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Abstract. Vibration of plates with arbitrarily oriented stiffeners is studied. The plate
may be subjected to in-plane loads and the plate boundaries may be simply supported
or rotationally restained. The main objective is to present and validate an approximate,
semi-analytical computational model for such plates subjected to in-plane loading. The
formulations derived are implemented in a Fortran computer code, and numerical results
are obtained for a variety of plate and stiffener geometries. The model may handle
complex plate geometries, by using inclined stiffeners to enclose irregular plate shapes.
The method allows for a very efficient analysis. Relatively high numerical accuracy is
achieved with low computational efforts.

1 INTRODUCTION

Computationally efficient, semi-analytical methods are becoming more common as an
alternative to finite element analyses (FEA) and explicit design formulas. The amount of
published literature on semi-analytical methods for analysis of stiffened plates is growing.
In a review paper by Liew, Xiang and Kitipornchai [1], most of the literature on vibration
of stiffened plates till the year 1994 has been summarized. This literature study goes back
to the well known study of vibration by Rayleigh [2] in 1877 and Ritz [3] in 1909. The
latter approach is known as the Rayleigh-Ritz or Ritz method where a series of admissible
trial functions are used. This approach is used in the present paper.

Semi-analytical methods such as the Rayleigh-Ritz approach and other mesh-less meth-
ods have been used to investigate many different aspect of vibration. For example, the
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Figure 1: Examples of stiffened plates: (a) Stiffened plate enclosed by longitudinal and transverse girders,
and (b) girder stiffened by sniped stiffeners.

Rayleigh-Ritz approach has been used to analyse free vibration of unstiffened plates with
various boundary conditions [4, 5, 6], and vibration of plates subjected to in-plane loads
[7, 8, 9]. Semi-analytical approaches have also been developed to investigate various as-
pects of vibration on stiffened plates [10, 11, 12, 13, 14]. In a research work by Xu, Du
and Li [15], vibration of irregularly stiffened plates without in-plane loads is studied.

The semi-analytical methods mentioned above are restricted to irregularly stiffened
plates without in-plane preloads, or to unstiffened or regularly stiffened plates. In the
present work, the main objective has been to develop a computationally efficient semi-
analytical model for eigenfrequency computations of stiffened plates subjected to in-plane
prestress and with arbitrarily oriented stiffeners. Analyses by the present model can be
performed for plates with simply supported, clamped of partially clamped boundary con-
ditions, or combinations of these. The model may also handle interior supports, along
lines with arbitrary orientations and lengths. By using inclined stiffeners or strong trans-
lational springs to enclose triangular, trapezoidal and other plate shapes, the present
model may handle complex plate geometries.

2 PLATE DEFINITION AND BOUNDARY CONDITIONS

Typical engineering applications for stiffened plates are illustrated in Fig. 1(a) where a
plate is enclosed by the strong longitudinal and transverse girders, and in Fig. 1(b) where
the plate web is supported by a strong girder flange. Girder stiffeners may be be oriented
horizontally or vertically. The stiffeners may be sniped at their ends (such as in Fig.
1(b)), and will then, unlike continuous stiffeners such as in Fig. 1(a), not be subjected to
external axial loading (in the stiffener direction). Sniped stiffeners may also be used in
conjunction with cases where a rather non-regular stiffener arrangement is required, such
as for instance in the stern and in the bow of a ship hull.

In order to model such cases, the plate defined in Fig. 2 is considered. It may be
subjected to in-plane shear stress and linear varying in-plane compression or tension
stress. It may have none, one or more stiffeners, and the stiffener orientations may be
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Figure 2: (a) Stiffened plate subjected to in-plane shear stress and in-plane, linear varying applied
compression or tension stress, and (b) cross-section of an eccentric stiffener.

arbitrary. The stiffeners may have different cross-section profiles, and may be eccentric,
as in Fig. 2(b), or symmetric about the middle plane of the plate. The stiffeners are
modeled as simple beams. A boundary (plate edge) or a part of a boundary may be
simply supported, clamped or something in between.

3 MATERIAL LAW AND KINEMATIC RELATIONSHIPS

The usual plane stress assumption for thin isotropic plates is adopted. The well known
Hooke’s law for this case is defined by

E

0p = m(egg—i-l/ey) (1)
E

oy = 1 sl tre) (2)
E

Tey = m’7$y_G’7$y (3)

where o,, o, and 7., are the in-plane stresses, and ¢, ¢, and v,, the in-plane strains,
defined positive in tension, and the material coefficients £ and v are Young’s modulus
and Poisson’s ratio, respectively. The total strain can be divided into a membrane strain
(€™) and a bending strain (¢) and given by

€ = "+ = € — 2w, (4)
€y = 627' + EZ = GZL — RW yy (5)
Yoy = 7:; + 'ng = 7:; - 2zw,xy (6)

where w is the out-of-plane displacement in the z-direction (positive downwards in Fig.
2). The conventional notation w , for 9*w/dzdy, etc., is adopted. The bending strain
distribution complies with Kirchhoff’s assumption [16].
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4 VIBRATION ANALYSIS - EIGENVALUES

The eigenfrequencies of a perfect, stiffened plate are computed using the well known
Rayleigh-Ritz method. The assumed displacement field, which satisfies the boundary
conditions of a simply supported plate, is given by

w(z,y) = Z Z aijsin(T)sin(?) (7)

where a;; are amplitudes, L the plate length and b the plate width.
By assuming harmonic vibrations, the usual eigenvalue problem [17] is

(K%cl -+ Aprngkl — WQMijkl)akl =0 (8)
where 92U 2T 52 maz
K%ﬂll = ApTngkl - and WQMijkl = (9)

8aij0akl ’ 8aij8akl 8aij8akl
Here, w denotes the natural circular eigenfrequencies and ay; the corresponding eigenvec-
tors. The desired prestress level is obtained by multiplying some initial (reference) applied
in-plane stress by a load factor AP™*. In the eigenvalue problem, M is the mass matrix,
KM the material stiffness matrix and K¢ is the geometrical stiffness matrix for the prede-
fined in-plane stresses. These matrices are, as seen, expressed by U, T and H™**, which
are the strain energy, potential energy due to external loads and the maximum Kkinetic
energy, respectively. Each energy contribution is described in more detail below. In the

common matrix notation, the eigenvalue problem above can be written
(KM + AP°KY — w*M)a =0 (10)

In an analysis of a clamped plate, it would be more appropriate to assume a displace-
ment field defined with a series of cosine functions. However, although each component
in a series of sine functions represents a simply supported condition, added together they
are nearly able to describe a clamped, or partially restrained, condition at a negligible
distance from the support. The sine curve assumption is therefore able to handle plates
with various boundary conditions along the edges.

The elastic strain energy contribution from bending of the plate is given by

D b L
Urlzlate = 5/0 /0 ((wm + w,yy)2 = 2(1 = V) (W w4y — w?xy)) dr dy (11)

where D = Et3/12(1 — /) is the plate bending stiffness and ¢ is the plate thickness. By
substituting the assumed displacement field, an analytical solution of this integral may
be derived. More details can be found in Brubak [18] and Brubak, Hellesland and Steen
[19]. The membrane strain energy of the plate and the stiffeners (below) is not included
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as it does not affect computed eigenvalues, since small deflection theory is used. This will
have some consequences that will be discussed in the results sections.

The curvature of the stiffeners is equal to the curvature in the plate along the stiffeners.
Thus, the bending strain energy due to an arbitrarily oriented stiffener, with length L,
and cross-section area A, can be given by

E] 2
where (z1,y1) and (z9,y2) are the coordinates of the stiffener ends, L, = (o — z1),
Ly, = (y2 — y1) and
I, :/ (2 — 2.)%dAs + th 22 (13)
As

is an effective moment of inertia about the axis of bending. Here, z. is the distance from
the middle plane of the plate to the centroidal axis (through the centre of area) of a cross-
section consisting of the stiffener and an effective plate width b.. The effective moment
of inertia I, reflects the fact that eccentric stiffeners tend to “lift” the axis of bending.
For a symmetric stiffener, z. = 0. This value also represents a reasonable simplification
in many cases also for eccentric stiffeners. The strain energy integral in Eq. (12) may be
solved analytically or by numerical integration. More details can be found in Brubak [18]
and Brubak, Hellesland and Steen [19].

The potential energy of the external, in-plane prestress due to plate bending is given
by

— —Ap’"e/ / ( w + Syo(z ) — QSxyow,xwﬂ) dy dx (14)

where Sy0(y), Syo(x) and S, are the initial (reference) stresses and AP the load factor
for the prestress. More details can be found in Brubak [18] and Brubak, Hellesland and
Steen [19].

The stiffeners in the example computations, presented below, are sniped. As a conse-
quence, the in-plane stresses are applied at the midplane of the plate. Since the stiffeners
will try to resist the corresponding strains, eccentricities (bending) will be introduced.
However, such eccentricity effects are not accounted for in the model.

In line with the sniped stiffener assumption, Eq. (14) does not include any contribution
from stiffeners. It would be reasonably straightforward to extend Eq. (14) to also include
end loaded (continuous) stiffeners. However, in cases with local plate buckling, which are
of most practical interest, the stiffeners will remain nearly straight and only contribute
negligibly to T'. Then it makes little difference whether the stiffeners are sniped or con-

tinuous. More details on how to include the energy contribution for end loaded stiffeners
can be found in Brubak and Hellesland [20].
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Figure 3: (a) The velocity of the centroid of the web and flange due lateral displacement of the stiffener
and (b) the stiffener orientation.

Both the displacements and the rotations along an arbitrary oriented line with length
S may be restrained by applying translational and rotational springs, respectively. The
strain energy due to these springs can be written

1
Uspring = 5 /S(krw?n + kth) dsS (15)

Here, w,, is the derivative of w normal to the line, and k;, and k, are the stiffness of the
translational springs and the rotational springs, respectively. More details can be found
in Brubak [18] and Brubak, Hellesland and Steen [19]. Eq. 15 can also be applied for
rotational springs at plate boundaries.

The maximum kinetic energy of the plate is given by

pt b L
gz =) [ wtdedy (16)
0 0

where p is the density of the material, and the maximum kinetic energy of the vertical
movement of the stiffener is given by

vstift = W / wdLy (17)

2

where mg = p(hyty + bsts) is the mass per unit length of the stiffener.
The kinetic energy of the rotational movement of the stiffener can be expressed by

1
Hr,stiﬁ = 5 / (mwv?u + me]%)dLs (18)

E]

where m,, = phyt, is the mass per unit length of the web and m; = pbst; is the mass
per unit length of the flange. As shown in Fig. 3(a), v, and vy is the lateral velocity of
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the centroid of the web and the flange of the stiffener, respectively. By using geometrical
considerations, these velocities can be written as

ow

ot

ow,,

ot

vy = (0.5h,, + 0.5t) and vy = (0.5t + hy, + 0.5tf) (19)
where w,, is the derivative of w normal to the stiffener orientation as illustrated in Fig.
3(b). By substituting Eq. (19) into Eq. (18), the expression for the maximum kinetic

energy of the rotational movement of the stiffener can be written as

mazx Mot
T = W’ 2T /L (sz@ + 2L$Lyw,$w7y+Liw,y) dL (20)
where
Mot = My (0.5, + 0.5¢) + m (0.5t + hy, + 0.5t¢) (21)

The strain energy integral in Eq. (20) may be solved analytically or by numerical inte-
gration. The latter is used in the present work.

When all the expressions for the potential energy above are computed, the eigenvalue
problem of Eq. (8) can be established and solved.

5 VALIDATION PREMISES

The present model was incorporated into a Fortran computer code and computed
results have been compared with finite element analyses (FEA) using ABAQUS [21] for
a variety of plate and stiffener dimensions, and in-plane prestress loads. Eigenfrequency
results, presented as natural eigenfrequencies f = w/2m [Hz|, are verified by comparisons
with FEA. Results, presented in subsequent sections, are limited to simply supported
plates with sniped stiffeners.

The finite element model, based on shell elements (shell elements S4R both for plate
and stiffeners), is supported in the out-of-plane direction along the edges of the plate, and
the edges are forced to remain straight during deformation. The plate is also supported
in the in-plane directions, just enough to prevent rigid body motions. Further, the ends
of the stiffeners are completely free and not loaded (sniped).

The adopted elastic material properties in each computation are Young’s modulus
E = 208000 MPa and Poisson’s ratio v = 0.3.

In the present model, 225 degrees of freedom (15x15) are used in all the cases. Compa-
rable convergence studies carried out previously [19] have shown that this choice of degrees
of freedom may overestimate the eigenfrequency predictions by, typically, about 1-2 %.
In comparisons, the number of degrees of freedom used in the FEA analysis is typically
about 20000, which is believed to be a sufficiently large number to ensure satisfactory
results.
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Figure 4: (a) Eigenfrequencies for a regularly stiffened plate subjected to uniaxial prestress S, in the
stiffener direction and (b) the eigenmode of the plate for free vibration.

6 REGULARLY STIFFENED PLATE WITH IN-PLANE PRESTRESS

Stiffened plates subjected to in-plane prestress have been analysed. A typical case
is shown in Fig. 4(a), where the eigenfrequencies for a plate is computed for various
magnitudes of prestress in the stiffener direction for both compression and tension. The
plate (L/b/t = 2000/2000/20mm) is simply supported and is provided with one regular,
sniped stiffener with a flatbar section (hy,/t, = 100/12mm).

The agreement between the model and FE results is very good for external prestress
smaller than about 120 MPa (Fig. 4(a)). This corresponds to about 63% of the elastic
buckling stress, which has been found to be S, . = 189 MPa in this case. Beyond this
level, it can be seen that the model frequency results continues to decrease toward the
elastic buckling stress (at the intersection with the 5,-axis) while the FEA results reaches
a minimum value and then starts increasing for increasing prestress values. The reason for
these differences is that the stiffness matrix in the FEA is computed using large deflection
theory while the model is based on small deflection theory (in that the energy contribution
from membrane strains does not affect the eigenvalues).

In large deflection theory, membrane stresses are redistributed from the interior of
the plate fields to the stiffer parts, which are at the edges. This leads to a reduction
in membrane compression stresses at the interior of the plate, which causes a larger
eigenfrequency for the vibrations computed by FEA. It is worthwhile noting that this leads
to solutions also for prestress values exceeding the classical elastic buckling stress. For
plates without eccentricities (i.e., due to sniped stiffeners or imperfections), the membrane
stress redistribution will start taking place at the classical buckling stress. With increasing
eccentricities, the transition from the descending to the ascending portion of the frequency-
prestress curve (FEA, Fig. 4(a)) becomes increasingly gradual. In the semi-analytical
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Figure 5: (a) Plate definitions and (b) eigenmode of Plate 1 subjected to prestress S, = 50 MPa.

model, there is no redistribution of compression membrane stresses. Due to this, the
frequency-prestress curve decreases continuously toward the elastic buckling stress. At
and above this stress there is no solutions. In order to extend the model to include large
deflection theory [22], it is expected that a similar formulation as in Brubak and Hellesland
[23] for computing the post-buckling behaviour can be used.

The eigenmode for free vibration of the plate is shown in Fig. 4(b). This is a global
mode where the stiffener deflection is one half wave. Similar modes with global deflections
are also found when the plate is subjected to a prestress.

In its present form, application of the model should be limited to prestress values
below about 60% of the classical elastic buckling stress for such cases, associated with
global buckling modes and eccentric loads (sniped stiffeners). For local buckling modes
such eccentricity effects are not that pronounced and the model will be able to handle
prestress values closer to the elastic buckling stress (as shall be seen below).

7 IRREGULARLY STIFFENED PLATES

Typical results for two simply supported, irregularly stiffened plates defined in Fig. 5(a)
are presented in Fig. 6 . The plates are provided with two inclined, eccentric stiffeners.
The rather irregular stiffener locations are chosen such as to provide quite severe test
cases for the present model. In this case, with a local eigenmode, the redistribution
of compression stresses (discussed above) is less pronounced than above due to smaller
eccentricity effects. This is reflected in the FEA results by a rather abrupt change in
slope (sharp angle) for prestress values close to the elastic buckling stress. As already
explained, the model does not reflect this phenomenon.

As seen (Fig. 6), the agreement between the model and the FE results is good for
compression prestresses smaller than about 95% of the elastic buckling stress (as given
by the intersection by the model results (full line) and the S,-axis). For tensile prestress
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Figure 6: Eigenfrequency versus prestress S, for (a) Plate 1 and (b) Plate 2.
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values, the frequencies are somewhat overestimated, but still less than about 10% for
prestress values as high as S, = —150MPa. This is quite acceptable.

The shape of the first eigenmodes calculated by the present model and by FEA are
quite similar in each case. Fig. 5(b) shows the first eigenmode of plate 2. This is a local
mode with small out-of-plane deflections along the stiffeners.

8 CONCLUDING REMARKS

An efficient computational model for eigenfrequency computations of stiffened plates
subjected to in-plane prestress with arbitrarily oriented stiffeners is presented, and results
are obtained and compared with FEA results for cases with sniped stiffeners. The model
is ideally suited in design optimisation studies and also in reliability studies that normally
require a large number of case studies. A computer program based on this method is of a
size that can easily be incorporated into a computerised design code. A minimal number
of input parameters is required and the present model is therefore considerably more user
friendly than commercial finite element programs, which requires experienced users to
obtain reliable results.
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