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a fitness-based network growth model, which enabled cross 
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power law exponent of their respective degree distributions. 
Then, the inter-firm links in each SCN were considered as 
repeated strategic interactions and were modelled by the 
Prisoner’s Dilemma game to represent the self-interested nature 
of the individual firms. This model is considered an agent-based 
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introduced to mimic the behaviour of firms. In particular, the 
heterogeneously distributed nature of the firm rationality was 
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1.0 Introduction 

Modern SCNs are highly complex systems comprising of multiple entangled supply 

chains. Therefore, an SCN can be viewed as a structured population of supply chain firms, 

characterised by a specific topology based on the way they are interconnected with each 

other. Recent advances in network science has paved the way towards topological modelling 

of SCNs (Thadakamalla et al., 2004; Zhao et al., 2011a; Kim et al., 2015; Orenstein, 2016). 

In particular, there is growing research interest in the influence of the topological structure of 

a system on the evolution of strategies adopted by the entities, under repeated interactions. In 

early literature, authors have argued that the density of a network (Coleman, 1992) along with 

the way individual entities engage in repeated relational exchanges (Krackhardt and Hanso, 

1993) determine the emergence of trust and social norms over time. Therefore, in contrast to 

the traditional buyer-supplier dyad view, the network-based topological view of SCNs offers 

a more realistic framework for analysing the evolutionary nature of supply chain relationships 

(Nair et al., 2009). 

In an SCN, when firms adopt cooperative strategies, it indicates commitment to 

pursuing long-term relations with their partners (Li et al., 2013) and as a result can foster 

behaviours such as timely sharing of knowledge and information on inventory levels for 

collaborative planning, forecasting, and replenishment (Fliedner, 2003); cooperative 

advertising (SeyedEsfahani et al., 2011); and joint research and development on initiatives 

such as cost cutting and component redesign (Huang et al., 2002). Such cooperative 

behaviours increase the total benefits, such as the profits (in both short and long run) and 

shareholder value, for all firms in the SCN (Hendricks and Singhal, 2003; Chan and Chan, 

2010).  

Similar cooperative behaviours underpin the success of the traditional Japanese supply 

chain transaction practice known as ‘Keiretsu’ which seeks to nurture long term relationships 

between firms, based on trust and goodwill (Matous and Todo, 2015). Keiretsu relationships 

typically occur in asymmetrical relationships, where one organisation uses its dominant 

position to govern and maintain the relationships through close and stable business 

collaborations between its partners. Although Keiretsu represents a sharp contrast to the 

Western style arm’s length and contractual relationships between firms, it has been 

successfully implemented by many Japanese businesses. For example, Toyota has adopted 

Keiretsu practices where instead of abandoning suppliers when others offer lower prices, it 

about:blank%23bib41
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provides support by organising ‘study groups’ and dispatching engineers to train the suppliers 

to improve process efficiencies and reduce prices (Aoki and Lennerfors, 2013). 

Although there are clear benefits to cooperative behaviour, firms do not always act 

cooperatively with their trading partners, mainly due to differing self-interests between the 

trading partners. Such ‘inter-firm rivalry’ (Park and Ungson, 2001) can lead firms to adopt 

defective strategies and behave opportunistically by not readily sharing information, skills 

and processes (Dyer and Nobeoka, 2000; Fawcett and Magnan, 2001). Under more extreme 

situations, firms could increase the prices at the times of product shortages (Nair et al., 2009). 

Therefore, failures in spreading cooperation in an SCN due to inter-firm rivalry, has 

significant monetary implications to all firms, as it leads to performance ‘glitches’ which 

could cripple the capability of the system to timely and cost-effectively supply the customer 

demands (Hendricks and Singhal, 2003, 2005). 

Since the local decisions of individual entities in an SCN has global consequences, it is 

of practical importance to understand how different forms of interdependence structures (i.e. 

topologies) could influence the evolution of various strategies adopted by firms. Over the past 

two decades, networked game theory has been increasingly used to understand the constraints 

placed by the topological structure of a community on the cooperative and non-cooperative 

decision making processes of individuals (Santos et al., 2006; Kasthurirathna et al., 2015, 

Roman & Brede, 2017). Evolutionary game theory (Smith, 1973) provides a theoretical 

framework capable of addressing the issue of cooperation among self-interested and 

unrelated individuals. Under this framework, social dilemmas are formalised at the most 

basic level as two-person games, where each player can either choose to cooperate or to 

defect (Cimini and Sánchez, 2014). The Prisoner’s Dilemma (PD) game formalised by 

Axelrod (1984) symbolises a typical situation in which two parties may not cooperate even if 

it is in both their best interests to do so. In such situations, although mutual cooperation gives 

the best outcome for both players, the highest individual benefit is derived by defecting.  

Each player therefore has to assess the probability of the other defecting (i.e. the level of trust 

in the other player). 

Previous work in the area of networked games have investigated how various strategies 

spread across a given network topology when players repeatedly interact with their local 

neighbourhood and update their strategies based on various ‘update rules’. In particular, the 
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evolution of strategies over multiple iterations has been studied to identify the evolutionarily 

stable strategy (ESS).  

The relationship dynamics between individual firms which comprise an SCN are 

subject to a large number of variables and therefore such systems are difficult to model for 

the long term. However, past studies involving networked games have adopted simple yet 

intuitive strategy update rules for each player reflecting the temporal adjustments of 

behaviour of firms during their interactions with other firms in the SCN. These update rules 

conceptually capture how firms may change their purchasing/service level agreements or 

contract clauses, after each interaction, when dealing with other firms in the long run. Past 

studies have confirmed that evolution of strategies strongly depends on the update rule used. 

Therefore, it is important to adopt an update rule that sufficiently captures the expected 

behaviour of the agents. Broadly speaking, update rules specify how fast trust is gained or 

lost in response to the decisions made by the other player in the past. 

In this work, we argue that the topology of a SCN influences the level of information 

available to individual firms and this in turn impacts the ability of the firms to maximise the 

level of utility they gain by adopting best strategy when interacting with others. A strategy 

can be considered as a discrete choice that an autonomous agent makes to maximize its 

payoff. The central hypothesis in discrete choice theory is that agents (be they humans or 

firms) maximise their utilities between a finite number of disjoint alternatives (Hensher et al., 

2005). However, this is based on the assumption that they have sufficient abilities to carry out 

perfect optimisation in their choices (Huang et al., 2013). For example, the Nash Equilibrium 

(NE) concept in non-cooperative game theory assumes that all players in a system are fully 

rational and as such they adopt strategies to maximise their own utility in the absence of 

knowledge about the strategies of the other players. In a mixed strategy context, players 

would update their strategy choice probabilities in the light of the observed strategy choices 

of the other player(s).  

In real-world settings, the behaviour of agents has been observed to deviate from those 

predicted by the NE (Haile et al., 2008). Indeed, the rationality of agents in the real world, are 

bounded by the level of information at hand, cognitive capacity and computational time 

available (Kasthurirathna and Piraveenan, 2015). Due to limitations in their ability to behave 

rationally, non-optimal decision making by agents has been ascribed to ‘bounded rationality’ 

(Simon, 1956).  
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In this study, by using each firm’s topological degree within the SCN as an indicator 

for its ability to behave rationally, a topologically distributed rationality model is formulated 

to represent the bounded rationality of firms in SCNs. This topologically distributed 

rationality consideration is then carried over to devise a novel strategy update rule which 

sufficiently mimics the behaviour of self-interested firms in an SCN. The Log Normal Fitness 

Attachment (LNFA) growth model (discussed in section 2.1.1) has enabled comparison of 

ESSs across network topologies in a more continuous way by parameterising network 

topologies based on the power law exponent of their respective degree distributions.  

The remainder of this manuscript is organized as follows: Section 2 provides a 

background (including relevant literature) of the key concepts used in this study, Section 3 

presents the details of the methodology in terms of simulation design, Section 4 presents the 

simulation results, Section 5 includes a discussion of the results and Section 6 concludes the 

manuscript.   

2.0 Background 

This section provides a brief overview of the key concepts used in this study.  

2.1 Network modelling of supply chains 

Due to the increasingly complex and interconnected nature of the global businesses, recent 

research has focussed on modelling SCNs as complex systems using network science 

concepts. Following on from the influential work published by Thadakamalla and colleagues 

in 2004 (Thadakamalla et al., 2004), which utilised a network science lens to investigate the 

robustness of various SCN topologies, a large number of theoretical research papers have 

appeared in this area (Surana et al., 2005; Borgatti and Li, 2009; Xuan et al., 2011; Zhao et 

al., 2011; Wen and Guo, 2012; Yi et al., 2013; Li, 2014; Mari et al., 2015; Kim et al., 2015). 

Most of these studies have theoretically formulated plausible and generalizable growth 

mechanisms underlying the firm partnering process in SCN formation. Subsequently, the 

network topologies generated based on various growth models have been studied in depth for 

their topological characteristics, such as robustness and efficiency.   

Complementing the early theoretical work, recent data driven studies have revealed a 

number of interesting general topological features of SCNs in various industries. It is evident 

from the data driven studies in literature that SCNs tend to have node degree distributions 

which follow power-law (Brintrup et al., 2015; Perera et al., 2017). The degree distribution, 

Pk of such networks is approximated with power-law as follows; 
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~kP k −
                  (1) 

where k is the degree of the node and γ is the power-law exponent. 

Although in literature, the networks whose degree distributions follow power-law is 

generally referred to as scale-free networks, in this study we reserve the term ‘scale-free’ to 

identify networks within a specific range of power law exponents. In particular, we refer to 

networks whose power-law exponent lies between 2 and 3 as scale-free networks. When the 

power law exponent is below 2 or above 3, such networks are referred to as hub-and spoke 

and random networks, respectively, as outlined in Figure 1.   

In many real world networks, it has been found that the power-law exponent of the 

degree distribution lies between 2 and 3 (Barabasi, 2014). The growth mechanisms 

underlying such scale-free networks have been related to some form of preferential 

attachment, most notably the Barabasi-Albert (BA) model, which is known to generate scale-

free networks with γ =3.  

2.1.1 Fitness based network growth models 

Several growth models have been proposed in the literature for generating scale-free 

networks by fitness-based attachment (Caldarelli et al., 2002; Smolyarenko, 2014; Bell et al., 

2017). For instance, Ghadge et al (2010) used log-normally distributed fitness distributions to 

simulate a range of power-law networks by varying the shape parameter σ of the log-normal 

fitness distribution. When σ is zero, all nodes have the same fitness and therefore at the time 

a new node joins the network, it chooses an existing node as a neighbour with equal 

probability, replicating the random graph model with an exponential degree distribution. 

When σ is increased beyond a certain threshold, a very few nodes will contain very high 

fitness while the overwhelming majority of nodes have very low levels of fitness. As a result, 

the majority of new connections are made to a single or very few nodes with high fitness. The 

resulting network therefore resembles a monopolistic or “winner-takes-all” scenario. Between 

the above two extremes lies a spectrum of power-law networks (Nguyen and Tran, 2012).  
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Figure 1. Network topology under various regimes of power-law exponent 
 

2.2 Evolutionary networked game theory 

Game theory has historically been used as an effective tool to model complex systems 

that consist of multiple self-interested entities under various decision making scenarios 

(Simon, 1959). Evolutionary game theory, in particular, is concerned with how contending 

strategies evolve over time in a population of players. The concept of evolutionary stability in 

evolutionary game theory is equivalent to the concept of NE in static game theory. Since NE 

is considered to be a static equilibrium, evolutionary stability represents a dynamic 

equilibrium of a strategy over time. A strategy is considered to be evolutionarily stable if it is 

capable of dominating over any other strategy.  

Over the past two decades, networked evolutionary game theory has been increasingly 

used to understand the constraints placed by the topological structure of a community on the 

decision making process of individuals who repeatedly interact with each other. In particular, 

iterated PD game (which is the static PD game iterated over multiple time steps over a 

population of players) has received much attention. In such iterated game scenarios, each 

player would play the PD game with its neighbours in each time step and update their 

strategies by inspecting the past performance of their neighbours.  

2.2.1 Prisoners dilemma 

The PD is a fundamental paradigm in game theory that demonstrates why two parties 

may not cooperate even if it is in both their best interests to do so. In this particular game, 

which was popularised by Albert W. Tucker  (Poundstone, 1992), the only objective for each 

party is maximising their own payoff, without any concern for the other parties’ payoff. In 

this situation, each party is tempted to unilaterally defect when they believe that the other 

about:blank
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party will collaborate. Unilateral defection (assuming the other party cooperates), always 

pays more than mutual collaboration or mutual defection (Dawes, 1980). Therefore, the 

unique NE for this game occurs when both parties defect, even though the benefit derived by 

each party would be greater if they both cooperate.  

The PD is a two-player, non-zero sum game that can be applied to model the conflict 

between individual and collective interests in a myriad of domains, in particular in 

economical situations such as inter-firm relationships (Zagare, 1984; Li et al., 2013). PD 

scenarios do indeed occur often in buyer-seller relationships within SCNs, since firms prefer 

maximizing their own profit over the profit of the SCN (Viswanathan and Piplani, 2001). The 

NE arises because neither player trusts the other enough to cooperate. To try to avoid this, 

measures are required that build trust by sufficiently incentivising cooperation (or penalising 

defection). 

The following section provides an overview of various supply chain scenarios that are 

analogous to PD.  

• Between suppliers and manufacturers: Terwiesch et al. (2005) present the difficulties in 

contract establishment, between a supplier and a buyer, based on shared forecasts. This 

scenario, which resembles a PD, is presented in Figure 2 under the payoff matrix (a).  

• Between manufacturers and retailers: Allen (2017) presents a PD type scenario between 

manufacturers and retailers in the context of sharing consumer data. The payoff matrix 

for this scenario is presented in Figure 2 (b).  

• Between manufacturers and distributors: Günther et al. (2008) discuss the advantages of 

adopting RFID (Radio Frequency Identification) tags to improve material tracking in 

warehouses. In light of the positive outlook of this technology, the authors present a PD 

type scenario as the key reason why RFID is not widespread in manufacturing sector 

than it is today. This scenario is presented in Figure 2 under the payoff matrix (c). 

• Between distributors and retailers: Gao et al. (2006) discuss vertical cooperation 

(cooperation between upstream and downstream members) in SCNs. A PD type scenario 

is presented where a manufacturer and a retailer have to negotiate the optimal order 

quantity and delivery frequency. The payoff matrix for this scenario is presented in 

Figure 2 (d).  
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Figure 2: Scenarios analogous to Prisoner’s Dilemma game, at various stages of a supply chain 

 

 

 

 

 

(a) 

(b) 
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Figure 2 (continued): Scenarios analogous to Prisoner’s Dilemma game, at various stages of a supply chain 

 

 

 

 

(c) 

(d) 
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Figure 3 shows the typical four parameter payoff matrix representation of the PD game 

where C and D denote corporate and detect strategies and the payoffs satisfy the inequality   

T > R > P > S.  

 

Figure 3: Prisoner’s Dilemma game payoff matrix 

However, following standard practice, in this study, the single parameter representation 

of the PD game has been used (Nowak and May, 1992; Szabo and Toke, 1998), as illustrated 

in Figure 4. Here the   parameter represents the temptation to defection and is usually 

constrained between1 2  . In particular, the larger the value of  , the more incentive 

there is from defection.  

 

Figure 4: The single parameter representation of the Prisoner’s Dilemma game payoff matrix 
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In Figure 4, C and D denote cooperate and defect strategy adopted by each player. 
i
nm represents the payoff to player i, when the first player adopts strategy n and the second 

player adopts strategy m.  

 

2.2.2 Strategy update rules 

In order to represent the imitative nature of agents constrained within a network 

topology, various strategy update rules have been adopted in the literature, where at the end 

of each iteration of a game (i.e. an interaction), a given player i adopts a new strategy by 

copying the strategy of another player j from its local neighbourhood Ki, with a probability 
1( )t t

i jp s s+  .Table 1 summarises some key strategy update rules used in literature (Cimini 

and Sánchez, 2014). 

Table 1: Summary of strategy update rules used in literature 

Update Rules and Descriptions 
Proportional Imitation (Helbing, 1992) 

1  if
( )

0           otherwise
where max( , )[max( , ) min( , )] so that (.) [0,1]

t t
j i t t

j it t
i j ij

ij i j

p s s

K K R T P S p

 
 +

 −
 = 




 = − 

 

A neighbour j is randomly chosen from the local neighbourhood Ki and i imitates j based on a 

probability proportional to their normalised accumulated payoff differences in the previous round of 

the game. Note that R, T, P, S represent the payoff values in the typical PD game (as per Figure 3). 

Fermi rule (Szabó and Toke, 1998) 

1
( )

1( )
1

t t
j i

t t
i jp s s

e   
+

− −
 =

+
 

A neighbour j is randomly chosen from the local neighbourhood Ki and i imitates j based on a 

probability that depends on the accumulated payoff difference in the previous round distributed 

according to the Fermi rule. The parameter µ is the selection intensity, as µ  ∞, i adopts the 

strategy of its better off neighbor j deterministically. However, for any finite value of µ, there exists 

a probability that i copies the strategy of its neighbor j who gained less.  

Death-Birth rule, inspired by Moran dynamics (Moran, 1962) 

1( )
( )

where  is the set of players including  and its neighbours 
and max min(0, ) so that (.) [0,1]

i

i

t
jt t

i j t
KK N

i

j N j

p s s

N i
K S p

 
 



+





−
 =

−

= 
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Player i imitates the strategy of one of its neighbours or itself with a probability proportional to the 

accumulated payoffs in the previous round of the game. Note that S represents a payoff value in the 

PD game (as per Figure 3). 

Unconditional Imitation or “Imitate the Best” (Nowak and May, 1992) 
1( ) 1

if max

where  is the set of players including  and its neighbours
i

t t
i j

t t
j K N k

i

p s s

N i

 

+



 =

=  

Each player i deterministically imitates the best off neighbour j with the largest accumulated payoffs 

from the previous rounds of the game. 

 

In this study, particular attention is given to the Fermi Rule (see Table 1) since in the 

case of two behavioural strategies only (such as in the PD game considered here), it has been 

used to model the evolution of corporation in complex networks (Santos et al., 2006). 

 2.2.3 Rationality of firms 

NE in a non-cooperative decision making environment is a state (set of decisions) 

where no player can improve his or her payoff by a unilateral change of strategy. However, it 

has been observed that in many real-world situations, the equilibrium states of the players 

deviate substantially from those predicted by the NE (Haile et al., 2008). A key reason for a 

deviation is non-perfect or bounded rationality of the players involved. Indeed in the real 

world, the players involved will not be perfectly rational due to the limitations in information 

availability, computational time and cognitive capacity (Gigerenzer and Selten, 2002). Since 

these limitations vary from player to player, one could expect players in a system to respond 

heterogeneously, where at one extreme a player would make user optimal decisions while at 

the other extreme a player would make seemingly arbitrary decisions.  

Inspired by the work of Kasthurirathna and Piraveenan (2015), it is argued here that 

there could be a correlation between the quantity of business interactions of a particular firm 

(indicated by the topological node degree in the SCN) and the level of its rationality. Indeed 

this argument has also been made and validated in social science fields such as social 

learning theory (Bandura, 2001) and social cognitive theory (Dunbar, 1998), where a player 

with a relatively high amount of social interactions is deemed to have access to more up-to-

date information, compared to a player with a lower amount of social interactions. Similarly, 

it can be argued that in SCNs, firms with more interactions with other firms tend to behave 

more rationally, due to their superior market access and intelligence.  
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Early studies such as Burkhardt and Brass (1990) and Ibarra (1993) note that a firm’s 

power and influence is derived from its structural position in its surrounding network. Some 

researchers have also associated the firm’s network position with issues such as innovation 

adoption (Burt, 1980; Ibarra, 1993), brokering (Pollock et al., 2004) and creation of alliances 

(Gulati, 1999). Therefore, it can be reasonably argued that from an SCN perspective, the 

relative position of individual firms with respect to one another influences both strategy and 

behaviour (Borgatti and Li, 2009). Kim et al. (2011) notes that firms with higher node 

degrees, in terms of contractual relationships in SCNs, also influence the operational 

decisions or strategic behaviour of other firms in the SCN more. Furthermore, Uzzi (1996) 

stipulates that how well a firm is linked to its business network determines its level of access 

to the benefits (such as information) circulating in the network which correlates with 

competitive advantage. Accordingly, it can be reasonably assumed that the rationality of a 

firm is positively correlated with the amount of inter-firm interactions they are involved in.  

Furthermore, the level of interactions would also depend on its ‘weight’ for various 

attributes, such as time spent on the relationship, amount of materials/information exchanged 

and so on, between each pair of firms. Indeed the correlation between the rationality of a firm 

and its amount of interactions with other firms could be linear or non-linear. Therefore, this 

relationship has been modelled through a generic function f, which uses the weighted degree 

of a node (or simply the degree, if all link weights are considered to be equal) as an input, as 

follows; 

 

1

.
n

i ij
j

r f w
=

 
=  

 
  

(1) 

  

In the above formulation, λi represents the rationality of firm i and r can be considered 

the ‘SCN rationality parameter’ which is a common system wide constant which controls the 

responsiveness of rationality to degree. wij is the weight of the link connecting firm i with 

each neighbour j, and n is the number of neighbours that firm i has.  

In this study, the function f has been modelled as a simple linear function for 

simplicity and computational efficiency. Also, this function facilitates the [0: ∞) range of 
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possible rationality values of λi. Empirical data from experiments would be required to 

specify a more accurate functional form for f.  

In the above model, a firm will behave completely randomly if the SCN rationality 

parameter, r is set to zero or when the firm is fully disconnected from the SCN (i.e. the 

degree is zero). At the other extreme, as r approaches infinity or when the degree of the firm 

is extremely large, the firm will display rational behaviour as predicted by the NE.  

 

 

3.0 Methodology 

In the methodology adopted here, several revisions have been made to the ‘general 

Fermi rule’. In particular, this ‘revised Fermi rule’ acknowledges that picking a neighbour at 

the end of each game round (for copying a strategy) and subsequently imitating the 

neighbour’s strategy, are two distinct operations, each involving the rationality of the central 

player.  

• In the general Fermi rule, the players calculate their accumulated payoffs at the end of 

each game round. In the revised Fermi rule adopted in this study, the accumulated 

payoff calculation has been made strategy specific (since when deciding to adopt a 

strategy, a player would be interested in how well that particular strategy has paid off 

in the past and this information is not captured when comparing accumulated 

payoffs). In particular, in the revised Fermi rule, the players calculate the average 

payoff they have received so far, by using the current strategy (i.e. the strategy 

adopted at time t). 

• In the general Fermi rule, a neighbour for copying the strategy is selected by players 

in a random fashion. In the revised Fermi rule, each player selects a neighbour based 

on a probability proportional to the product of that player’s rationality and the 

neighbour’s average payoff based on the current strategy. This represents the fact that 

highly rational (more connected) firms are more likely to select a better off neighbour.  

• In the general Fermi rule, the parameter µ  is set as the selection intensity and is 

constant for all players. As µ   ∞, player i adopts the strategy of its better off 

neighbour j deterministically. However, for any finite value of µ , there exists a 

probability that i copies the strategy of its neighbour j who gained less. In contrast, in 
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the revised Fermi rule, the strategy update probability is calculated as the product of 

each player’s rationality and the difference between the average payoff (with the 

current strategy) of itself and the average payoff (with the current strategy) of the 

selected neighbour. This method enables capturing the heterogeneity across players in 

relation to their rationality levels (i.e. more rational players will adopt the strategy of 

their better off neighbour with a higher probability).    

The following steps were followed in the simulation experiments carried out. 

 

 

Step 1: Generating an ensemble of network topologies with varying power law exponents 

The spectrum of network topologies studied here (from hub and spoke to random to 

scale free regimes) have been parameterised by the power law exponents (γ) of the degree 

distributions for comparison purposes. Therefore, an ensemble of network topologies 

representative of SCNs were generated with varying power law exponents, using the LNFA 

method described in Section 2.1.1. In particular, by varying the shape parameter (σ) of the 

lognormal distribution, 100 networks (each with 1,000 nodes) were generated at each of the 

following power law exponents: γ = 1.5, γ = 2, γ = 2.5, γ = 3, γ = 4 and γ = 5. 

Step 2: Modelling rationality of firms 

Using the generic function presented in Eq. 1, the rationality of each firm was modelled 

as a monotonically increasing linear function of its degree (with link weights set to unity), 

with the SCN rationality parameter r (which controls the responsiveness of rationality to 

degree) set to 0.1, 1.0 and 10.0 in separate experiments.  

Step 3: Allocate Co-operators and Defectors 

At the beginning of each experiment, each strategy C (cooperate) or D (defect) was 

uniformly distributed in the network, i.e., the probability of each strategy is 50%. Note that 

previous studies have confirmed that this arrangement has negligible impacts on the 

evolutionary outcome, suggesting the uniqueness of the outcome. 

Step 4: Play the PD game, then calculate and assign the payoffs 

The PD game is played once by each player with the neighbours (the game parameter β 

of the PD game was tested at three values in separate experiments: β = 1.2, β = 1.5 and β = 
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1.8). Then, calculate and assign the average payoffs for each agent based on their current 

strategy as follows; 

( , )

i

t i
i t

j K i

i j
n




=   
 

(2) 

Here, t
i is the average payoff player i received with their current strategy (i.e. 

strategy at time t), ( , )i i j is the payoff of player i .received against player j where iK is the 

set of i’s neighbours and t
in is the number of iterations (i.e. game rounds) played by player i 

with the current strategy, at time t. 

Step 5: Select a neighbour (from whom the strategy will be updated) 

For each node, select a neighbour based on a probability proportional to the product of 

the node’s rationality and that neighbour’s average payoff based on the current strategy. 

,where t
ij i j ij k      

Where ij is the probability of selection for a neighbour of node i, i is the rationality of 

node i (as calculated based on its degree using Eq. 1), t
j is the average payoff neighbour j 

received with their current strategy (i.e. strategy at time t). 

Step 6: Update the strategy 

Update the strategy of player i, using a probability calculated based on the difference 

between the average payoff of itself and the average payoff of the neighbour selected (from 

the above step) based on the following Fermi rule – note that the rationality of player i is also 

considered here (in particular, the system wide parameter  in the Fermi rule as shown in 

Table 5.1, is replaced with the player specific rationality parameter i ).  

1 1( )
1 exp( ( ))

t t
i j t t

i j i

p s s
  

+  =
+ − −

 
(3) 

Step 7: Iteratively play the game 

Repeat steps 4 to 6 above for N iterations. In networks, the level of cooperation is 

generally measured by cooperation frequency, Pc (i.e. proportion of co-operators in the 
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population). Therefore, in this study, the fluctuations in cooperation frequency has been 

recorded in each experiment, at each time step (i.e. end of each game round). In the 

simulation experiments carried out in this study, N was set at 1,000. 

 

 

 

 

 

4.0 Results 

Figures 5, 6 and 7 illustrate the proportion of co-operators recorded at each time step 

at three different values of PD game parameter (β), for a range of network topologies with 

varying power law exponents (γ), when the network rationality parameter (γ) is set to 0.1. 

Each value presented in these plots has been obtained by 100 averages.  

Figure 8 illustrates the proportion of co-operators (Pc) recorded at convergence (for the 

cases where convergence was not achieved, the average of co-operators between iterations 

500 and 1,000 has been considered) at three different values of SCN rationality parameter (r), 

for a range of network topologies with varying power law exponents (γ) at three different 

values of PD game parameter (β).  
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Figure 5: Proportion of co-operators recorded across iterations for network topologies comprising degree 
distributions with varying power law exponents (γ), for PD game parameter, β at 1.2, 1.5 and 1.8 with SCN 

rationality parameter, r = 0.1  

β = 1.2 

β = 1.5 

β = 1.8 
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Figure 6: Proportion of co-operators recorded across iterations for network topologies comprising degree 

distributions with varying power law exponents (γ), for PD game parameter, β at 1.2, 1.5 and 1.8 with SCN 
rationality parameter, r = 1.0  

β = 1.2 

β = 1.5 

β = 1.8 
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Figure 7: Proportion of co-operators recorded across iterations for network topologies comprising degree 
distributions with varying power law exponents (γ), for PD game parameter, β at 1.2, 1.5 and 1.8 with SCN 

rationality parameter, r = 10  

β = 1.2 

β = 1.5 

β = 1.8 
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r = 0.1 

 

 

r = 1 

 

 

r = 10 

 

 

Figure 8: Proportion of co-operators recorded at convergence at various SCN rationality parameter (r) values for 
networks with various power law exponents (γ), for PD game parameter, β at 1.2, 1.5 and 1.8  
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5.0 Discussion 

From our results, it is evident that there exists a strong connection between the topology 

of the SCN (i.e. the manner in which firms are interconnected with each other) and evolution 

of cooperation across the firm population comprising the SCN. Note that all experiments 

were carried out with an initial random distribution of 50% co-operators and 50% defectors. 

Past studies have confirmed that the initial distribution of strategies have negligible impact on 

the long run evolutionary outcome (Santos et al., 2006).  

The proposed revised Fermi strategy update rule works as follows; (1) the players 

calculate the average payoff they have received so far, by using the current strategy, (2) each 

player selects a neighbour based on a probability proportional to the product of that player’s 

rationality and the neighbour’s average payoff based on the current strategy, and (3) the 

strategy update probability is calculated as the product of each player’s rationality and the 

difference between the average payoff (with the current strategy) of itself and the average 

payoff (with the current strategy) of the selected neighbour. 

First, it is worth noting that the power law exponent (γ) of each network provides 

information about the heterogeneity of the degree distribution – in particular, γ<2 represents 

hub and spoke topologies characterised by significantly large hubs, while 2<γ<3 indicates 

scale free topologies, again characterised by numerous moderate sized hubs. As γ is increased 

beyond 3, the topology of the network becomes indistinguishable from a random network 

with no distinct hubs (i.e. more homogenous degree distribution). Refer to Figure 1 for a 

graphical illustration of the above identified regimes of network topologies.   

When the SCN topologies are characterised predominantly by the presence of hubs, it 

implies the presence of firms with a disproportionately high number of connections with 

other firms. These hub firms generally receive higher payoffs than average firms, since they 

play more instances of the game and also they are capable of being more rational (i.e. better 

informed from their experiences with multiple interactions) so that they are capable of 

adopting the strategy, which gives higher payoffs, in each game.  

From a strategy dynamics perspective, the strategy of the hubs will generally remain 

stable (i.e. they will rarely copy the strategy of their less-earning neighbours). This 

phenomenon is particularly evident in hub and spoke systems, which include significantly 

large hubs compared to other topologies. Consequently, the neighbours will ultimately copy 
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the strategy of the hubs (who have a clear systematic payoff advantage), resulting in pockets 

of defectors spread around hubs (Santos et al., 2006).  

The above phenomenon cannot be expected from networks lacking hubs (i.e. those 

topologies with γ>3). However, the results indicate that in some instances, the network 

topologies with γ>3 are also pulled towards the defective state (i.e. Pc<0.5) across time steps. 

The reason for this is two-fold; (1) the increase in PD game parameter, β will encourage more 

firms to defect as it represents the temptation to defect (i.e. how much more a firm will 

receive against the other firm, by defecting) and, (2) the increase in SCN rationality 

parameter, r which controls the responsiveness of rationality to degree – with a sufficiently 

large r, even the lesser connected firms are likely to choose the rational strategy (i.e. 

defection) in the PD game.  

From the results, it can be seen that as β is increased (regardless of the SCN rationality 

parameter, r), the hub and spoke topologies (i.e. topologies with lower γ) do not achieve full 

convergence and are consistently pulled (one by one) towards fully defective state (with 

γ=1.5 topology being closest to majority defective state across all scenarios). The lack of 

evolutionary stability of these topologies is due to the mistakes made by non-hubs, since for 

any finite value of λ in the proposed revised Fermi rule, there exists a probability that the 

player copies the strategy of one of its neighbours who gained less. 

Similarly, investigating the plots across Figure 5, 6 and 7, it is evident that as the PD 

game parameter, β is increased, all network topologies (regardless of γ) are pulled closer 

towards full defection state (since defection is the rational strategy in the PD game).  

To complement the above discussion, let’s focus on the results presented in Figure 8. It 

can be clearly seen that the proportion of co-operators at convergence reduces drastically as 

the SCN rationality parameter, r is increased. Also, it is clear that when the SCN rationality 

(r) and/or temptation to defect (β) is low, hub and spoke topologies can also achieve majority 

cooperation. As the SCN rationality (r) and/or temptation to defect (β) is increased, the 

topologies which lack hubs are favourable in terms of achieving majority co-operators in the 

system. The general trend across these plots (in Figure 8) indicates a tipping point for 

achieving high proportion of co-operators in the firm population under various topologies. In 

general, the scale free regime (2<γ<3) achieves the highest level of cooperation followed by 

the random (γ>3) and the hub and spoke regimes (γ<2).  This result can be explained by the 
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hub structure present in each of the above topologies. The hub and spoke topologies achieve 

the lowest cooperators compared to other topologies, since they include significantly large 

hub firms. From a firm level perspective, a hub is likely to defect their partners in PD 

interactions (since defection is the rational strategy and the hubs are capable of being more 

rational). A defector hub is best surrounded by cooperators since this type of interactions will 

maximize the defector hub’s payoffs. Therefore, a defector hub can exploit their neighbors. In 

doing so, the number of cooperators in the neighborhood of the defector hub will reduce in 

subsequent interactions (i.e. iterations of the PD game). This results in higher levels of 

defectors at convergence for hub and spoke topologies compared to other topologies. This 

result explains why Keiretsu (the traditional Japanese supply chain transaction practice) has 

been proven successful in many practical situations in Japan. Keiretsu relationships typically 

occur in asymmetrical relationships, where one organisation uses its significantly more 

powerful position to govern and maintain the relationships through close and stable business 

collaborations between its partners. By nurturing long term relationships between firms, 

based on trust and goodwill, cooperation easily spreads across all firms in the SCN.  

Compared to hub and spoke topologies, the scale free topologies include moderate 

sized hubs with a much less distinct payoff advantage against their neighbors. When the 

payoff of these moderate sized hubs become comparable to that of their cooperating 

neighbors, strategy invasion can occur. Once a hub adopts a cooperative strategy, it will 

maximize the number of cooperating neighbors, since when both players cooperating leads to 

the highest payoff (for both players) under the PD game. Therefore, scale-free topologies are 

capable of achieving the highest proportion of co-operators in the firm population compared 

to other topologies.  At the opposite end, the random topologies do not include any hubs. 

Therefore, there would be no firms in the system with clear payoff advantages. This leads to 

coexistence of firms with defective and co-operative strategies. However, since co-operation 

by both players achieves the highest payoff for both players under the PD game, more firms 

adopt co-operation than defection, leading to the presence of a higher proportion of co-

operators in the population compared to the hub and spoke topology.  
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6.0 Conclusions 

This paper presented a simulation study which evaluates the influence of the SCN 

topology in the evolution of cooperation across firms. By considering the inter-firm links as 

strategic interactions modelled as PD games, a range of topologies representative of SCNs 

were tested and compared by parameterising the topologies to the power law exponent of 

their respective degree distributions. Additionally, the general Fermi rule used in literature 

was revised in the simulations to realistically represent the firm level behaviours in an SCN. 

In particular, the proposed revised Fermi rule takes into account the heterogeneity in the 

rationality levels across the firms in the SCN and uses strategy specific payoff comparisons 

when selecting neighbours and updating the strategy at the end of each game round.  

Based on the results, it is evident that the firm population structure within an SCN (i.e. 

the SCN topology), the level of rationality of firms and the payoff differences (indicated by 

the game parameter of the PD game) are all essential elements in evolution of cooperation.  

In summary, a tipping point was found in terms of the power law exponent of the SCN 

degree distribution, for achieving the highest number of co-operators. The hub and spoke 

topologies (represented by lower power law exponents) are not able to achieve majority co-

operators due to hub firms implementing the more rational strategy (in the PD game, this is 

defection) and maintaining this strategy across time periods and spreading it locally within 

their neighbourhood. At the opposite end, when the hub are lacking in the SCN (random 

topologies characterised by higher power law exponents), firms with clear payoff advantages 

cannot be expected. This leads to coexistence of firms with defective and co-operative 

strategies. However, since co-operation by both players achieves the highest payoff for both 

players under the PD game, more firms adopt co-operation than defection, leading to the 

presence of a higher proportion of co-operators in the population compared to the hub and 

spoke topology. The highest proportion of co-operators is achieved by the SCNs 

characterised by scale free topologies (with power law exponent in the range of 2-3). These 

systems include moderate sized hubs with a much less distinct payoff advantage against their 

neighbors (compared to hub and spoke topologies). When the payoff of these moderate sized 

hubs become comparable to that of their cooperating neighbors, strategy invasion can occur. 

Once a moderate sized hub adopts a cooperative strategy, it will maximize the number of 

cooperating neighbors, since when both players cooperate, it leads to the highest payoff (for 
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both players) under the PD game. Therefore, scale-free topologies are capable of achieving 

the highest proportion of co-operators in the firm population compared to other topologies. 

In all cases, it was found that the number of co-operator firms are reduced when; (1) the 

PD game parameter (β) is increased (which tempts the firms to defect since it enables 

achieving higher payoffs than their partners); and (2) the SCN rationality parameter, r is 

increased (this controls the responsiveness of rationality to degree and with a sufficient large 

r, even the lesser connected firms are likely to choose the rational strategy of defection in the 

PD game).  

In this study, rationality of each firm, within each SCN, has been modelled as a 

monotonically increasing linear function of its degree. Future studies could estimate a more 

accurate fit for this generic function. Additionally, more qualitative research is required to 

understand the behavioural basis underlying the strategy adoption by firms, so that accurate 

update rules can be developed for various contexts.  
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