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Abstract. Meta-modelling is a key technique for efficient multi-objective optimization
in ship design projects using CFD. However, objective functions computed with CFD are
not deterministic functions but contain random scatter about a smooth trend. Kriging is
a meta-model technique that is well suited for numerical experiments with deterministic
errors that can be perceived as random scatter due to varying input parameters. Sim-
ple Kriging, universal kriging and polynomial regression are used to obtain approximate
Pareto-fronts from the hull-form optimization of a chemical tanker including free-surface
effects. Cross-validation is used to assess the quality of the meta-models and the meta-
model approximations of the Pareto-fronts are verified. It is found that cross-validation
can be used to select the best meta-model but should not be used to estimate the true
error of the approximation in case the design of experiment is too coarse. The approach is
used in practice in order to accelerate the ship design process and to obtain more efficient
ships with less vibration hindrance.

1 INTRODUCTION

Automatic optimization procedures based on CFD are becoming increasingly impor-
tant in practical ship design. Building accurate high-dimensional meta-models of expen-
sive computational codes is necessary for efficient optimization [1]. Objective functions
obtained from CFD are not smooth, deterministic functions of the inputs but contain
random scatter about a smooth trend. This numerical noise results from perturbations
in the numerical solution of the physical phenomenon due to varying input parameters
[2]. Numerical noise is an issue in any surrogate modeling approach [2, 3] and should be
taken into account. In this contribution we demonstrate on a numerical example that:

e (Cross-validation can be used in order to obtain reliable meta-models for the objective
functions of interest.
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e Multi-objective optimization on the meta-model yields an approximate pareto-front
that - depending on the density of the sampling plan - gives a good indication of
pareto-optimality.

1.1 CFD Solver

We use the viscous flow solver PARNASSOS [4], which has a solution technique that is
very efficient with respect to both CPU-time and memory usage [5], which makes it very
well suited for doing systematic variations or combination with an optimization strategy
[6]. Tt computes the steady, turbulent flow around ship hulls by solving the discretised
Reynolds-averaged Navier-Stokes (RANS) equations for steady, incompressible flow using
a finite-difference method. Structured, HO-type body-fitted grids around the ship are
used with a very strong contraction in wall-normal direction towards the hull in order
to have y+-values below 1 near the wall, even for full-scale computations. Every RANS
calculation includes a nominal (without propeller suction effect) and total (with propeller
suction effect) calculation. The propeller action is modelled by means of a volume force
field at the position of the propeller plane. In case of a hull-propeller optimization study
multiple RANS calculations are performed. In that case the propeller force distribution
over the propeller plane for all calculations is taken from one representative hull-propeller

calculation in which the propeller is modelled by means of a Boundary Element Method
(BEM).

1.2 Numerical test case

The above mentiod methods were used in the hull-form optimization process of a
chemical tanker including free-surface effects. Especially when the stern shape is altered
it is important to include free-surface effects, see [7]. The main particulars of the ship can
be found in table 1. A CFD simulation was made for the original ship geometry at model
scale. Based on these numerical results, 6 new hull shapes (variants) were proposed, see
Figure 1 to 6. The changes with respect to the original hull-form are identified to overcome
the particular hydrodynamic problems observed in the CFD results, as discussed in [7].
The new ship variants are described by design parameters §;, with j =1,...,6.

Table 1: Ship main parameters

Parameter symbol value unit
Ship length Lpp 166 [m]
Beam B 31 [m]
Draught T 10.8  [m]
Scale A 29.2 |

[

-]
Froude number Fn 0.207 [-]
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1.3 Objectives

In the optimization process we are interested in the trade-off between the required
power to propel the ship and the vibration hindrance due to the propeller loading and
possible cavitation.

The required power is given by

:RTX(l_w>>< ‘/s ’ (1)
11—t Nr X Mo
where Ry is the towing resistance, w the estimated effective wake fraction, V; the speed of
the ship, t the thrust deduction coefficient, 1y the propeller efficiency in open water and
ngr the relative rotative efficiency. The latter is approximated by 1, while 7, is obtained
from the B-series of propellers [8] given a certain propeller wake field and thrust. The
towing resistance follows from the nominal calculation. To compute the thrust deduction
t, we also perform a second RANS computation (the total calculation) including a force
distribution representing the propeller with an imposed thrust 7y which is in the neigh-
bourhood of the thrust T required for self propulsion. In such a way we can assume a
linear behavior of the force on the hull as a function of the imposed thrust. The thrust
deduction coefficient can then be computed from t=(Ry-Rr)/To, in which Ry is the re-
sistance force resulting from the second RANS computation. The effective wake fraction
follows from the nominal wake fraction made effective by means of the force-field method,
see [9]. With these quantities known we can calculate the hull efficiency ng=(1-t)/(1-w).
The second optimization objective, vibration hindrance, is quantified by means of the
so-called Wake Objective Function (WOF). The WOF should provide information on the
quality of the wake field; small variations in angle of attack resulting in a smaller chance
of vibration hindrance, and vice versa. Therefore we will use the L1-norm of the variation
of the undisturbed propeller inflow angle

B=tan™ (Vf (wp; = Vi) 2)

with V, and Vj the axial and tangential velocity components respectively, 6 the angular
position in radians and w the propeller rotation rate in rad/s. The variation of § in
circumferential direction as the propeller rotates is 93/00. The Ll-norm is determined
from integration in circumferential direction and over a range of radii from the hub to the
tip of the propeller:

Pp

Rprop 6B

b, |55 ] f(6,7)dbrdr
WOF — Rhu];2 me 90
prop 3% f(0,r)dOrdr

Ryup

(3)

Herein f is a weighting function that can be used to make the outer region and/or the top
region of the propeller more important.
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2 THEORY
2.1 Hull shape parametrization

Suppose that the hull shape is described by N control points d;, (i = 1,...,N) of a B-
spline surface. Furthermore, M interesting new shapes d'$", (j = 1,..., M) are identified

by the hydrodynamic designer. A parameterized hull shape is then given by [10]

dij=(1—-&)d*+ &A™ (=1 ,N;j=1..,M;0<§<1). (4)

The hull shape is completely described by the parameters &, ..., &y in the M-dimensional
unit hypercube which defines the design space. The advantage of this approach is that
the designer can use his experience, skill and ingenuity to choose M hull shapes that
are hydrodynamically relevant. The current test case uses 6 hydrodynamically relevant
shapes, see Figure 1 to 6. These figures show the original ship (continuous lines) described
by the B-spline control points d;'® along with the new hull shapes (dashed lines) described
by the control points di'5" with j =1,...,6.

Figure 1: Variant 1 - straight- Figure 2: Variant 2 - straight- Figure 3: Variant 3 - widening
ening waterlines ening buttocks transom

Figure 4: Variant 4 - gondola Figure 5: Variant 5 - changing Figure 6: Variant 6

i - changing
pronouncing buttock angle

transom immersion
2.2 Design of Experiment

We use a regular grid with nodes [0 0.5 1] in each dimension, resulting in 3% = 729
CFD experiments. The grid is relatively course in order to limit the amount of CFD
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calculations in the experiment. Adding one additional node for example would result in
45 — 3% = 3367 additional CFD calculations: a tremendous increase. This effect is known
as the curse of dimensionality which is a result of exponential scaling with the number
of dimensions. Especially when the grid in the design space is course, it is important to
check the quality of the constructed meta-model. This can be done using cross-validation.

2.3 Meta-model techniques

Meta-modelling has been identified as one of the key techniques to open the door
for wider use of full-scale CFD applications by reducing the number of expensive CFD
evaluations in optimization projects, see [11]. In this study we investigate three differ-
ent meta-model methods: Polynomial regression, simple Kriging and universal Kriging.
Polynomial regression is a parametric regression model which means that the model uses
training points to estimate unknown parameters in the model. It is a well established
method and easy to implement. The performance is best for a small number of design
parameters (m < 10) and low-order non-linearity. Disadvantages are the risk of false
optima due to oscillatory behavior and a large number of required training points, prefer-
ably on a regular grid. Kriging is a nonparametric interpolation model. Kriging imposes
a global model that interpolates all design points and is well suited for numerical exper-
iments with deterministic errors that can be perceived as random scatter due to varying
input parameters. Moreover, the design space can be populated much more economi-
cal than the regular grid approach by using space-filling design of experiments like the
Latin-Hypercube design or using the Sobol algorithm, see [12]. Due to this feature the
method can be applied to problems with a large number of dimensions (m < 50) while
still yielding accurate results. The main disadvantages of Kriging are the computational
costs for model construction. A comparison between Kriging and polynomial regression
is found in [13]. In the context of hull-form optimization, Kriging has been successfully
applied in a number of design studies, see [12, 14, 15]. In section 2.3.1, 2.3.2 and 2.3.3 we
will explain the meta-model techniques in more depth.

2.3.1 Polynomial regression

A polynomial model is assumed:

k k k
f&) =0+ &+ Y Y &g + HOT, (5)
=1

i=1 j<1

with o; and «;; the coefficients of the model and &; the design parameters. Neglecting
Higher Order Terms (HOT) in equation (5), a quadratic polynomial is obtained. The
coefficients a of the quadratic polynomial are obtained by solving the normal equations

a = [ATA]_1 ATy, with y the observations and A the matrix of training points, see
[13].
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2.3.2 Simple Kriging

A Kriging meta-model is used [16, 17, 18], whose statistical foundation provides for
natural treatment of noise in observations. In a Bayesian framework, the Kriging predictor
is given by [19, 20]:

E(x|ly) = p+ PH' (R+ HPH') '(y — Hp), (6)

with quantity of interest @, observations y, drift p, covariance matrix P, observation
error covariance matrix R, and observation matrix H. The elements of the covariance
matrix P are obtained from

h2.

_ 2 17,m

Dij = 0 €xXp <— Z m) g (7)
m

with lag h;; = |& — &|, correlation range 6 and dimensions of the parameter space m.

Assuming independent observation errors, the observation error covariance matrix takes

the form

R = €1, (8)

where € is the standard deviation of the noise which is estimated by maximizing the log
likilihood, see [20]. When the drift p is assumed to be a known constant and the random
process is assumed to be stationary, this method is called simple Kriging. Here, we choose
the drift p equal to the mean of the observations y.

2.3.3 Universal Kriging

In universal Kriging the drift or trend p in equation (6) is allowed to be non-constant
and a function of the design variables, see [21]. The idea behind universal Kriging is that
the model can be tuned regarding the trend in the data, hence giving better accuracy. Any
prior knowledge on the response can be included in the drift. When a quadratic polynomial
is used this method is called Universal Kriging with quadratic drift. In this contribution
we use the quadratic polynomial from equation (5) to obtain p = p(€) = f(§).

2.4 Cross-validation

The root mean square error associated with the prediction of the meta-model in the
design space is defined by

RMSE — / ¢2(€)de, ()

where the integration is performed in the M-dimensional unit hypercube that defines the
design space. The actual error is given by e = y(&) — §(&), with y the actual value and
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7 the predicted value. Using a dense number of test points piest filling this space, the
integral in (9) can be approximated by

R41\/[SEappr0x = <1O>

with the error e; = y; — ¢; computed at the i-th test point. The RMSE in equation
(10) is by definition more expensive to compute than the original Design of Experiment
(DoE) and this is not desired from an industrial point of view. A practical solution to
this problem is to use the one-leave-out cross-validation error instead. A cross-validation
error is the error at a data point when the meta-model is constructed from a subset of
the data not including that point.The cross-validation RMSE is defined by

1
— E 2
RMSEcross - N — 6i,cross7 (11>

with NV the number of experiments, €; cyoss = ¥i — g}ZN ~1 the cross validation error and QZN -1

the prediction from the meta-model that was constructed from the N —1 other points. The
RMSE, approximated RMSE and cross-validation RMSE show often the same behaviour
and are measures of the meta-model quality. For this reason, cross-validation can be used
to obtain the best predictor in case of multiple meta-models, see [22].

2.5 Multi-objective optimization

When multiple objectives are considered in a design problem it is common to use the
perspective of Pareto sets [21]. Members in a Pareto set of designs are all optimal in
some sense, but the relative weighting between the competing goals - in this case the
required power and the WOF - is not yet fixed. The designs in this set are non-dominated
because no other design exceeds the performance in all goals. Although there are numerous
advanced population based search algorithms (e.g. genetic algorithms), we use a basic
population based search algorithm:

1. Evaluate the meta-model to obtain the predicted objective functions at a large
number of uniformly distributed points in the design space.

2. Obtain a Pareto set using a non-dominated sorting algorithm on the list of objec-
tives.

We use this algorithm since we do not aim to develop the most efficient multi-objective
algorithm and since the evaluation of the meta-model is very cheap. It is possible to use
the computed Pareto set to form an infill point set that - after running the full computions
- can be used to refine the meta-model.
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3 NUMERICAL EXPERIMENTS
3.1 Cross-validation

Cross-validation can be used for any meta-model technique but Kriging has the advan-
tage of providing a standard deviation estimate at the i-th point in the cross-validation
procedure. The estimated standard deviation from the Kriging model 6; can now be
compared to the cross-validation error at each point in the DoE. The number of standard
errors that the actual value is above or below the prediction is given by [23]

— €i,cross - Yi — Y
€ = —— = ~
0 05

, (12)

which defines the standardized cross-validated residual at the i-th point. The Kriging
model is valid when the values €; are roughly in the interval [—3 3] which is the 99.7%
confidence interval in case of a Gaussian distribution, also known as the three-sigma rule.
In case the distribution is not Gaussian, at least 98% should fall within the three sigma
interval.

The cross-validation results for the required power are shown in Figure 7 to Figure
10. The actual values versus the predicted values are given in Figure 7 and Figure 9.
The standardized cross-validated residuals are given in Figure 8 and Figure 10. Here,
we compare the cross-validation results of simple Kriging with universal Kriging since
polynomial regression does not provide standardized residuals. The performance of all
meta-model methods is compared in Section 3.2.

z 4 — Identity - |—I[-3 3] interval
2, x ¢ * > 9t % i
o 2t Y © o % =
9 £ % - ; > §:’<>e< ® $ 6_
g_ O | " QQ@% s ),}} = — 3 |
¥ e ANt e
% 3 N L
D2 R S 0
Q o F 5 -3}
5 -4} o 2 i
> e 5
3 5| D i *
|_ HOE 1 1 L 1 1 L 1 1 1 i 1 L
6 -4 -2 0 2 4 6 4 2 0 2 4
Predicted value - Required power Predicted value - Required power
Figure 7: Simple Kriging: actual vs. predicted Figure 8: Simple Kriging: residuals é;
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Figure 9: Universal Kriging: actual vs. predicted Figure 10: Universal Kriging: residuals e;

Simple Kriging yields a reasonable fit for low values of the required power but the
accuracy breaks down for higher values. This can can be seen from Figure 7 which shows
a larger distance to identity for higher values of the required power. From Figure 8 it
becomes clear that the cross-validation errors do not always follow the three-sigma rule
which means that the model is not valid in a global sense.

The actual values versus the Universal Kriging predictions in Figure 9 are much closer
to identity than for Simple Kriging. Moreover, from Figure 10 we see that almost all
standardized residuals obey the three-sigma rule.

Table 2: Comparison of cross-valdation results (RMSEc;oss)

Method Required Power Wake Objective Function (WOF')
Simple Kriging 0.446 0.167
Universal Kriging 0.219 0.080

Table 2 summarizes the cross-validation results for the required power and the WOF.
The cross-validation RMSE is much lower for Universal Kriging than for Simple Kriging
. Here we see the advantage of including the trend of the data in the Kriging model.

3.2 Multi-objective optimization

The meta-model objectives are evaluated at 1-107 uniformly distributed points in the 6
dimensional designspace. The Pareto-front is then obtained by the use of a non-dominated
sorting algorithm on the list of objectives. Figure 11 shows the Pareto-fronts obtained
with polynomial regression, simple Kriging and universal Kriging together with the DoE.
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Figure 11: Design of Experiment and Pareto-front predictions

The simple Kriging predictions seem to underpredict the required power and the
quadratic polynomial predictions seem to ”overshoot” the DoE of the WOF. The ac-
curacy of the Pareto points are verified by calculating the actual values of the objectives
with Parnassos, see Figure 12 to Figure 15.

4} = Prediction: Simple Kriging = 4r \—[-3 3] intervaIT
. * Verification: Parnassos =
Q =
= @2
2 Moy % =
= W 00 O ©
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2 e
o & -2

-10} (03]

109 87 65 432 1 10 20 30 40
Wake Object Function Pareto point

Figure 12: Verification - Simple Kriging Figure 13: Standard error - Simple Kriging
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Figure 14: Verification - Universal Kriging Figure 15: Standard Error - Universal Kriging

Figure 12 and Figure 14 show the predicted values and the verification values of the
Pareto-fronts obtained with simple Kriging and universal Kriging respectively. Figure 13
and Figure 15 show the standard error based on the predicted standard deviation of both
Kriging models. The simple Kriging predictions have a higher absolute error than the
universal Kriging predictions. Moreover, the simple Kriging error is biased whereas the
universal Kriging error is not. Both models are valid since the standard errors are in the
interval [—3 3]. For simple Kriging this is due to the fact that the Pareto values are in a
locally valid region of the model, see Figure 8.

Table 3 and Table 4 summarize the statistics of the error on the approximate Pareto-
fronts for the required power and the WOF respectively.

Table 3: Error distribution - Required power

Method Mean Median RMSE,pprox
Simple Kriging 0.69 0.70 0.73
Polynomial regression  0.15 0.11 0.28
Universal Kriging 0.14  0.0069 0.37

From Table 3 we find that the universal Kriging method and the polynomial regression
method of the required power are competing: universal Kriging has the lowest expected
error and a smaller bias whereas polynomial regression has the lowest RMSE. For universal
Kriging, the RMSE is high due to a few large errors at low values of the WOF, see Figure
14.
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Table 4: Error distribution - WOF

Method Mean Median RMSE,pprox
Simple Kriging 0.11 0.27 2.13
Polynomial regression  0.18 0.15 2.03
Universal Kriging -0.032  -0.0074 1.97

From Table 4 it becomes clear that universal Kriging performs best for the WOF.
Although the error distributions are nicely centered at values close to zero we see that
the RMSE,prox of the WOF is much higher than the RMSE,r0x 0f the required power.
However, from Table 2 we found that the cross-validation error of the WOF is much
lower than for the required power. The reason can be found in Figure 11 where it can
be seen that the density of the DoE is much coarser in the direction of the WOF than
in the direction of the required power. The cross-validation error RMSE, s can be used
to determine the best meta-model but cannot be used to estimate the approximate error
RMSE, prox since the number of test points p;es is much larger than the number of points
in the DoE in this case. A possible way to improve the accuracy of the meta-model is to
use the Pareto points as an infill point set by adding the points to the DoE.

4 CONCLUSIONS

Meta-modelling is a key technique to open the door for wider use of CFD applications
in optimization projects for ship design. In order to obtain reliable meta-models, cross-
validation can be used. Polynomial regression, simple Kriging and universal Kriging
are investigated. Cross-validation indicates that universal Kriging performs better than
simple Kriging. Verification of the multi-objective optimization results demonstrates that
this is indeed the case. The cross-validation errors can be used to select the best meta-
model but do not resemble the true errors of the meta-models when the DoE is too
coarse. The meta-models could be refined by filling the DoE with points obtained from
the optimization process in this case. This will be the subject of future research. However,
the approach is already used to obtain approximate Pareto-fronts in practical ship design
problems. It accelerates the ship design process and leads to more efficient ships with less
vibration hindrance.
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