
289

V International Conference on Computational Methods in Marine Engineering
MARINE 2013

B. Brinkmann and P. Wriggers (Eds)

CONCEPT AND REALIZATION OF THE COUPLING
SOFTWARE EMPIRE IN MULTIPHYSICS

CO-SIMULATION

T. WANG, S. SICKLINGER, R. WÜCHNER AND K.-U. BLETZINGER

Lehrstuhl für Statik
Technische Universität München

Arcisstr. 21, D-80333 München, Germany
e-mail: tianyang.wang@tum.de, stefan.sicklinger@tum.de, wuechner@tum.de, kub@tum.de,

web page: http://www.st.bv.tum.de

Key words: multiphysics, co-simulation, partitioned analysis, fluid-structure interaction

Abstract. The purpose of the software EMPIRE is to perform n-code co-simulation for
solving multiphysics problems. EMPIRE provides a flexible way for constructing vari-
ous co-simulation environments by introducing the concepts of connection and filter. It
also provides data operations useful for general co-simulation including mapping between
non-matching grids, extrapolation in time and relaxation in iterative coupling. The con-
cepts and ingredients of EMPIRE are presented in this paper. Finally, the software is
demonstrated by two FSI simulations.

1 INTRODUCTION

Multiphysics problems can be formulated by coupled systems of partial differential
equations and ordinary differential equations. Two classical strategies for solving coupled
systems are the monolithic strategy and the partitioned strategy. In the monolithic strat-
egy, the global equation of the coupled systems is formulated and solved, whereas in the
partitioned strategy, the single systems are solved separately and coupled together by ex-
changing information at the interfaces. With the partitioned strategy, different simulation
codes can work together in a co-simulation to solve multiphysics problems, see Figure 1.
From the software development point of view, partitioned strategy has a big advantage
of reusing existing and well-tested simulation codes for single field problems.

One example of multiphysics is the simulation of wind turbines to study the fluid-
structure-interaction (FSI) between the wind load and the turbine blades, see Figure 2.
Usually, computational structural mechanics (CSM) and computational fluid dynamics
(CFD) are coupled together to simulate the wind turbine with a fixed rotational speed.
If the real time rotational speed of the wind turbine is needed, the model of the power

1

Concept and Realization of Coupling Software EMPIRE in Multi-Physics Co-Simulation



290

T. Wang, S. Sicklinger, R. Wüchner and K.-U. Bletzinger

Figure 1: Co-simulation with n codes

generator should be added to the co-simulation. Additional simulation codes can be added
to the co-simulation to simulate more complex scenarios.

Figure 2: FSI simulation of a wind turbine

The newly designed software EMPIRE (Enhanced MultiPhysics Interface Research
Engine) enables co-simulation with n-codes, to solve general multiphysics problems. The
concepts of EMPIRE will be introduced in the next section.

2 CONCEPTS OF EMPIRE

Figure 3 shows co-simulation in the EMPIRE environment. The software EMPIRE
has two components, the coupling code Emperor and the library EMPIRE API for the
simulation codes to communicate with Emperor. The data communication instance be-
tween codes is called connection. Inside a connection, the data can be manipulated by

2



291

T. Wang, S. Sicklinger, R. Wüchner and K.-U. Bletzinger

operators called filters.

Figure 3: Co-simulation with EMPIRE

2.1 Coupling code Emperor

The coupling code Emperor couples all simulation codes together to perform co-simulation.
Having a separate coupling code brings advantages including:

• the simulation codes only communicate with Emperor, without having the knowl-
edge of the other codes in the co-simulation environment;

• unified format for data communication is defined by Emperor, which is followed by
all simulation codes;

• the co-simulation environment can be defined in a single file that is read by Emperor;

• the data operations during communication are contained within Emperor which
eliminates the need to modify existing simulation codes.

The server-client model is adopted with Emperor as the server and the simulation codes
as the clients. The server opens a port at the beginning of the co-simulation to which an
arbitrary number of clients can connect. The communication between the server and the
client is performed using MPI-2.2.

2.2 Communication Library EMPIRE API

The simulation codes communicate with Emperor using EMPIRE API. It is a library
containing functions such as connecting to and disconnecting from Emperor, communi-
cating data of a certain type (e.g. mesh, degree of freedom, signal, etc) with Emperor.

3



292

T. Wang, S. Sicklinger, R. Wüchner and K.-U. Bletzinger

EMPIRE API is written in C++, but interfaced by C functions. As an example, the
function of sending a finite element mesh to Emperor is quoted below:

void EMPIRE API sendMesh(int numNodes, int numElems, double *nodes, int
*nodeIDs, int *numNodesPerElem, int *elems);

where the input arguments consist of the number of nodes, the number of elements, the
coordinates of all nodes, the IDs of all nodes, the number of nodes of all elements and the
connectivity table of all elements.

EMPIRE API can be compiled and linked together with simulation codes written in
languages compatible with C, e.g. C, C++, Fortran, Python, Java, MATLAB, etc.

2.3 Definition of the Co-simulation Scenario by Connections

A connection is the data communication between different codes. It can have multiple
inputs and outputs, which makes it more flexible for different scenarios. The inputs are
the data sent from simulation codes and received by Emperor, and the outputs are the
data sent from Emperor and received by simulation codes, see Figure 4. The co-simulation
scenario can be defined by sequences and iterations of connections.

Figure 4: Connection in Emperor

To show how the co-simulation scenario is defined, the co-simulation of a wind turbine
with three codes is taken as an example. The three codes are the CFD code, the CSM
code and the generator code respectively. The CFD code can be expressed as

fF = F (uF ), (1)

where uF is the displacements of the turbine, and fF is the wind forces acting on the
turbine. The code of the generator can be expressed as

TR = G(TA), (2)

where TA is the acting torque on the turbine shaft (computed from the wind forces on the
turbine blades) and TR is the reacting torque caused by the generator. The CSM code
can be expressed as

uS = S(fS, TRS), (3)

4



293

T. Wang, S. Sicklinger, R. Wüchner and K.-U. Bletzinger

where fS is the fluid forces on the turbine, and TRS is the reacting torque. The connections
between the codes are defined in the left diagram in Figure 5 (where Emperor is omitted
but the data must go through it). During the co-simulation, the CFD code computes the
wind forces on the turbine and sends them to the generator code (connection 1). Then
the generator computes the reacting torque according to the wind forces and sends it to
the CSM code (connection 2). Then the CFD code also sends the wind forces to the
CSM code (connection 3). Finally the CSM code can compute the displacements of the
turbine according to both the wind forces and the reacting torque on the shaft and then
send the displacements to the CFD code (connection 4). This completes one iteration.
In the flowchart in Figure 5, the sequences and iterations of the connections are shown.
The connections are put inside two nested iterations. The outer iteration is the time
stepping, and the inner iteration is the iterative coupling which means the connections
are run iteratively until the data are converged.

Figure 5: Co-simulation scenario of a wind turbine simulation

The connections are defined in the input XML file of Emperor, as well as the sequences
and iterations of the connections. Emperor performs data communication accordingly,
i.e. send or receive data at the expected time. However, because the simulation codes
are running without being controlled by Emperor, the communication would fail if some
simulation code does not send or receive data at the expected time. To assist a user in
setting up a co-simulation, Emperor can output pseudo code for each simulation code

5



294

T. Wang, S. Sicklinger, R. Wüchner and K.-U. Bletzinger

specifying how to do communication. The communication will work as expected if each
simulation code follows the communication pattern in the pseudo code.

2.4 Filters in Connection

The inputs and outputs of a connection are generally different. Therefore, a sequence of
operators may be applied which are named filters in EMPIRE. A filter can have multiple
inputs and outputs. The filters inside a connection are shown in Figure 6.

Figure 6: Filters inside a connection

Filters that are usually used in a co-simulation are introduced below.

2.4.1 Mapping Filter

At the interface between two surface coupled domains, the grids from both sides are
usually non-matching, so the data cannot be assigned between the grids directly. In
Emperor, the mortar method is implemented to map data between non-matching grids.
The condition for mapping a data field from domain A to domain B is

uB(x) = uA(x), (4)

where x is the coordinates, and uA(x) and uB(x) are the data field on A and B, respectively.
By discretizing the fields with finite element method one has

uA(x) = NT
A · uA, (5)

uB(x) = NT
B · uB,

where uA and uB are values of uA(x) and uB(x) on grid points, and NA and NB are the
shape function vectors of A and B, respectively. Mortar method applies weighted residual
approach for (4) using NB as the test function vector as∫

B

NB(uB(x)− uA(x)) dB = 0. (6)

Apply (5) in (6) one has∫

B

NB ·NT
B dB · uB =

∫

B

NB ·NT
A dB · uA, (7)

6



295

T. Wang, S. Sicklinger, R. Wüchner and K.-U. Bletzinger

which can be reorganized in matrix-vector form as

CBB · uB = CBA · uA. (8)

Since CBB and CBA are both sparse matrices, solving (8) takes much less computational
effort than the case of full matrices. In (7), if the test functions are replaced by the
dual shape functions, CBB becomes a diagonal matrix [1, 2] so that (8) can be solved by
computing the inverse matrix of CBB. It is shown in [4] that using mortar method in FSI
with a certain condition, both displacements and pressures can be mapped consistently
while the energy being conserved. This is the advantage of mortar method compared with
interpolation-like methods.

In Figure 7, it is shown that mortar method works well in mapping prototyped data
field on a curved surface.

Figure 7: Mapping data field on a spherical surface with mortar method

2.4.2 Extrapolation Filter

At the beginning of a new time step, a prediction of the data at the coupled interface
may have to be made. For example in Figure 5, at the beginning of time step n + 1,
the CFD code does not have the turbine displacements un+1

F . Therefore a prediction of it
(ûn+1

F ) is computed and used in (1) as

fn+1
F = F (ûn+1

F ). (9)

The prediction is usually computed by extrapolation of values of previous time steps. The
simplest extrapolation method is to use the value from the last time step as ûn+1

F = un
F .

More complicated extrapolation methods can be found in [5, 6].

7



296

T. Wang, S. Sicklinger, R. Wüchner and K.-U. Bletzinger

2.4.3 Relaxation Filter

In iterative coupling, relaxation can be used to stabilize the simulation. Assume the
input and output of the relaxation filter are xin and xout respectively, then at the k + 1
iteration, the new output is computed by

xk+1
out = xk

out + ω(xk+1
in − xk

out)

= (1− ω)xk
out + ωxk+1

in , (10)

where ω is the relaxation factor. It can be constant for all iterations, or can be computed
dynamically in each iteration by Aitken’s ∆2 method to accelerate the convergence [7].

3 NUMERICAL EXAMPLES OF FSI

The example driven cavity with flexible bottom introduced in [9] is simulated, see
Figure 8. The fluid domain is a 2D square with a periodic velocity imposed at the top.
An inlet and an outlet are shown at the top of the left and right wall respectively. The
bottom is modelled by a membrane structure. Figure 9 shows the result at the time
t = 4.25(s).

Another example is the FSI benchmark by Turek [8], where the incompressible fluid
flows around a cylinder and an elastic bar behind it, see Figure 10. The test case FSI3 in
[8] is simulated, and the result at the time t = 3.9(s) is shown in Figure 11.

4 CONCLUSIONS

EMPIRE is designed and implemented for solving general multiphysics problems with
n-code co-simulation. It has the following characteristics:

• Flexibility: co-simulation in a general scenario is available, since an arbitrary num-
ber of simulation codes and arbitrary connections among them is allowed.

• Modularity: partitioned strategy is used to apply existing simulation codes; the
simulation codes are connected by Emperor; communication interface is provided
in the library EMPIRE API; object oriented programming with C++ is used to
implement EMPIRE.

• Efficiency: communication is realized by using MPI; efficient mortar method is im-
plemented for mapping data between non-matching grids; methods are implemented
to accelerate co-simulation, e.g. extrapolation and relaxation.

• Usability: co-simulation is set up in a single file (input XML file of Emperor);
simulation codes in all C-compatible languages can link to the library EMPIRE API;
various filters are provided for data operations including mapping, extrapolation and
relaxation.

8



297

T. Wang, S. Sicklinger, R. Wüchner and K.-U. Bletzinger

Figure 8: Driven cavity with flexible bottom

Figure 9: Result – velocity field and streamline at t = 4.25(s)

Figure 10: Flow around cylinder and an elastic bar behind it

Figure 11: Result – velocity field at t = 3.9(s)

9



298

T. Wang, S. Sicklinger, R. Wüchner and K.-U. Bletzinger

The next steps of EMPIRE include new coupling algorithms for n-code coupling where
traditional coupling algorithms may have problems, and allowing adjustable time step
length for simulation codes. The software will be further verified by examples of large
scale n-code co-simulation.

REFERENCES

[1] Hartmann, S., Brunssen, S., Ramm, E. and Wohlmuth, B. Unilateral non-linear
dynamic contact of thin-walled structures using a primal-dual active set strategy.
Int. J. Numer. Meth. Engng (2007) 70:883–912.

[2] Klöppel, T., Popp, A., Küttler, U. and Wall, W.A. Fluid-structure interaction for
non-conforming interfaces based on a dual mortar formulation. Comput. Methods
Appl. Mech. Engrg (2011) 200:3111–3126.

[3] Unger, R., Haupt, M.C. and Horst, P. Application of Lagrange multipliers for coupled
problems in fluid and structural interactions. Computers & Structures. (2007) 85:796–
809.

[4] Boer, de A., Zuijlen, van A.H. and Bijl, H. Comparison of conservative and consistent
approaches for the coupling of non-matching meshes. Comput. Methods Appl. Mech.
Engrg (2008) 197:4284–4297.

[5] Felippa, C.A., Park, K.C. and Farhat, C. Partitioned analysis of coupled mechanical
systems. Comput. Methods Appl. Mech. Engrg (2001) 190:3247–3270.

[6] Farhat, C. and Piperno, S. Partitioned procedures for the transient solution of cou-
pled aeroelastic problems – Part II: energy transfer analysis and three dimensional
applications. Comput. Methods Appl. Mech. Engrg (2001) 190:3147–3170.

[7] Küttler, U. and Wall, W.A. Fixed-point fluid-structure interaction solvers with dy-
namic relaxation. Comput. Mech. (2008) 43:61–72.

[8] Turek, S. and Hron, J. Proposal for numerical benchmarking for fluid-structure in-
teraction between an elastic object and laminar incompressible flow. In: Bungartz,
H.J. and Schäfer, M. (Eds), Fluid-structure interaction: modelling, simulation, opti-
mization, Springer, (2006) 371–385.

[9] Mok, D.P. and Wall, W.A. Partitioned analysis schemes for the transient interaction
of incompressible flows and nonlinear flexible structures. In: Wall, W.A., Bletzinger,
K.-U. and Schweitzerhof, K. (Eds), Proceedings of trends in computational structural
mechanics, CIMNE, (2001) 689–698.

10




