255.255.255 port 67 interval 9

2018-09-01T00:44:44.505Z 127.0.0.1
0 2018-09-01T01:44:44.504739+01:00
suricata dhclient 473 DHCPDISCOVER
on enp3s0 to 255.255.255.255 port 67 interval 12

2018-09-01T00:45:06.192Z 127.0.0.1

0 2018-09-01T01: 45: 06 + 01: 00 dmz-lc.estig.ipb.pt
suricata 11939 [1: 2402000: 4924] DROP ET DROP
Blocked Listing Source Group 1
[Classification: Mixed Attack] [Priority: 2]
{TCP} 176.119.7.26:55028 ->193.136.195.94:63017

2018-09-01T00:45:27.836Z 127.0.0.1
0 2018-09-01T01: 45: 27.836316 + 01: 00
suricata dhclient 473 DHCPDISCOVER
on enp3s0 a 255.255.255.255 port 67 interval 3

2018-09-06T12:53:15.286Z 127.0.0.1
0 2018-09-06T13:53:15.286566+01:00
suricata dhclient 472 DHCPDISCOVER
on enp3s1 to 255.255.255.255 port 67 interval 7
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Table 3.3: Exemple Ossec Alerts

TIMESTAMP SOURCE MESSAGE

2018-09-01T00:53:39.667Z 127.0.0.1

0 2018-09-01T01:53:39+01:00
dmz-lc.estig.ipb.pt dhcpd - DHCPREQUEST
for 192.168.0.184 from 00:0c:29:4c:5a:af
(ossec-virtual-machine) way in 1

2018-09-01T00:53:39.673Z 127.0.0.1

0 2018-09-01T01:53:39+01:00
dmz-lc.estig.ipb.pt dhcpd - DHCPACK
on 192.168.0.184 to 00:0c:29:4c:5a:af
(ossec-virtual-machine) way in 1

2018-09-01T02:07:10.000Z ossec-virtual-machine OSSEC HIDS: [18107, 3] Windows
Logon Success

2018-09-06T13:10:04.000Z ossec-virtual-machine OSSEC HIDS: [18103, 5] Windows
error event.

2018-09-01T02:43:24.611Z 127.0.0.1

0 2018-09-01T03:43:24+01:00
dmz-lc.estig.ipb.pt dhcpd - DHCPREQUEST
for 192.168.0.184 from 00:0c:29:4c:5a:af
(ossec-virtual-machine) way in 1

2018-09-01T02:43:24.611Z 127.0.0.1

0 2018-09-01T03:43:24+01:00
dmz-lc.estig.ipb.pt dhcpd - DHCPACK
on 192.168.0.184 to 00:0c:29:4c:5a:af
(ossec-virtual-machine) way in 1

2018-09-01T03:42:50.544Z 127.0.0.1

0 2018-09-01T04:42:50+01:00
dmz-lc.estig.ipb.pt dhcpd - DHCPACK
on 192.168.0.184 to 00:0c:29:4c:5a:af
(ossec-virtual-machine) way in 1
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Table 3.4: Example HoneyPi Alerts

TIMESTAMP SOURCE MESSAGE

2018-09-01T00:48:43.000Z HoneyPi

HoneyPi kernel: [1605127.513264] IN=eth0
OUT= MAC=ff:ff:ff:ff:ff:ff:00:0c:29:72:3c:
ec:08:00:45:00:00:e5:47:82:00:00:80:11:6f:94
SRC=192.168.0.162 DST=192.168.0.255
LEN=229 TOS=0x00 PREC=0x00 TTL=128
ID=18306 PROTO=UDP SPT=138 DPT=138
LEN=209

2018-09-01T00:51:34.000Z HoneyPi HoneyPi kernel: [1605297.907795] Under-
voltage detected! (0x00050005)

2018-09-01T00:52:25.000Z HoneyPi

HoneyPi kernel: [1605348.931823] IN=eth0
OUT= MAC=01:00:5e:00:00:fb:00:0c:29:72:3c:
ec:08:00:45:00:00:69:3f:66:00:00:01:11:d7:d8
SRC=192.168.0.162 DST=224.0.0.251
LEN=105 TOS=0x00 PREC=0x00 TTL=1
ID=16230 PROTO=UDP SPT=5353 DPT=5353
LEN=85

2018-09-01T00:54:39.000Z HoneyPi HoneyPi kernel: [1605483.028480]
Voltage normalised (0x00000000)

2018-09-01T00:54:33.000Z HoneyPi HoneyPi kernel: [1605476.788442]
Under-voltage detected! (0x00050005)

2018-09-01T00:56:33.000Z HoneyPi HoneyPi kernel: [1605597.428885]
Under-voltage detected! (0x00050005)

2018-09-01T00:59:38.000Z HoneyPi HoneyPi kernel: [1605782.549562]
Voltage normalised (0x00000000)

2018-09-01T01:02:07.000Z HoneyPi

HoneyPi kernel: [1605931.188601] IN=eth0
OUT= MAC=b8:27:eb:ba:2f:e3:00:0c:29:55:
35:40:08:00:45:00:00:4c:00:00:40:00:38:11:ad:
12 SRC=195.22.17.7 DST=192.168.0.201
LEN=76 TOS=0x00 PREC=0x00 TTL=56 ID=0
DFPROTO=UDP SPT=123 DPT=59111 LEN=56

Figure 3.9: Example Dionaea Alerts

The data sent to the Graylog usually uses pre-defined formats by their systems, making



3.4. DATA ANALYSIS 33

Table 3.5: Example Dionaea Logs

TIMESTAMP SOURCE MESSAGE

2018-09-01T01:17:01.000Z sysadmin-virtual-machine

sysadmin-virtual-machine CRON
[10545]:pam_unix(cron:session):
session opened for user root by
(uid=0)

2018-09-01T01:23:19.000Z sysadmin-virtual-machine
sysadmin-virtual-machine dhclient:
DHCPACKof 192.168.0.203 from
192.168.0.254

2018-09-01T01:23:19.000Z sysadmin-virtual-machine

sysadmin-virtual-machine Network
Manager[962]: (eth0): DHCPv4
state changed renew
->renew

2018-09-01T01:23:19.000Z sysadmin-virtual-machine
sysadmin-virtual-machine Network
Manager[962]: domain search
’estig.ipb.pt.’

2018-09-01T01:23:19.000Z sysadmin-virtual-machine
sysadmin-virtual-machine Network
Manager[962]: domain search
’ipb.pt.’

2018-09-01T01:23:19.000Z sysadmin-virtual-machine

sysadmin-virtual-machine dbus[721]:
[system]Activating service name=
’org.freedesktop.nm_dispatcher’
(using servicehelper)

2018-09-01T01:23:19.000Z sysadmin-virtual-machine
sysadmin-virtual-machine Network
Manager[962]: domain name
’labcom.estig.ipb.pt’

2018-09-01T01:23:19.000Z sysadmin-virtual-machine

sysadmin-virtual-machine dhclient:
DHCPREQUEST of 192.168.0.203
on eth0 to 192.168.0.254 port 67
(xid=0x462bee02)

them different from each other as can be seen on the following example.

• Suricata: 2018-09-06T12:52:42.400Z 127.0.0.1 0 2018-09-06T13:52:42+01:00 dmz-

lc.estig.ipb.pt suricata 89535 [1:2019980:3] ET POLICY Possible IP Check myex-

ternalip.com [Classification: Potential Corporate Privacy Violation] [Priority: 1]

TCP 192.168.0.162:59137 -> 78.47.139.102:80

• OSSEC: 2018-09-06T16:50:06.000Z ossec-virtual-machine OSSEC HIDS: [18107, 3]

Windows Logon Success.
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• HoneyPi: 2018-09-01T08:30:42.000Z HoneyPi kernel: [1632845.991561] IN=eth0

OUT=MAC=b8:27:eb:ba:2f:e3:00:0c:29:55:35:40:08:00:45:00:01:6b:ed: 88:00:00:40:11:

08:e2 SRC=192.168.0.254 DST=192.168.0.201 LEN=363 TOS=0x00 PREC= 0x00

TTL=64 ID=60808 PROTO=UDP SPT=67 DPT=68 LEN=343

• Dionaea: 2018-09-01T01:23:19.000Z sysadmin-virtual-machine dhclient: DHCPRE-

QUEST of 192.168.0.203 on eth0 to 192.168.0.254 port 67 (xid=0x462bee02)

It is necessary to standardize the data to enable further analysis, such as correlation

between events. For the pertinent information of the captured data, an algorithm was

applied to subdivided the original message into 11 columns with a total of 1.022.493,

as seen in Table 3.6. Messages that did not meet the required characteristics, such as

system errors and Dynamic Host Configuration Protocol (DHCP) server requests, were

also removed.

Table 3.6: Transformation of suricata messages

Field Description

Source Source (system) that generated the alert

Date Date of the alert

Time Time of the alert

Message Message of suricata’s alert, specifying the rule that triggered the alert

Classification Alert Classification

Priority Priority Level. As low is the value higher is the priority

Protocol Protocol of the packet that triggered suricata’s rule

Source IP Source IP of the packet that triggered suricata’s rule

Destination IP Destination IP of the packet that triggered suricata’s rule

Source Port Source Port of the packet that triggered suricata’s rule

Destination Port Destination Port of the packet that triggered suricata’s rule

Ossec messages were subdivided into source, date, time and message, being shown in
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Table 3.8: Example of OSSEC results

Source Date Time message
Ossec 2018-08-26 22:52:38.000 Windows Logon Success
Ossec 2018-08-26 06:36:26.000 Log file rotated
Ossec 2018-08-26 16:07:55.000 System time changed
Ossec 2018-08-16 22:03:25.000 Windows Logon Success
Ossec 2018-08-26 23:03:32.000 Windows Logon Success
Ossec 2018-08-17 03:53:06.000 Login session opened
Ossec 2018-08-20 23:21:18.000 Registry Entry Added to the System
Ossec 2018-08-20 23:21:18.000 Registry Entry Added to the System
Ossec 2018-08-27 21:52:36.000 Windows Logon Success

Table 3.7 and in Table 3.8 is shown an example of the result, the total of alerts are 5295.

Table 3.7: Transform Ossec data

Field Description

Source Source (system) that generated the alert

Date Date of the alert

Time Time of the alert

Message Message of Ossec’s alert, specifying the rule that triggered the alert

The messages of HoneyPi were divided into 6 columns, as described on Table 3.9, with

a total of 14818 alerts.
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Table 3.9: Transform HoneyPi Data

Field Description

Source Source (system) that generated the alert

Date Date of the alert

Time Time of the alert

Source IP Source IP of system registered in log file

Destination IP Destination IP of system registered in log file

Protocol Protocol used during the communication that was registered

The messages from Dionaea were subdivided into 5 columns and can be seen on Ta-

ble 3.10.

Table 3.10: Transform Dionaea Data

Field Description

Source Source (system) that generated the alert

Date Date of the alert

Time Time of the alert

Source IP Source IP of system registered in log file

Destination IP Destination IP of system registered in log file

3.5 Correlation

Step 5 is the correlation analysis between the obtained data to find if some of the

activities found are caused by the same event. It was decided to analyze 3 correlations:

• First: Suricata x OSSEC

• Second: Suricata x Honeypot (Honeypi)

• Third: OSSEC x Honeypot (Honeypi)
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Tthe first was to correlate Suricata data with OSSEC. After all the data were pro-

cessed, the parameters used for this correlation were Date and Time. An algorithm was

developed for this correlation where, it searches first the dates in the fields to filter by day,

then the same thing was done with hour and minutes. In the field of seconds an interval

of 2 seconds was stipulated for incorporating some delay in the alarm trigger time or

associated execution. A total of 3112 correlated alerts with the stipulated parameters are

shown in the Table 3.11.

Table 3.11: Correlation data

Field Description

Date Alert Date

Suricata Time Time of suricata’s alert

OSSEC Time Time of OSSEC’s alert

Suricata Message Message of suricata’s alert, specifying the rule that triggered the alert

OSSEC Message Message of Ossec’s alert, specifying the rule that triggered the alert

Classification Suricata’s alert Classification

Source IP Source IP of the packet that triggered suricata’s rule

Destination IP Destination IP of the packet that triggered suricata’s rule

Source Port Source Port of the packet that triggered suricata’s rule

Destination Port Destination Port of the packet that triggered suricata’s rule

The honeypot data were submitted to the same analysis parameters as Suricata and

OSSEC data, with the interval of 2 seconds between the logs, but no correlation was found

between them. Possible reasons for this event will be discussed further.

3.6 Implementation of Machine Learning Algorithms

Step 6 is the last step in data analysis step. In this section we explain the application

of classification algorithms over the data from Suricata and OSSEC alerts. Since was not
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possible to know exactly what is the predominant characteristic for botnet detection, was

opted for the implementation of unsupervised learning algorithms to find patterns.

For this classification, the k-means algorithm was used. It is used when we do not

know the classification of the object. It uses the method of grouping (Cluntering) for this

classification of objects.

A cluster is a group of data, where each cluster has similarities with each other. The k-

means algorithm uses these similarities to group the data into clusters, where the number

of centroids (central points of the groups) is equal to the number of clusters as seen in

the Figure 3.10.

Figure 3.10: Example K-means

When the first interaction of the algorithm occurs, the average distance of all objects

between the centroids is calculated. The centroids are positioned in the center of the

objects belonging to each centroid. This interaction can occur changes in the centroids

and objects, depicted in Figure 3.11.
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Figure 3.11: Example K-means after the first interaction

This process occurs N times where, N being the number of times the user stipulates.

At the end of the process, the clusters were in the center of the objects of their respective

classes as in Figure 3.12.
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Figure 3.12: K-means completed

The software used for the implementation of k-means was Orange-canvas, with visual

programming without the need for coding, an open source software with very diversified

interactivity and simplicity of use [39]. Figure 3.13 shows the assembled architecture for

the analysis of the data and implementation of the algorithms.
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Figure 3.13: Topology Orange-Canvas

The sequences used in actions on orange-canvas are as follows.

The first step is to import the CSV file with the data to be analyzed, this data is the

correlation between the Suricata and OSSEC. The features chosen for the analyzes are

the Suricata Alert Classification, the source IP, the destination IP, the Source port, and

the Destination port. As the orange canvas works with drag and drop, it is only necessary

to connect to other components of the software.

After importing the file it is possible to see the data loaded with the Data Table

component seen in Figure 3.14.
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Figure 3.14: Original Data Table

The second step is the application of the K-means algorithm. The features chosen for

the grouping are the source ports and destination ports.

For implementation of K-means is needed to choose the number of clusters for its

classification. The software Orange-canvas has a function to apply the k-means and

calculates the most appropriate number of cluster. For our scenario the quantity chosen

was 4, as shown in Figure 3.15.

Figure 3.15: Clusters Orange-Canvas
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The interactive k-means component allows visualization of the implementation of the

algorithm, seen in Figure 3.16, together with the steps that it takes to implement.

Figure 3.16: Interactive k-Means

After K-means is performed in the Scatter Plot component it is possible to see the

features and other attributes, such as the comparison of each cluster with the alert clas-

sification, as in Figure 3.17
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Figure 3.17: Scatter Plot Classification x Cluster

The third step was the creation of a variable class with the created clusters, with the

Create Class component. It was opted to use this component due to the fact that later

on the decision tree algorithm will need a variable class for its execution.

The fourth step are the outliers. They are data that belong to a certain cluster but

are far from the centroids. Due to this dispersion they can be errors in the algorithm or

isolated actions. For this, we use the Outliers component, then classifies the components

as similar or different from the main class. Data that is considered similar falls into the

inliers category and or others into the outliers.

After the outliers are removed, it is possible to see the result in the Data Table (2)

component.

The fifth Step is the separation of each cluster for a more detailed analysis. For this

separation is used the component Select Rows, that uses rules that will be applied in each

line and the obtained results are redirected.

The Sixth Step is the application of the K-means algorithm again in each cluster,
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subdividing the characteristics found to find better patterns.

• Cluster 1: In cluster 1 the number of clusters for the second application of k-means

was a total of 7.

• Cluster 2: In cluster 2 the number of clusters for the second application of k-means

was a total of 2.

• Cluster 3: In cluster 3 the number of clusters for the second application of k-means

was a total of 2.

• Cluster 4: In cluster 4 the number of clusters for the second application of k-means

was a total of 8.

The results found in the subdivisions will be presented in the next chapter.
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Chapter 4

Results

In this chapter are discussed the results obtained in the machine learning pixes de-

scribed on, the previous chapter, considering the Outliers and Inliers.

4.1 Inliers

The first results presented are all the clusters and sub-clusters found from the K-means

algorithm. After the first application of the algorithm, it was possible to observe the

creation of 4 main clusters. Its main features are a range of source ports and destination

ports, which can be viewed in the Figure 4.1.

47



48 CHAPTER 4. RESULTS

Figure 4.1: Source Port x Destination Port

Follows an individually analysis of each cluster, commenting its characteristics and

actions. In tables will be shown the classifications of the alert, the source IP, destination

IP, source port and destination port.

The classification of alerts is divided into 7 categories:

• A Network Trojan was Detected - this alert is triggered when a known malware

connection is detected on the network.

• Attempted Information Leak - handles signatures of potentially harmful information
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collection attempts. Information leaks or acknowledgment attacks that are classified

as leaked, attempted data are not positive evidence that an attempt to collect

information was successful. Instead, they are a sign that an attempt has been

made.

• Generic Protocol Command Decode - Checks for packets that are not decode as the

standard specifies.

• Misc Attack - Diverse attacks known by IDS, cataloged and blacklisted.

• Misc Activity - diversified activity found in the network, such as anomalies gener-

ating a large number of false positives.

• Potential Corporate Privacy Violation - This alert is triggered when any activity

that has as a relation with the violation of privacy as collection of information of

the user, IP address valid.

• Potentially Bad Traffic - This alert is triggered when network traffic is potentially

malicious as connections from command and control servers to known botnets.

In the first implementation of the K-means a total of 4 chuster was obtained, and in

each of the clusters the K-means was applied again for an in-depth analysis of the data.

4.1.1 Cluster 1

As depicted on Figure 4.1, Cluster 1 is displayed in blue with a total of 743 alerts,

where the port connection ranges are:

• Source Port: 53 a 30227

• Destination Port: 22 a 16216

In order to further restrict the ports in which the connexions were made, we apply the

algorithm again, generating a total of 7 new clusters as seen in Figure 4.2.
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Figure 4.2: Sub Clusters 1

Cluster 1.1 has only one alert classification with a total of 6 connections, between 2

source IPS and 1 destination IP as seen in Table 4.1.

Table 4.1: Cluster 1.1

Classification Source IP Destination IP Source Port Destination Port

Misc Attack 78.128.112.74 193.136.195.94 56964 17743

Misc Attack 5.188.206.248 193.136.195.94 59081 18018

• Misc Attack:

– The IP 78.128.112.74 is listed as malicious by the Collective Intelligence Net-

work Security COLLECTIVE INTELLIGENCE NETWORK SECURITY (CINS).

– The IP 5.188.206.248 is on the black list of the Dshield group.

Cluster 1.2 has 2 alerts classification with total of 14 connections, between 3 source

IPS and 5 destination IPS, as seen in Table 4.2.
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Table 4.2: Cluster 1.2

Classification Source IP Destination IP Sorce Port Destination
Port

A Network Trojan
was Detected 193.136.195.94 119.59.124.163 51641 8080

A Network Trojan
was Detected 193.136.195.94 95.110.231.207 56907 8080

A Network Trojan
was Detected 193.136.195.94 178.79.172.45 58624 8080

A Network Trojan
was Detected 192.168.0.162 119.59.124.163 52910 8080

A Network Trojan
was Detected 192.168.0.162 62.75.145.252 54784 8080

Misc Attack 146.185.222.51 193.136.195.94 55632 11359

• A Network Trojan was Detected:

– The IPS 119.59.124.163 and 119.59.124.163 are associated with a command

and control server of the Dridex botnet, but are already deactivated.

– The IPS 95.110.231.207, 178.79.172.45 and 62.75.145.252 are associated with

a command and control server of the Heodo botnet, but are already disabled.

• Misck Attack: 146.185.222.51 is in the black list of the Dshield group.

Cluster 1.3 has 2 alert classifications with a total of 167 connections, between 4 source

IPS and 10 destination IPS seen in Table 4.3.
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Table 4.3: Cluster 1.3

Classification Source IP Destination IP Source Port Destination Port

Misc activity 192.168.0.162 8.8.8.8 56279 53

Misc activity 192.168.0.162 8.8.4.4 56157 53

A Network Trojan

was Detected
193.136.195.94 46.163.78.94 54503 443

Potential Corporate

Privacy Violation
192.168.0.162 78.47.139.102 58237 80

Potential Corporate

Privacy Violation
192.168.0.162 216.146.43.71 53166 80

Potential Corporate

Privacy Violation
192.168.0.162 216.146.43.70 58248 80

Potential Corporate

Privacy Violation
192.168.0.162 162.88.96.194 57863 80

Potential Corporate

Privacy Violation
192.168.0.162 162.88.100.200 59708 80

Misc Attack 146.185.222.12 193.136.195.94 57912 4105

Misc Attack 5.188.10.103 193.136.195.94 58586 3486

Generic Protocol Command Decode 193.136.195.94 104.17.107.77 58191 443

• Misc activity: IP 192.168.0.162 made requests for Google DNS server (8.8.8.8 and

8.8.4.4) for some malicious Fully Qualified Domain Name.

• Network Trojan was Detected: IP 46.163.78.94 is associated with a command and

control server of the Heodo Botnet, but is already disabled.

• Potential Corporate Privacy Violation:

– The IPS 216.146.43.71, 216.146.43.70, 162.88.96.194 and 162.88.100.200 are

associated with an Internet service that aims to discover the valid IP of a given

host. This measure is used to ensure that the Botnet can communicate with

the real IP and maintain an active connection with the host.

– The IP 78.47.139.102 simply returns an HTML page with a "works" message



4.1. INLIERS 53

we believe is a way to verify that the host has an active connection and to get

the source IP of the client.

• Misck Attack: The IPS 146.185.222.12 is in the black list of the Dshield group.

• Generic Protocol Command Decode: The IP 104.17.107.77 belongs to the What-

sApp domain.

Cluster 1.4 has 5 alert classifications with a total of 330 connections, between 3 source

IPS and 7 destination IPS seen in Table 4.4.

Table 4.4: Cluster 1.4

Classification Source IP Destination IP Source Port Destination Port

Potentially Bad Traffic 193.136.195.94 8.8.8.8 32589 53

Potential Corporate

Privacy Violation
193.136.195.94 78.47.139.102 30785 80

Potential Corporate

Privacy Violation
193.136.195.94 162.88.96.194 34269 80

Potential Corporate

Privacy Violation
193.136.195.94 216.146.38.70 34321 80

Potential Corporate

Privacy Violation
193.136.195.94 162.88.96.194 38407 80

Generic Protocol

Command Decode
193.136.195.94 13.107.4.50 40069 80

Generic Protocol

Command Decode
193.136.195.94 104.17.107.77 37776 443

Misc Attack 80.211.154.197 193.136.195.94 42649 81

Misc Attack 45.55.0.202 193.136.195.94 37400 199

A Network Trojan

was Detected
193.136.195.94 119.59.124.163 43579 8080

• Potentially Bad Traffic: Suspicious requests for Google DNS server (8.8.8.8) for
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some malicious Full Qualified Domain Name.

• Potential Corporate Privacy Violation:

– IP 78.47.139.102 simply returns an HTML page with a "works" message we

believe is a way to verify that the host is with an active connection and to get

the source IP of the client.

– The IPS 78.47.139.102, 162.88.96.194, 216.146.38.70, 162.88.96.194 are asso-

ciated with an Internet service that aims to find out the valid IP of a given

host. This measure is used to ensure that the Botnet can communicate with

the actual IP and maintain an active connection with the host.

• Generic Protocol Command Decode: IPS 13.107.4.50 (windows update) and 104.17.107.77

(WhatsApp), are false positives found in the network.

• Misc Attack: IPS 80.211.154.197 and 45.55.0.202, are listed as malicious by Collec-

tive Intelligence Network Security CINS.

• Network Trojan was Detected: IP 119.59.124.163 is associated with a command and

control server from Botet Drixex.

Cluster 1.5 has 1 alert classification with a total of 4 connections, between 1 source

IP and 1 destination IP seen in Table 4.5.

Table 4.5: Cluster 1.5

Classification Source IP Destination IP Source Port Destination Port

Misc Attack 77.72.82.14 193.136.195.94 43781 25766

• Misc Attack: The IP 77.72.82.14 is associated with the Dshield blacklist.

Cluster 1.6 has 6 alert classifications with a total of 121 connections, between 7 source

IPS and 10 destination IPS as seen in Table 4.6.
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Table 4.6: Cluster 1.6

Classification Source IP Destination IP Source Port Destination Port

Generic Protocol

Command Decode
192.168.0.146 169.44.82.118 47492 443

A Network Trojan

was Detected
192.168.0.162 81.88.24.211 52159 443

Misc activity 192.168.0.162 8.8.8.8 49537 53

Misc activity 192.168.0.162 8.8.4.4 51110 53

Misc activity 193.136.195.94 8.8.4.4 50108 53

Misc Attack 176.119.7.54 193.136.195.94 50127 3399

Misc Attack 63.143.33.110 193.136.195.94 47195 5222

Misc Attack 77.72.83.234 193.136.195.94 43644 1020

Misc Attack 5.189.226.102 193.136.195.94 46113 5038

Potential Corporate

Privacy Violation
192.168.0.162 78.47.139.102 51380 80

Potential Corporate

Privacy Violation
192.168.0.162 216.146.43.71 50623 80

Potential Corporate

Privacy Violation
192.168.0.162 216.146.43.70 51710 80

Potential Corporate

Privacy Violation
192.168.0.162 198.27.74.146 49671 80

Potential Corporate

Privacy Violation
192.168.0.162 162.88.100.200 51487 80

Potential Corporate

Privacy Violation
192.168.0.162 146.255.36.1 49671 80

Potentially Bad Traffic 193.136.195.94 8.8.8.8 46682 53

• Generic Protocol Command Decode: The IP 169.44.82.118 is associated with the

WhatsApp Domain, probably being a false positive
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• Network Trojan was Detected: The IP 81.88.24.211 is associated with a command

and control server of the Heodo botnet, but is already disabled.

• Misc activity: Malicious queries to Google DNS servers (8.8.8.8 and 8.8.4.4)

• Misc Attack:

– The IP 176.119.7.54 is associated with BACKDOOR DoomJuice.

– The IPS 63.143.33.110, 77.72.83.234.5 and 189.226.102 are listed as malicious

by Collective Intelligence Network Security CINS.

• Potential Corporate Privacy Violation: IPS 78.47.139.102, 216.146.43.71,216,146.43.70,

198.27.74.146, 162.88.100.200 and 146.255.36.1 are associated with a service on the

Internet that aims to discover the valid IP of a given host. This measure is used to

ensure that the Botnet can communicate with the actual IP and maintain an active

connection with the host.

• Potentially Bad Traffic: Malicious requests for known domains.

Cluster 1.7 has 5 alert classifications with a total of 100 connections, between 3 source

IPS and 11 destination IPS seen in Table 4.7.
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Table 4.7: Cluster 1.7

Classification Source IP Destination IP Source Port Destination Port

A Network Trojan

was Detected
192.168.0.162 103.4.18.170 63313 443

Generic Protocol

Command Decode
192.168.0.162 13.107.4.50 62102 80

Potential Corporate

Privacy Violation
192.168.0.162 162.88.96.194 63871 80

Potential Corporate

Privacy Violation
192.168.0.162 162.88.100.200 65137 80

Potential Corporate

Privacy Violation
193.136.195.94 216.146.38.70 62258 80

Potential Corporate

Privacy Violation
192.168.0.162 216.146.43.71 62141 80

Potential Corporate

Privacy Violation
192.168.0.162 78.47.139.102 64887 80

Potential Corporate

Privacy Violation
192.168.0.162 185.26.99.195 61405 3333

Potentially Bad Traffic 192.168.0.162 8.8.8.8 60049 53

Misc Attack 5.189.226.180 193.136.195.94 60000 3389

• Network Trojan was Detected:The IP 103.4.18.170 is associated with a Dridex com-

mand and control server, but is already disabled.

• Generic Protocol Command Decode:The IP 13.107.4.50 is a false positive due to

windows updates.

• Potential Corporate Privacy Violation: The IPS 162.88.96.194, 162.88.100.200, 216.146.38.70,

216.146.43.71, 78.47.139.102, 185.26.99.195 are associated with a service on the In-

ternet that aims to discover the valid IP of a particular host, this measure is used
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to ensure that the Botnet can communicate with the real IP and maintain an active

connection with the host.

• Potentially Bad Traffic: Queries for Probably Malicious Domains.

• Misc Attack: The IP 5.189.226.180 is associated with the Dshield black list.

4.1.2 Cluster 2

Cluster 2 is visualized with the red color on Figure 4.1, with a total of 1030 alerts the

connection ranges of the ports are:

• Source Port: 53 to 443

• Destination Port: 21289 to 45553

In order to be able to restrict more the ports in which the connections were made, we

apply the algorithm again, generating a total of 2 new clusters seen in Figure 4.3

Figure 4.3: Sub Clusters 2
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Cluster 2.1 has 5 alert classifications with a total of 321 connections, between 12 source

IPS and 2 destination IPS seen in the Table 4.8.

Table 4.8: Cluster 2.1

Classification Source IP Destination IP Source Port Destination Port

Potential Corporate

Privacy Violation
59.38.112.38 192.168.0.162 80 50719

Potentially Bad Traffic 216.146.43.71 192.168.0.162 80 52737

Potentially Bad Traffic 216.146.43.70 192.168.0.162 80 52911

Potentially Bad Traffic 216.146.43.71 193.136.195.94 80 49527

Potentially Bad Traffic 162.88.100.200 193.136.195.94 80 61816

Potentially Bad Traffic 162.88.96.194 192.168.0.162 80 57863

Potentially Bad Traffic 162.88.96.194 193.136.195.94 80 60038

Potentially Bad Traffic 162.88.100.200 192.168.0.162 80 50128

A Network Trojan

was Detected
8.8.8.8 192.168.0.162 53 53195

A Network Trojan

was Detected
8.8.4.4 192.168.0.162 53 60487

Misc Attack 109.239.79.181 192.168.0.162 9001 50079

Misc Attack 51.68.77.241 193.136.195.94 9001 56530

Generic Protocol

Command Decode
104.17.107.77 193.136.195.94 443 58191

Generic Protocol

Command Decode
13.107.4.50 192.168.0.162 80 62102

• Potentially Bad Traffic: The IPS 162.88.96.194, 162.88.100.200, 216.146.38.70 and

216.146.43.71, are associated with an Internet service that aims to find out the

valid IP of a particular host, this measure is used to ensure that the Botnet can

communicate with the actual IP and maintain an active connection with the host.

• The Network Trojan was Detected: Alert triggered for Domain Name System (DNS)
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requests to Google DNS server 8.8.8.8 to for GameOver ZeuS (GOZ) botnet domains.

• Generic Protocol Command Decode: The IP 104.17.107.77 belongs to the What-

sApp domain and and 13.107.4.50 is a false positive due to windows updates.

Cluster 2.2 has 1 alert classification with a total of 4 connections, between 2 source

IPS and 1 destination IP seen in Table 4.9.

Table 4.9: Cluster 2.2

Classification Source IP Destination IP Source Port Destination Port

Misc Attack 146.185.222.35 193.136.195.94 48830 58732

Misc Attack 146.185.222.29 193.136.195.94 43671 57135

• Misc Attack: the IP 146.185.222.35 and 146.185.222.29 are associated with the

Dshield black list.

4.1.3 Cluster 3

Cluster 3 is displayed in green, on Figure 4.1, with a total of 139 alerts the connection

ranges of the ports are:

• Source Port: 53 to 30227

• Destination Port: 22 to 16216

In order to restrict the ports in which the connexions were made, we apply the algo-

rithm again, generating a total of 2 new clusters as seen in Figure 4.4.

Cluster 3.1 has 5 alert classifications with a total of 58 connections, between 5 source

IPS and 8 destination IPS as seen in Table 4.10

Classification Source IP Destination IP Source Port Destination

Port
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Generic Protocol

Command Decode
193.136.195.94 52.210.42.194 16570 80

Misc Attack 82.221.105.7 193.136.195.94 17268 175

Misc Attack 80.82.77.139 193.136.195.94 30227 2152

Misc Attack 41.184.186.216 193.136.195.94 29302 23

Misc activity 193.136.195.94 8.8.8.8 20515 53

Potential Corporate

Privacy Violation
193.136.195.94 216.146.38.70 12910 80

Potential Corporate

Privacy Violation
193.136.195.94 162.88.100.200 13007 80

Potential Corporate

Privacy Violation
193.136.195.94 78.47.139.102 14549 80

Potential Corporate

Privacy Violation
193.136.195.94 216.146.43.71 29001 80

Potentially Bad

Traffic

193.136.195.94 8.8.8.8 16643 53

Potentially Bad

Traffic

222.186.15.66 193.136.195.94 24103 3306

Table 4.10: Cluster 3.1

• Generic Protocol Command Decode: The IP 52.210.42.194 is linked to the site

"http://www.bsnett.no/"

• Misc Attack: The IPS 82.221.105.7 and 80.82.77.139 are listed as malicious by

Collective Intelligence Network Security CINS.

• Misc activity: Domain Solicitations to Google DNS (8.8.8.8) considered malicious.

• Potential Corporate Privacy Violation:
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Figure 4.4: Sub Clusters 3

– The IP 78.47.139.102 simply returns an HTML page with a "works" message

we believe is a way to verify that the host is with an active connection.

– The IPS 216.146.38.70, 216.146.43.71 and 162.88.100.200 are associated with

an Internet service that aims to discover the valid IP of a given host, this

measure is used to ensure that the botnet can communicate with the real IP

and maintain an active connection with the host.

• Potentially Bad Traffic: IP 222.186.15.66 made attempts to attack through the

MySQL server.

Cluster 3.2 has alert classification with total of 6 connections, between 14 source IPS

and 9 destination IPS as seen in the Table 4.11.

Classification Source IP Destination IP Source Port Destination

Port
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A Network Tro-

jan was Detected

8.8.4.4 193.136.195.94 53 5927

A Network Tro-

jan was Detected

193.136.195.94 62.210.36.193 1299 8080

Attempted Infor-

mation Leak

104.243.143.70 193.136.195.94 5060 5060

Attempted Infor-

mation Leak

158.69.207.26 193.136.195.94 5063 5060

Attempted Infor-

mation Leak

37.49.231.144 193.136.195.94 5122 5060

Attempted Infor-

mation Leak

62.210.103.172 193.136.195.94 6691 5060

Misc Attack 37.191.196.1 193.136.195.94 11219 22

Misc Attack 71.6.233.14 193.136.195.94 1099 1099

Misc Attack 109.239.79.181 193.136.195.94 9001 1715

Misc Attack 37.49.231.144 193.136.195.94 5122 5060

Misc Attack 196.52.43.90 193.136.195.94 10978 9000

Misc activity 193.136.195.94 8.8.4.4 1124 53

Misc activity 109.239.79.181 193.136.195.94 9001 1715

Potential Corpo-

rate Privacy Vio-

lation

193.136.195.94 78.47.139.102 2127 80

Potential Corpo-

rate Privacy Vio-

lation

193.136.195.94 216.146.43.71 4734 80
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Potential Corpo-

rate Privacy Vio-

lation

193.136.195.94 162.88.100.200 6394 80

Potential Corpo-

rate Privacy Vio-

lation

193.136.195.94 163.172.226.137 8492 443

Potential Corpo-

rate Privacy Vio-

lation

193.136.195.94 185.26.99.195 3745 3333

Potentially Bad

Traffic

223.72.54.251 193.136.195.94 9779 1433

Potentially Bad

Traffic

216.146.43.70 193.136.195.94 80 4241

Potentially Bad

Traffic

162.88.100.200 193.136.195.94 80 6394

Table 4.11: Cluster 3.2

• The Network Trojan was Detected:

– Rule triggered for DNS resolutions to Google DNS servers (8.8.8.8) to GameOver

ZeuS (GOZ) botnet domains.

– The IPS 62.210.36.193 is associated with a command and control server for the

Dridex botnet, but is already disabled.

• Attempted Information Leak: The IPS 104.243.143.70, 158.69.207.26, 37.49.231.144

and 62.210.103.172 are associated with possible network scan attack.

• Misc Attack:
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– The IPS 37.191.196.1, 71.6.233.14 and 37.49.231.144 are listed as malicious by

Collective Intelligence Network Security (CINS).

– The IPS 196.52.43.90, 196.52.43.90 are associated with the Dshield black list.

• Misc activity: The IP 109.239.79.181 is associated with unusual activities in the

network.

• Potential Corporate Privacy Violation:

– IPS 78.47.139.102, 216.146.43.71 and 162.88.100.200 are associated with an

Internet service that aims to find out the valid IP of a particular host. This

measure is used to ensure that the Botnet can communicate with the actual

IP and maintain an active connection with the host.

– The IPS 163.172.226.137 and 185.26.99.195 have the activity related to Bit-

coins.

• Potentially Bad Traffic:

– The IP 223.72.54.251 may be scanning MSSQL.

– The IPS 216.146.43.70 and 162.88.100.200 in Potentially Bad Traffic category

are responding to DNS queries made by the infected host.

4.1.4 Cluster 4

Cluster 4 is displayed in yellow, on Figure 4.1, with a total of 1030 alerts. The input

ports are in the range of:

• Source Port: 53 a 48830

• Destination Port :49389 a 64108

In order to further restrict the ports in which the connexions were made we apply the

algorithm again, which generated a total of 8 new clusters as seen in the figure4.5
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Figure 4.5: Sub Clusters 4

Cluster 4.1 has 3 alert classifications with a total of 913 connections, between 4 source

IPS and 2 destination IPS as seen in the table 4.12.

Table 4.12: Cluster 4.1

Classification Source IP Destination IP Source Port Destination Port

Generic Protocol

Command Decode
104.17.107.77 192.168.0.146 443 37776

A Network Trojan was Detected 8.8.8.8 193.136.195.94 53 34068

Potentially Bad Traffic 216.146.43.71 193.136.195.94 80 33418

Potentially Bad Traffic 162.88.96.194 193.136.195.94 80 33418

• Generic Protocol Command Decode: The IP 104.17.107.77 belongs to the What-

sApp domain.

• Network Trojan was Detected: Alerts are Google responses related with possible

malicious domains.
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• Potentially Bad Traffic: The IPS 216.146.43.71 and 162.88.96.194 are associated

with an Internet service that aims to discover the valid IP of a particular host.

Cluster 4.2 has 1 alert classification with a total of 4 connections, between 1 source

IP and 1 destination IP as seen in Table 4.13.

Table 4.13: Cluster 4.2

Classification Source IP Destination IP Source Port Destination Port

A Network Trojan

was Detected
8.8.8.8 193.136.195.94 53 22738

• A network Trojan was Detected: DNS response from Google DNS servers about

possible malicious domains.

Cluster 4.3 has 1 alert classification with a total of 7 connections, between 2 source

IPS and 1 destination IP seen in Table 4.14.

Table 4.14: Cluster 4.3

Classification Source IP Destination IP Source Port Destination Port

Potentially Bad Traffic 162.88.100.200 193.136.195.94 80 45553

Potentially Bad Traffic 216.146.38.70 193.136.195.94 80 42492

• Potentially Bad Traffic: The IPS 216.146.43.70 and 162.88.100.200 are associated

with an Internet service that aims to discover the valid IP of a given host. This

measure is used to ensure that the Botnet can communicate with the real IP and

maintain an active connection with the host.

Cluster 4.4 has 1 alert classification with a total of 2 connections, between 1 source

IP and 1 destination IP seen in Table 4.15.

Table 4.15: Cluster 4.4

Classification Source IP Destination IP Source Port Destination Port

Potentially Bad Traffic 216.146.38.70 193.136.195.94 80 21289
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• Potentially Bad Traffic: IP 216.146.43.70 are associated with an Internet service that

aims to find out the valid IP of a given host. This measure is used to ensure that

the Botnet can communicate with the real IP and maintain an active connection

with the host.

Cluster 4.5 has alert classification with total of 2 connections, between 1 source IP

and 1 destination IP seen in the Table 4.16.

Table 4.16: Cluster 4.5

Classification Source IP Destination IP Source Port Destination Port

A Network Trojan

was Detected
8.8.8.8 193.136.195.94 53 24632

• A Network Trojan was Detected: Google DNS response for possible malicious do-

mains.

Cluster 4.6 did not get any alerts.

Cluster 7 has 3 alert classifications with total of 95 connections, between 3 source IPS

and 1 destination IP seen in the Table 4.17.

Table 4.17: Cluster 4.7

Classification Source IP Destination IP Source Port Destination Port

A Network Trojan

was Detected
8.8.8.8 193.136.195.94 53 39968

Potentially Bad Traffic 162.88.96.194 193.136.195.94 80 40612

Generic Protocol

Command Decode
13.107.4.50 193.136.195.94 80 40069

• Network Trojan was Detected: Google DNS response related with possible malicious

domains.
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• Potentially Bad Traffic: The 162.88.96.194 is associated with an Internet service

that aims to find out the valid IP of a particular host. This measure is used to

ensure that the Botnet can communicate with the real IP and maintain an active

connection with the host.

• Generic Protocol Command Decode: The IP 13.107.4.50 represents a false positive

due to Windows updates.

Cluster 8 has 1 alert classification with a total of 4 connections, between 1 source IP

and 1 destination IP seen in Table 4.18.

Table 4.18: Cluster 4.8

Classification Source IP Destination IP Source Port Destination Port

Potentially Bad Traffic 216.146.43.71 193.136.195.94 80 29001

• Potentially Bad Traffic:The IPS 162.88.96.194 and 216.146.43.71 are associated with

an Internet service that aims to find out the valid IP of a particular host. This mea-

sure is used to ensure that the Botnet can communicate with real IP and maintain

an active connection to the host.

4.2 Outliers

Outliers are data that may be anomalies, may not fit into a category or be too far

away from the desired grouping.

The Outliners data obtained in the analyzes has the number of 873 alerts in 7 categories

of Suricata alerts.

• Network Trojan was Detected: A total of 80 alerts were obtained.

• Attempted Information Leak: A total of 6 alerts were obtained.

• Generic Protocol Command Decode: A total of 29 alerts were obtained.
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• Misc Attack: A total of 77 alerts were obtained.

• Misc activity: A total of 90 alerts were obtained.

• Potential Corporate Privacy Violation: A total of 346 alerts were obtained.

• Potentially Bad Traffic: A total of 245 alerts were obtained.

4.3 HIDS

With the alerts column generated by HIDS, we can see the messages it has triggered on

certain events. These messages are important due to the fact that they show the internal

activities that the Host generated.

A total of 18 types of alerts were recorded, shown below, in a total of 3112 registered

alerts.

• Login session opened: This alert is triggered when a session is started on the host.

• New dpkg (Debian Package) installed: This alert is triggered when a new package

is installed in the debian distribution.

• Dpkg (Debian Package) removed: This alert is triggered when a package is removed

in the debian distribution.

• Multiple Windows error events:This alert is triggered when multiple windows errors

are generated.

• OSSEC agent started: This alert is triggered when the OSSEC agent starts.

• OSSEC agent disconnected: This alert is triggered when the agent disconnects.

• Registry Entry Added to the System: This alert is triggered when a log is added to

the system.
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• Registry Integrity Checksum Changed: This alert is triggered when some file has a

change, and can be with some update or intentional change.

• Registry Integrity Checksum Changed Again (2nd time): This alert is triggered

when many changes occur in some file accordingly.

• Service startup type was changed: This alert is triggered when some service changes

its type of execution.

• Successful sudo to ROOT executed: This alert is triggered when the SUDO com-

mand is executed.

• System time changed: This alert is triggered when system time changes.

• Unknown problem somewhere in the system: This alert is triggered when some

problem is found in the system.

• User successfully changed UID to root: This alert is triggered when any user changes

the user ID.

• Windows Audit Policy changed: This alert is triggered when some windows security

policy is changed.

• Windows Logon Success: This alert is triggered when some logon and registered in

the systems

• Windows error event: This alert is triggered when some errors in the windows system

registered.

As measured at the beginning of the chapter, all data analyzed is from the correlation

between NIDS and HIDS, within 2 seconds. The IP 193.136.195.94 is the public address

used of the gateway on the Network Address Translation to connect the machines on the

local network to the Internet. Some activities that we can highlight among this correlation

are described below:
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• The first relation presented happened on the day 2018-08-17 in the interval between

06:00:07 and 06:00:08. The "New dpkg (Debian Package) prompt requested to

install" was triggered at 06:00:07, stating that some package was installed on the

system as early as 06:00:08. The NIDS generated the alert "ET DNS Query for .su

TLD (Soviet Union) Often Malware Related" in the classification of Potentially Bad

Traffic, from IP 193.136.195.94 to 8.8.8.8.

Soon after this alert was registered another event that happened between 06:00:35

and 06:00:37, the alert of the HIDS triggered was the "New dpkg (Debian Package)

installed" and the one of the NIDS was the " Network Trojan was Detected0 "with

DNS origin from Google 8.8.8.8 to the infected VMWARE 193.136.195.94.

• The second relation also occurred on the day 2018-08-17 between the hour of 20:19:10

and 20:19:08. The HIDS alert "Registry Entry Added to the System" was triggered

where a record was added to the system, soon after the NIDS generated the alert

"ET SCAN Sipvicious User-Agent Detected (friendly-scanner)" of the classification

Attempted Information Leak, of origin IP 37.49.231.144 to 193.136.195.94.

After these alerts triggered another HIDS alert "Registry Entry Added to the Sys-

tem" but with the difference in the classification and alert message of the NIDS

that, ET CINS Active Threat Intelligence Poor Reputation IP group 24, classifica-

tion Misc Attack on the same IP cited above.

• The third report presented, occurred on 2018-09-01 in the interval between 19:39:03

and 19:39:05, the NIDS alert "ET DNS Query to a * .pw domain - Likely Hostile"

was triggered regarding the classification Potentially Bad Traffic. This alert is about

possible requests for malicious domains. After this event HIDS triggered the warning

of "Successful sudo to ROOT executed" referring to the sudo command used by the

user. After this, HIDS triggered another alert "User successfully changed UID to

root", which means that the user ID has been changed.

• In the fourth relation presented, occurred on the 2018-09-04 between the schedules
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21:41:26 and 21:41:28, HIDS generated the alert "Windows Logon Success" that rep-

resents a logon in the system. After the NIDS generated the alert "ET TROJAN

ABUSE.CH SSL Blacklist Malicious SSL certificate detected (Dridex)" for classi-

fication "A Network Trojan was Detected". The source IP for this connection is

208.87.225.248 which is classified as an active C&C for the Dridex botnet.

• In the fifth relation presented, occurred on days 2018-08-16 and 2018-08-17, on 2018-

08-16, between the hours of 11:26:25 and 11:26:23, the HIDS fired the alert "Service

startup type was changed", after this alert NIDS began to receive the alert with the

message "ET TROJAN DNS Reply Sinkhole Microsoft NO-IP Domain".

On the day 2018-08-17, at 03:53:04 HIDS received the "Login session opened" alert.

After this session was opened, new packages were installed, at 06:00:35, after 1 pm

and 18 HIDS generated the warning "Dpkg (Debian Package) removed" we believe

that the malware installed its dependencies and soon after its use the program has

removed itself to leave no clues.

We were able to gain insight into the activities found on infected hosts with HIDS

alerts. The vast majority of the activities found were requests for possibly malicious

domains already registered by NIDS, as it already obtains an amount of updated rules

the C&Care disabled, having only 1 in operation and still being able to connect, as

described in Table 4.19. These command and control servers were found on the site

"https://feodotracker.abuse.ch".
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Table 4.19: Botnets

IP Botnet Status

46.163.78.94 Heodo off-line

62.75.145.252 Heodo off-line

62.210.36.193 Heodo off-line

81.88.24.211 Heodo off-line

95.110.231.207 Heodo off-line

178.79.172.45 Heodo off-line

192.155.83.86 Heodo off-line

103.4.18.170 Dridex off-line

119.59.124.163 Dridex off-line

208.87.225.248 Dridex on-line

The Dridex and Heodo Botnets are two versions of the botnet known as Feodo, a

Trojan used to gain privileged information from the infected computer, such as banking

data and system credentials. There are currently 5 versions:

• Version A: Its main feature is that it is hosted on a Web server running a proxy

for port 8080/TCP, waiting for the connections and relaying the traffic to another

node. Due to this way of acting, Botnet traffic hits the hots without using domain

names, which makes it difficult to detect by the IDS[40].

• Version B: It is also hosted on a web server, acting with the domain names in the

.ru ccTLD. The current traffic usually runs over port 80/TCP[40].

• Version C: In this version there is already a change in the URL structure used for

data transmissions. It is called Geode or Emotet[40].

• Version D: It is currently known as Dridex. Its operation uses a different infrastruc-

ture from the usual command and control servers, but sharing the same logic. In

Dridex the main Botnet is fragmented into small nuclei of logical botnets where
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each one has an identity. This fragmentation is used so that each segment is

responsible by a specific activity such as. Scanning possible targets, direct at-

tacks, theft of information, among others. For more information access the link

"https://www.bitsighttech.com/blog/dridex-botnets"[40].

• Version E: It is the successor of Version C called Heodo. This Botnet is already

directed to multiple actions like DDOS attacks, encrypting the host content, stealing

of information, among others [41]. For more information access the link

"https://fortiguard.com/encyclopedia/botnet/7630295".

With the implementation of the k-means algorithm we can observe that the alerts are

repeated in almost all the clusters, due to the fact that few IPS were registered in the

alerts, and only have 7 categories. Ports detected in alerts usually are associated with

common services such as 443 (https) and 80 (http). In this way the Firewal believes that

they are legitimate traffic, but with malicious activities behind.
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Chapter 5

Conclusion and Future Work

This chapter presents the main conclusions, additional work improvements and new

research vectors.

5.1 Conclusion

The main purpose of this work was to analyze how IDS detects Botnets and improve

detection of the related traffic. To achieve that a network topology has been implemented

to capture traffic from malware, focused on detecting the botnets.

In the topology, several components were deployed: i) a NIDS control network traffic;

ii) two HIDS in virtual machines for host-specific controls; iii) a honeypot in the internal

network for the detection of possible attacks from infected VM-wares; and iv) honeypot

in the external network to attract possible malware from the Internet.

Considering the behavior of the Botnet threats it was necessary to overcome the ad-

versities in the choice and implementation of the devices.

The infection phase was challenging because most of the malware found in repositories

is very old and some of the Botnets were already taken down.

It was possible to correlate the alerts between HIDS and NIDS, it is possible to perceive

the infections, such as installing malware and communicating with their C&C.

We used machine learning algorithms to help the classification of Botnet related traffic

77
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and understand the challenges of detecting it.

It was not possible to observe the contents of the packets, as SSL and IPSEC protocols,

that are being increasingly used for the "security" of the Botnet communication, reaching

directly in the IDS to detect these exchanges of malicious messages.

The honeypot did not get a very positive correlation with IDS detection, because

infected hosts did not try to spread over the network or scan it. This could have happened

due to the fact of during the 3 week time, that the devices were interconnected, the

honeypot did not alert for malware behavior or the malware was not configured to take

those actions.

5.2 Future Work

As future work we can change and implement more types of honeypot in the same

topology, so we can analyze which one has a better performance.

Another future approach is to change the topology to cover more points of attack in

the detection of Malware. The honeypot in the external network can be better analyzed

to find correlation between the attacks received and infections on the internal network.

As during this work the network traffic was captured in the .pcap files, further analysis

can be made to map the behavior of the Botnet directly, such as packet size, and the

average time it communicates with C&C.

We think it can be useful to test diverse machine learning algorithms over the captured

data, and, if possible,to continue to increase the data available and considered other feeds

of information to correlate during the detection phase.
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