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Computer simulations: tools for 
population and evolutionary genetics 

 
Sean Hoban1,2, Giorgio Bertorelle2 and  Oscar E. Gaggiotti1 

Abstract | Computer simulations are excellent tools for understanding the evolutionary 
and genetic consequences of complex processes whose interactions cannot be 
analytically predicted. Simulations have traditionally been used in population genetics 
by a fairly small community with programming expertise, but the recent availability of 
dozens of sophisticated,  customizable software packages for simulation now makes 
simulation an accessible option for researchers in many fields. The in silico genetic data 
produced by simulations, along with greater availability of population-genomics data, 
are transforming genetic epidemiology, anthropology, evolutionary and population 
genetics and conservation. In this Review of the state-of-the-art of simulation software, 
we identify applications of simulations, evaluate simulator capabilities, provide a guide 
for their use and summarize future directions. 

 
 
 

Stocking 
Human-mediated 
supplementation of a native 
population with translocated 
or captive-bred individuals to 
increase population size or 
growth rates. 
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Computer simulations are computer programs that have 
been developed to simulate abstract models of particu- 
lar systems. In evolutionary applications, the systems — 
that is, the individuals, populations or species — undergo 
multiple processes with complex interactions that are 
difficult to predict. Natural processes include mutation, 
disease, natural selection and spatial expansions, and 
human-mediated processes include stocking, fragmen- 
tation and artificial selection. Computer  simulations 
are excellent tools for understanding the functioning of 
these complex systems. The general principle is to gener- 
ate in silico data sets (known as pseudo data) of genetic 
polymorphism under specified scenarios describing the 
evolutionary history and genetic architecture of a spe- 
cies. For example, in understanding human evolution1, 
one scenario might consider population expansion with 
a specific geographic origin, ancestral and descendant 
population sizes, and dispersal rates within and between 
continents. It would also include a specific type of genetic 
marker, a mutation rate and assumptions about linkage 
between markers. Repeated generation of pseudo data 
incorporates the inherent stochasticity of demographic 
and genetic mechanisms and sampling. These data sets 
are used to predict the effects of interacting forces, to infer 
historical processes (when compared to real data) or to 
understand the properties of newly developed methods. 

Simulations have long been used to explore analyti- 
cally intractable genetic models. An early example is the 
study2  that introduced the stepwise mutation model  and 

compared simulated allelic distributions to expectations 
under the infinite alleles model. They have also been used 
as a complement to analytical models based on approxi- 
mations that needed verification3. As the use of molecu- 
lar data and interest in statistical methods increased, so 
did the need to evaluate the performance of these meth- 
ods with synthetic data (for example, REF. 4). The emer- 
gence of coalescent theory5,6 provided new impetus to the 
use of simulations to estimate parameters7, to compute 
parametric bootstrap confidence intervals8 or to compare 
models9. However, simulation use was circumscribed to 
a small community that had the skills to design and code 
software. In the past decade, standalone simulation pro- 
grams have become available, allowing non-specialists 
to address an ever-widening range of evolutionary, 
epidemiological and conservation problems. 

Current simulation programs have achieved a sophis- 
tication level that matches modern genetic, historical and 
ecological data sets. For example, some generate pseudo 
data collected at multiple time points that are similar 
to data from a collection of museum  specimens or 
ancient DNA10. Others generate hundreds of DNA mark- 
ers or chromosome-length stretches of sequence under 
particular recombination and mutation models11,12; these 
are useful in the genomic age. Some programs model life 
cycle, mating system and even phenotypes, allowing the 
incorporation of phenotypic13, geographic14, ecological15 

and life history16  data. Thus, simulation programs are 
truly multi-disciplinary. However, they have a wide array 
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Stepwise mutation model 
A mutation model  in which the 
allelic states produced by 
mutation depend on the initial 
state of an allele. The basic 
version assumes mutations 
between adjacent states, but 
other versions  allow larger 
mutational changes. This 
model is commonly used 
to model  the microsatellite 
mutation process. 

 
Infinite alleles model A 
model  in which each 
mutational event  creates 
a new allele that  is unlike 
any other that  is currently 
present in the population. 

 
Coalescent theory 
A theory describing the 
genealogy of chromosomes 
or genes. The genealogy is 
constructed backwards- 
in-time, starting with the 
present-day sample. Lineages 
coalesce until the most  recent 
common ancestor of the 
sample is reached. 

 
Parametric bootstrap 
confidence intervals 
These measure the accuracy of 
sample estimates using a 
bootstrapping approach where 
a parametric model  is fitted 
to the data, and samples of 
parameter values are drawn 
from this fitted model. 

 
Population viability analysis 
(PVA). A probability-based 
modelling  approach for 
assessing the future potential 
(such as reproduction and 
extinction) of populations 
or species. 

of options, capabilities, limitations, input formats and 
assumptions. Without a coherent guide, they are liable 
to misuse and are unlikely to achieve a wider use. Unlike 
previous reviews17–19 that addressed technical issues, our 
goal is to connect particular simulators to particular 
research topics. We emphasize that simulations power- 
fully complement theoretical and statistical approaches 
for understanding genetic variation patterns. 

First, we present an overview of the research problems 
that can be addressed by simulation and then provide a 
step-by-step guide to designing a simulation-based study. 
We describe the capabilities of 42 simulation packages 
(TABLE 1; Supplementary information  S1,S2  

 

(tables)). 
No simulator is an ‘all-around’ solution; this section and 
the accompanying tables will help the readers to match 
a simulator to their needs. We also explain the distinc- 
tion between forwards-in-time simulations (also known 
as individual-based simulations) and backwards-in-time 
simulations (also known as coalescent simulations) (BOX 1) 
and explain which investigations each approach is suited 
for. We close with a discussion of practical issues, com- 
mon problems and future improvements.  Note that 
the links to the Web pages and references for all of the 
software packages described in this paper are listed in 
Supplementary information S1 (table). 

Potential applications 
We distinguish three main applications of population 
genetic simulations: predictive, statistical inference and 
evaluation of statistical genetics methods. 
 
Predictive uses. Most scientific theories are built on 
mathematical models that predict outcomes under spe- 
cific, pre-defined assumptions. Although they provide 
transparent  analytical results, such models become 
mathematically intractable under realistic ecological 
and genetic scenarios, or they may use approxima- 
tions that have an uncertain impact. Simulations avoid 
this problem and are an ideal complement to analyti- 
cal approaches. Thus, they have become an established 
predictive tool in theoretical evolutionary biology for 
addressing problems such as the evolution of sexual 
reproduction20  and speciation theory 21,22. However, 
they are equally applicable in conservation genetics and 
genetic epidemiology, so here we explain their use in 
these settings. 

Conservation, management and restoration of threat- 
ened or economically important  species is complicated 
by many factors, including climate change, disease and 
exploitation. Typically, the goal is to predict the probable 
genetic impact of future ecological change or possible 
human interventions. A common approach is to simu- 
late populations under various scenarios, to monitor 
them for genetic variation statistics that are considered 
relevant and to identify parameter values (for example, 
migration rates) under each scenario that allow a goal 
to be achieved. Examples include: evaluating the genetic 
consequences (for example, inbreeding, fecundity and 
genetic diversity) of maintaining  a barrier between 
populations of European bison23; determining the mini- 
mum population size and immigration rates required 

to maintain  heterozygosity in Yellowstone wolves24; 
determining the number of colonies required to main- 
tain sex allele variation in managed bee populations25; 
and predicting the genetic impact of population reduc- 
tions (for example, harvesting26  and poaching27). These 
problems have been addressed using forward simulators 
(BOX 1), such as Vortex and BottleSim. Genetic viability 
analyses complement  more traditional  demographic 
population viability analysis (PVA), reflecting an increas- 
ing recognition that both genetic and demographic fac- 
tors contribute to population extinction. Simulations can 
be parameterized with information collected from field 
studies of endangered species, including demography 
and environmental variables28,29. 

Predictive simulations are also useful in genetic epi- 
demiology. An early application investigated how inter- 
generational differences in tobacco consumption  could 
bias segregation analysis that is aimed at estimating the 
underlying genetic basis of lung cancer. It used an ad 
hoc program that simulated pedigrees and assumed an 
autosomal dominant  mode of susceptibility to the dis- 
ease30. More recent applications evaluate the plausibil- 
ity of more general disease models. For example, the 
common disease–common variant (CDCV) hypothesis 
states that common diseases should have a few common 
alleles at each disease-susceptibility locus, but the neces- 
sary demographic and genetic conditions for the CDCV 
are debated. Forwards-in-time  simulations have been 
used to test this hypothesis under two models — equi- 
librium and expansion — with a variety of parameters 
for mutation, migration, selection and genetic architec- 
tures31. SimuPop12  was used to consider complex selec- 
tion models and to obtain samples of the allele frequency 
spectra at multiple time points. Simulations under a 
model matching  our current  knowledge of human 
evolutionary history (recent expansion leading to non- 
equilibrium  conditions)  explains the high diversity 
of rare diseases well and gives support to the CDCV 
hypothesis. However, the >2,000 common  variants 
linked to common diseases that have been uncovered by 
genome-wide association studies (GWASs) explain only 
a very small fraction of their estimated heritability32. 
Simulation studies are helping to explain this so-called 
‘missing heritability’ phenomenon. A recent study33 used 
Genome to simulate the genealogy of a population in 
which some individuals had rare variants associated with 
a disease. This study shows that weak signals detected 
for common  variants could come from the effect of 
rare ones that could have large effects but that remain 
undetected by GWASs. 

Simulations have also been used to explain several 
features of major histocompatibility complex (MHC) 
diversity, including the close associations between par- 
ticular human leucocyte antigen (HLA) haplotypes and 
a large number of human pathologies that are due to 
partially recessive mutations34. A more general epide- 
miological study used forward simulations to show that 
historical bottlenecks can produce an excess of segre- 
gating damaging alleles, possibly explaining why human 
populations  have a higher proportion  of deleterious 
mutations in Europe than in Africa35. 

http://www.nature.com/nrg/journal/v13/n2/suppinfo/nrg3130.html�
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Table 1 | Capabilities  of simulators 
 

Program SECsa M/Db MSc Fecd LCe PGf Eventsg Selectionh Mutationi Recj 
Backward simulators 
AquaSplatche P, 1D SS, E, DD RM RD NA L(Poi) ‡ NS M(G), RF, Seq(K2, J), 

SNP, TB, H 
N 

Splatche P, 2D SS, E RM RD NA K, L ‡ NS M(SMM), RF, 
Seq(K2, J), SNP, 
TB, H 

N 

CoaSim  UD RM RD NA Ex, PSp PopS, GR, MM, 
FF, RP 

NS M(SMM, KA), SNP, 
UD 

Y 

cosi  UD RM RD NA Ex PopS, CE, MM SBS Seq Y, V 
CoalFace  NA(1P) RM RD NA Ex GR NS M(SMM), Seq(J, F81, 

K2, HK) 
N 

FastCoal  NA(1P) RM RD NA Ex GR NS SNP Y 
GeneArtisan  NA(1P) RM RD NA Ex NE SBS Seq(J), M(SMM) Y 
Genome  IM RM RD NA C, UD PopS, FF NS, MPG SNP, Seq Y, V 
IBDsim P, I, 2D SS, DK, 

IM, IBD 
RM RD NA C D, LS, DK NS M(KA, SMM, G, T), 

H, Seq(K2, J, HK), 
SNP 

N 

MaCS  IM RM RD NA Ex GR, MM, RP, 
FF, CE, PopS 

NS SNP Y 

ms  IM, UD RM RD NA Ex PopS, GR, 
MM, FF 

NS Seq Y 

mbs  IM RM RD NA Ex PopS, GR, 
MM, FF 

SBS, DS, B Seq, MH Y, V 

mshot  IM, UD RM RD NA Ex, PSp PopS, GR, 
MM, FF 

NS Seq Y, V 

msms  IM, UD RM RD NA Ex PopS, GR, 
MM, FF, RP, Sel 

SBS, Ep, G, 
TV 

S, K2 Y, V 

mlcoalsim  IM, UD RM RD NA L PopS, GR, FR SBS, DS Seq, MH, H Y, V 
Recodon  UD RM RD NA Ex FF NS Seq, TB, Co Y 
SelSim  NA(1P) RM RD NA C NE SBS, DS, B M(SMM), SNP Y, V 
Serial 
Netevolve 

 IM RM RD NA Ex PopS, FF NS Seq(F81, HK, GT, 
K2, J) 

Y, V 

Bayesian 
Serial SimCoal 
(BayeSSC) 

P, I, 2D UD RM RD NA UD, Ex, 
PSp 

PopS, GR, 
MM, FF, CE 

NS M(KA, T), RF, SNP, 
Seq, TB, H, TV 

N 

SimCoal2  UD RM RD NA UD, Ex, 
PSp 

PopS, GR, 
MM, FF, CE 

NS M(KA, T, G, SMM), 
RF, SNP, Seq, TB, H 

Y, V 

fastsimcoal  UD RM RD NA Ex PopS, GR, 
MM, FF, CE 

NS M(KA, T, G, SMM), 
SNP, Seq, MH, TB, H 

Y, V 

SNPsim  NA(1P) RM RD NA Ex, UD GR, RP NS SNP, Seq(J) Y, V 
Forward simulators 
BottleSim  NA(1P) RM, PS, CS, 

SM, SP 
RD O, T, AR, 

AM 
UD PopS NS NM N 

cdpop I, P SS, IBD, 
Sx, E 

RM, SP, Pg, 
Pa, M, CS, 
AS 

RD, Poi, 
CN 

O, AM C, PSp D, LS, Sel‡ SBS, MBS, 
EB, MMS, 
FS, ID 

M(KA, SMM) N, Y 

Easypop P, 2D SS(H), 
IM(H), IB 

RM, Pg(PE), 
M(PE), H 

RD NA C MM NS M(KA, SMM, T) Y 

ForSim I, 2D UD(H, 
SF) 

RM, AP Poi NA K, L Sel, CE, 
MM, 
GR 

MBS, DS, 
TS, MPG 

SNP Y 

ForwSim  NA(1P) RM RD NA C NE MPG, DS, B (Y) Y 
FPG  IM RM RD NA C NE MBS, DS, 

ME, Ep 
SNP Un 

FreGene  UD RM UDP NA K, Ex GR, MM, RP MBS, DS, B SNP, MH Y, V 
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Table 1 (cont.) | Capabilities of simulators 
 

Program SECsa M/Db MSc Fecd LCe PGf Eventsg Selectionh Mutationi Recj 
GenomePop/ 
GenomePop2 

P, 1D SS, IM, 
UD 

RM RD NA C, K PopS, FF MBS, DS, 
ME, CB, EB 

Seq(J, GT), SNP, 
Co, TB 

Y, V 

GenomeSimla  NA(1P) RM Un NA K, L, Ex NE Disease SNP Y, V 
Mendels 
Accountant 

P, 2D IM, SS RM, PS CN(FI) NA K, Ex PopS, GR MBS, DS, 
TS, ME 

Seq, H Y, V 

Nemo 2.2 P, 2D IM, Pr, 
SS, UD, 
Sx, H, 
IBD 

RM, SM, 
M, Pg, PS, 
CS, PE 

Poi, ND, 
CN 

NA K, UD, 
PSp 

MM, PopS, FF, 
EH(St), CE(St), Sel 

SP, EB, IF, ID, 
SBS, MBS, 
MMS, MPG, 
B, 
ME, TV, 
Disr 

M(KA, SMM), SNP Y, V 

QuantiNemo P, 2D IM, Pr, 
SS, UD, 
DD, Sx 

RM, SM, 
M, PG, PS, 
CS 

Poi, CN NA K, AS MM, PopS, Sel, 
E(St) 

MPG, DS, 
BM, TV, EB 

M(SMM), RIQ, H Y, V 

Pedagog  UD, DD, 
Sx, AS 

RM, M, Pg, 
Pa, Sx, AS 

CN, 
UDD, 
AI, Sx 

O, TM, 
AM 

K, L, Ex, 
AS 

PopS(St), EH MPS, DS, 
BM, Disr, B 

M(SMM), H N 

QMSim  UD RM, AP, 
MMI, SM, 
SP 

CN, UDP O, AR, 
PM 

C, UD PopS, FF, GR, Sel, 
F, DE 

MPG, TS SNP, M Y, V 

RmetaSim/ 
metasim 

P, 2D UD, AS RM, Sx, AS Poi, DI O, TM K F, MM, MP(St) NS M(SMM), Seq, H N 

KernelPop I, 2D DK RM, Sx, AS Poi, DI O, TM K F, MM, MP(St) NS M(SMM), Seq, H N 
SFS_Code  IM, UD, 

SS, Sx 
RM, PS, 
Sx, SM, 
CS, H 

RD, B, FI NA K, L, Ex, 
UD 

GR, FF, CE, PopS, 
Sel, MM, RP, DE, 
EH 

MBS, MMS, 
ME, CB, 
DS, B 

G, Seq(J, K2, GT, 
HK), MH, SNP, In, 
H, TB, Co 

Y, V 

SimuPop P, I, 2D IM(H), 
SS, UD, 
Sx 

RM, M, Pg, 
PS, H, PP, 
SM, Pa, 
AS* 

B, Poi, 
CN, Sx, 
UDD, FI 

O, AR, 
AM, PM 

UD MM, PopS, FF, RH, 
Sel, MP 

MBS, MMS, 
EB, ME, FS, 
CB, SP, MP, 
DS, B, TS, 
TV 

M(SMM, G, T), 
Seq(J, GT, K2, F81, 
H, T92), SNP, H, In 

Y, V 

Spip/ Spip_m  UD, Sx RM, PE, M, 
SM 

CN, AI, 
Sx, B 

AM, O, 
PM 

UD MM, PopS NS NM N 

Vortex  UD, Sx, 
AS 

Pg, M, Sx, 
AS* 

CN, 
UDD, AI, 
Sx, DI 

O, TM, 
AR, AM, 
PM 

K, PSp GR, PopS, EH, 
S(St), MM, CE 

IF, MMS Mitochondria 
only, K2 

N 

Additional information is included in Supplementary information S1,S2 (tables). Features in normal type are currently available; features in italics are planned 
to be released by approximately  February 2012. | aSpatially explicit considerations (spatial coordinates). Populations (P) or individuals (I) can be modelled on a 
lattice. 1D, 1-dimensional; 2D, 2-dimensional. | bMigration or dispersal. AS, age- or stage-specific; DD, density dependence; DK, dispersal kernel (for example, 
Weibull distribution); E, influenced by environmental factors; H, hierarchical structure possible; IM, Wright’s Island model; IBD, isolation by distance 
(exponential decay function); NA(1P), not applicable (single population modelled); Pr, propagule pool; SF, influenced by selective forces; SS, stepping stone; Sx, 
sex-specific migration rates; UD, user-defined matrix. | cMating system. AP, assortative based on phenotype; AS, age- or stage-specific; CS, complete 
self-fertilizing (selfing); H, haplodiploid; M, monogamous; Pa, polyandrous; PE, proportion extramarital; Pg, polygamous;  PP, defined per population; 
PS, partial selfing; RM, random  mating;  Sx, can define  specific  sex ratios; SM, single male; SP, single pair. *Also allowed are definitions of maximum breeding 
age and percent male and females able to breed. | dFecundity. AI, age-influenced; B, binomial distribution; CN, constant number; DI, density-influenced; 
FI, influenced by fitness; ND, normal distribution;  Poi, Poisson distribution; RD, random distribution; Sx, sex-influenced; UDD, user-defined distribution; 
UDP, user-defined probability;  Un, unknown. | eLife cycle. AR, user-defined age of reproduction;  AM, user-defined age of sexual maturity; NA, not applicable; 
O, overlapping; PM, user-defined percentage mortality at each stage; TM, user-defined transition matrices. | fPopulation growth. AS, age- or stage-specific 
carrying capacities; C, only allows constant size — size does not change (except at event times); Ex, exponential growth; K, carrying  capacity;  L, carrying 
capacity defined by logistic growth; PSp, population-specific; Poi, carrying capacity is determined each generation by a Poisson distribution; 
UD, user-defined population  size every time step. | gEvents allowed. CE, colonization or extinction (change in number of populations); D, density; 
DE, domestication  event; DK, dispersal kernel; EH, extinction or harvesting; F, fecundity; FF, population fission (splitting) or fusion (admixture); 
FR, colonization from a refuge; GR, population growth rate;  LS, lattice size; MM, migration  matrix; MP, mating probabilities (between sexes and stages); NE, no 
events; PopS, population  size; RP, recombination parameters; S, stocking from a captive source; Sel, selection strength; St, stochastic option (that is, events can 
be modelled to occur with a given probability). ‡The environment (friction and carrying capacity) can change at time points, which subsequently affects 
migration rates and population size. | hSelection. B, balancing selection; BM, built-in trait models (such as size, age at maturity, movement and survival); CB, 
codon-based selection; Disr, disruptive; DS, directional selection; Ep, epistasis; EB, environment-based or population specificity instead of global fitness; FS, 
frequency-dependent selection; ID, infection dynamics; IF, inbreeding affects fitness; ME, multiplicative effects; MBS, multiple biallelic sites; MMS, multiple 
multilocus selection; MPG, selection  on multiple phenotypes or genetic values (which are determined by quantitative trait loci (QTLs)); NS, no selection — only 
neutral markers; SBS, single biallelic site; SP, selection on single phenotype; TS, threshold selection removes all individuals with a phenotype above a threshold 
— stochastic selection removes individuals above threshold with set probabilities; TV, time variable. | iMutation. Co, codons; F81, Felsenstein 81; 
G, general stepwise mutation model; GT, general time reversible model; H, heterogeneity in mutation among sites; HK, HKY85; In, insertions or deletions (indels) 
allowed; K2, Kimura 2; J, Jukes Cantor; KA, k allele model; M, microsatellites; MH, multiple hits allowed; NM, no mutation; RF, restriction fragment length 
polymorphisms (RFLPs); RIQ, mutations at a QTL can have a random or incremental effect; Seq, sequence; SMM, strict stepwise mutation model; SNP, 
single-nucleotide polymorphism; T, two-phase model; TB, transition bias; TV, mutation rate can vary in time; UD, user-defined — user writes their own script; 
(Y), mutations allowed but parameters unclear. | jRecombination. N, no; Un, unknown; V, variation allowed by defining  hot spots or a genetic map; Y, yes. 
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Wright’s inbreeding coefficient, 
measuring the level of 
correlation between two genes 
drawn from an individual 
relative  to two genes  drawn 
from the population. Also 
defined as the probability that 
two alleles in an individual are 
both  descended from a single 
allele in an ancestor. 

 
Summary statistics 
Numerical values for 
summarizing the characteristics 
of a genetic data set; these 
often summarize features 
such as variability (number 
of alleles) or population 
differentiation (F  ). 

Statistical inference. The past decade has witnessed an 
increased interest in unravelling the evolutionary history 
of species, and simulations are crucial for inferring such 
histories. In particular, simulations have been embraced 
for inferring demographic expansion and migration in 
humans1,36,37. A common problem is to evaluate the plau- 
sibility of alternative hypotheses and to estimate demo- 
graphic and genetic parameters under the best-supported 
model. Typically, data are generated under alternative 
models of evolutionary history, and relevant population- 
genetics statistics (such as FST, number of alleles and FIS) 
are used to summarize each data set, creating a distri- 
bution of possible values under each scenario. Summary 
statistics obtained from observed data are matched to these 
distributions using a variety of ad hoc methods or, more 
recently, using approximate Bayesian computation (ABC), 
which is a general statistical approach that has revolution- 
ized the use of simulations for statistical inference (BOX 2). 

Simulations have been used for statistical infer- 
ence in evolutionary biology, ecology, conservation 
and epidemiolog y. An economically and ecologi- 
cally important  use is in estimating  demographic 
parameters  of species invasions. Examples include 
estimation of the number and source of founder 
individuals of the highly invasive American bull- 
frog (using RmetaSim)38  and inferring connectivity 
between recently established populations of an inva- 
sive, ecosystem-altering sea urchin (Centrostephanus 
rodgersii) and putative Australian source populations 
(using Splatche)39. Evolutionary uses include estimating 
the size and duration of bottlenecks40,41, migration pat- 
terns in fragmented seascapes or landscapes42  and the 
strength of selection at particular loci43. Demographic 
inferences are also possible: for example, to distin- 
guish a metapopulation  signal from that of popula- 
tion expansion44  (a goal that was later revisited using 
ABC45). Simulations have also been used to investigate 
species or population  divergence46,47  and the signal 

B  ox 1 | Forward and backward approaches 
 

The two categories of simulation algorithms, forward and backward, differ in 
approach, capabilities and computation times, so they are suitable for addressing 
different questions. 

Forwards-in-time simulators are centred on individuals: each individual in the 
simulated population (or populations) follows a life cycle (that is, birth, selection, 
mating, reproduction, mutation, migration and death). Looking forward, the 
demographic and genetic makeup of subsequent generations is determined by 
the current generation and a series of transition matrices16. This approach allows 
researchers to monitor changes in the genetic composition of a population analysing 
samples at specific time intervals. 

Backwards-in-time simulators take a lineage approach. For each gene, a sample of 
copies is followed back in time to the most  recent common ancestor. Backwards in 
time, lineages coalesce progressively with a probability that is influenced by features of 
the sample and the evolutionary history69,94,95. After the gene tree has been generated, 
mutations are added to the branches (following the mutation model chosen by the 
user). There are two strategies for this96 — to place mutations at a constant rate of θ/2 
along each of the branches (where θ is the population mutation parameter) or to place 
S mutations on the tree (where S is the observed number of segregating sites). 

Because the coalescent approach used in backward simulators only considers 
the genealogy of the sampled DNA fragments and not each single individual in the 
population, these simulators are generally faster (much faster when population sizes 
are large relative to sample size). However, this approach precludes life history 
modelling, so backward simulators are suited to inferential questions on an 
evolutionary timescale, and situations in which deviations from the reproductive 
scheme assumed by the Wright–Fisher model are minor47. Forward simulators are 
slower because they follow each individual, but they can model more complexity, 
making them more suited to predictive questions at a short timescale, particularly with 
well-characterized species28,29. Additionally, backward simulators are more limited 
than forward simulations for modelling natural or artificial selection. Currently, the 
backward simulators ms and SimCoal2 are the most widely used, probably owing to 
their flexibility and ease of use, as well as their speed. 

Another important difference is that forward simulations require defining initial 
conditions of genetic variation (each individual needs an initial genotype). This is a 
disadvantage when the starting point is relevant and no real data are available. In this 
case, the standard practice is to use fairly arbitrary initial conditions (for example, 
uniform allele frequencies) and to include a ‘burn-in’ period in each run during which 
no output is generated (sometimes this period can be thousands of generations). This 
allows the system to reach a stochastic equilibrium — that is, in which the final state 
of the system is not influenced by the initial conditions. Alternatively, the user can ‘seed’ 
the forward simulator with samples generated using backward simulators (for example, 

of recent versus ancient fragmentation  events48. The 
most popular  simulator  for these efforts has been 
SimCoal2. 

Epidemiological uses include exploring selective 
and demographic processes to explain the low effec- 
tive population size of HIV-1 (REF. 49)  and modelling 
tuberculosis transmission to estimate epidemiologi- 
cal parameters50.  Simulations have also been used 
to determine the strength of selection on particular 
loci43 and in plant and animal breeding for estimation 
of kinship coefficients51. 
 
Validating statistical methods. The expanding wealth 
of genetic data demands new statistical tools and meth- 
ods for summarizing data, estimating parameters and 
testing hypotheses. As these emerge, simulations are 
used for validation. Examples include methods for 
detecting bottlenecks52   or for estimating migration 
rates53. In testing methods, authors explore the effect 
of varying parameters, test the consequences of relax- 
ing the assumptions  of the underlying  model and 
estimate mean square errors (MSEs) or other quality 
indices (for example, REFS 54–57). Applications have 
included testing the power of several assignment tests 
under different levels of F   and marker variability 58, 

ST 
testing the efficiency and accuracy of Bayesian meth- 
ods for identifying hybrids or distinct population clus- 
ters59,60  and testing the effects of assuming panmixia in 
populations that actually exhibit limited dispersal and 
local structure61. Simulations are also used to infer the 
power of genome scan  methods62, of genomic selection 
methods for domesticated plants and animals63  and of 
association studies64,65, as well as being used to evalu- 
ate the accuracy of methods for predicting the indi- 
vidual genetic risk to disease66,67. It is also possible to 
analyse the sensitivity of summary statistics to changes 
in model parameters to identify the most informative 
statistics. For example, simulations were used to iden- 

RmetaSim can be seeded with output from SimCoal2); this strategy is termed the 
‘sideways approach’97. Any forward simulator that allows specifying initial allele tify FIS 

gen
 as a key summary statistic in distinguishing the 

signal of population subdivision from that of
 

frequencies as starting conditions could use this approach. 
etic 

bottlenecks45. 
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Bayesian 
A scientific paradigm that 
uses probability as a means 
of quantifying the analyst’s 
knowledge or uncertainty 
concerning the model  and/or 
its parameters, given the data 
observed. Given a particular 
model  described by a 
likelihood function,  the 
approach involves choosing 
a prior distribution and 
then updating this with the 
information provided by 

Box 2 | Approximate Bayesian computation: a formal way of comparing models 
 
Simulations are still used with a variety of ad hoc methods to evaluate the fit between observed and simulated data. 
Approximate Bayesian computation (ABC) is replacing these approaches and is different from the ad hoc pre-ABC 
methods in several important ways. First, ABC generates simulated data sets by drawing parameter values from prior 
distributions rather than using a fixed set of values, as is done in most pre-ABC work. For example, rather than running 
simulations with divergence times of 104, 5 × 104 and 105 years, the value for each ABC simulation is drawn at random 
from a prior distribution between 104 and 105, allowing better exploration of parameter space. Second, ABC rigorously 
estimates parameter uncertainty from the posterior distributions of parameters using specific algorithms. Additionally, 
ABC provides a formal framework for model comparison using Bayes  factors or deviance information criteria (DIC)98,99, 
which was not possible with pre-ABC approaches. ABC is also suited to post-analysis estimation of power and 
precision using pseudo data sets100,101. Its sophisticated nature presents an obstacle to new users, but several 
user-friendly packages are now available (for example, DIYABC and ABCToolbox). Technical details of ABC continue to 
be debated, including how to choose summary statistics100, compute indices for model comparison98  and combine P 
values across summary statistics100, but its use in addressing different questions is well-established98–101. 

the observed data. 
 

Most recent common 
ancestor 
In the case  of a sample 
of genes, this is the most 
recent gene from which all 
alleles in the sample are 

Other uses. Simulations can also be used to test the 
power of a particular population-genetics  sampling 
scheme (such as the number of loci and samples needed) 
to carry out a specific test68,69. When planning an experi- 
ment, simulations allow the evaluation of molecular and 
field resources needed to achieve a desired statistical 

60,70
 

remaining parameters are assigned values estimated by 
previous studies. For example, although simulations in 
Bruford et al.28  considered >20 parameters  (such as 
age-specific vital rates and population-specific carrying 
capacities), the authors only varied the translocation 
rate under scenarios with or without a gradual increase 

directly  descended. power ; after an experiment, post hoc power analyses in carrying capacity. The next step is to choose statis- 
 

Number of segregating sites 
The number of polymorphic 
sites in a sample of homologous 
DNA sequences. It measures 
the degree of DNA sequence 
variation that  is present in 
the sample. 

 
Assignment tests 
A broad category of methods 
whose goal is to determine 
with a degree of confidence 
the population of origin of 
individuals using genetic data. 

 
Panmixia 
The random mating 
of individuals within a 
breeding population. 

 
Genome scan 
Large-scale genotyping 
(thousands of markers) that  is 
usually used  to detect outliers 
such as regions of the genome 
under selection. 

 
Prior  distributions 
The probability distributions of 
parameter values before 
observing the data. They reflect 
the observer’s knowledge 
about what values the model 
parameters might take before 
having seen  the data. 

can help to interpret nonsignificant results71. The project 
ConGRESS, which is underway, will feature a simula- 
tion engine to assist in planning the sample scheme of 
conservation genetic studies. Another use is in teach- 
ing population genetics and evolution to help students 
explore simple and complex population  histories72–74. 
The graphical user interface of some simulators  is 
especially amenable to classrooms15,75. 
 
Designing a simulation study 
Simulation studies comprise several steps; a general 
guide is provided in FIG. 1. Although all three kinds of 
application involve defining the genetic and demo- 
graphic scenarios that are under consideration  and 
choosing an appropriate simulator based on these, each 
application differs in several important  aspects (FIG. 2). 
Here we focus on using available software tools, and we 
do not provide a blueprint for validating methods, as we 
feel that most users who are interested in method devel- 
opment are already familiar with the steps involved (for 
examples, see REFS 53,55,76,77). 
 
For predictive uses. Simulations have been used for pre- 
dictive purposes in a range of disciplines, but the steps 
that need to be followed are the same. Here we use an 
example from conservation genetics to describe them. 
The first step is the definition of scenarios correspond- 
ing to different conservation strategies (or theories in 
the case of epidemiological or evolutionary applica- 
tions). Bruford et al.28 focus on a population of orang- 

tics to monitor the outcome. In this case28, the authors 
used probability of extinction, final population  size, 
expected heterozygosity, inbreeding coefficient and level 
of genetic differentiation. 

After completing the first three steps, the simulator 
must be chosen. Bruford et al.28 chose Vortex because 
they required a simulator that allows the consideration 
of life history information and modelling of inbreeding 
effects on fecundity (see the discussion below on the 
capabilities of simulators). Next, before running the sim- 
ulations, it is necessary to choose the number of replicate 
runs and, for forward simulations, the length (number 
of generations) of each run. This may be hundreds for 
conservation applications or thousands or more for evo- 
lutionary applications. Forward simulators (BOX 1) that 
model many life history parameters are computationally 
demanding and can limit the number and length of runs. 
Also, some applications require starting allele frequencies 
to initialize the simulations. 

After simulations have been completed, the next 
step is to analyse pseudo data with population genetic 
data analysis software to quantify the outcome using 
the chosen summary statistics. All replicate runs gen- 
erated need to be processed, so software that allows 
batch analysis is required (for example, Arlequin78  or 
Genepop79). However, some simulators (such as msms, 
mlcoalsim, SimuPop and a soon-to-be-released version 
of cdpop) integrate data analysis features that meet all 
the needs of a study. Results can be described using the 
mean and variance of the summary statistics (as dis- 

28
 

 
Posterior distributions utans that inhabit a fragmented riparian forest with cussed by Bruford et al. ) across replicate runs under 
The conditional distributions of 
the parameter given the 
observed data. They reflect 
both the likelihood of the data 
and the prior distribution. They 
represent what we know about 
the model  parameters, having 
observed the data. 

low population  connectivity, resulting in inbreeding 
and population  decline. The authors  consider four 
management actions: translocation, migration corridors, 
both translocation and migration corridors, and no inter- 
vention. The second step is to define the range of parame- 
ter values to explore. Although the number of parameters 
can be very large, few need to be explored in detail; 

each scenario considered, but there are many other 
ways of describing the distribution of summary statis- 
tics (for example, quantiles, median, mode and skew). 
With these, it is possible to compare the outcome of the 
different management scenarios (or, in general, the dif- 
ferent hypotheses or models) considered and to draw 
conclusions. In their study, Bruford et al.28 found that 

http://www.congressgenetics.eu/page.aspx?SP=About&amp;about2�
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Bayes  factors 
The relative  odds that  the 
hypothesis is true before 
and after examining the data. 
Calculated as the ratio 
of the prior probabilities of 
the null hypothesis versus the 
alternative hypothesis over 
the ratio of the posterior 
probabilities. 

 
Deviance information 
criteria 
(DIC). A method of model 
comparison or selection in 
which increased fit owing to 
addition of terms is balanced 
by a penalty for each 
additional term. 

 
Carrying capacities 
The maximum population size 
of a species that  a habitat can 
sustain. It is determined by 
availability of space and 
resources. 

 
Admixture 
The interbreeding of 
individuals issued  from 
two or more distinct 
populations or species. 

non-intervention led to rapid extinction, but the exclu- 
sive use of either translocation or corridor establishment 
was insufficient to prevent inbreeding and extinction. 
The authors concluded that a mixed strategy is essential. 
 
For statistical inference. Simulations may be used for 
statistical inference at a wide range of temporal and spa- 
tial scales, but the procedure is the same. Here we use an 
example from evolutionary genetics — the divergence 
between gorilla subspecies47 — as an illustration. The 
first step is to define alternative models of genetic and 
demographic history and associated parameters (such 
as divergence times and population sizes). The second 
step is to choose values for the parameter combinations 
that will be considered. Thalmann et al.47 defined three 
 
 
 

Identify the major goal of the simulations 
(Figure 2, row 1, different columns) 

 
 
 

Define the scenario or develop the model 
(Figure 2, row 2) 

 
 
 

Identify the parameters of the scenario or model 
(Figure 2, row 2) 

 
 
 

Decide what will be monitored in the simulations 
(Figure 2, row 3) 

 
 

Decide between forward and backward simulators 
(Figure 2, row 4; Figure 3; Table 1; Box 1; 
Supplementary information) 

 
 

Choose the specific simulation program 
(Figure 2, row 4; Figure 3; Table 1; Box 1; 
Supplementary information) 

 
 

Run the simulations 
(using real data if appropriate; Figure 2, rows 5–6) 

 
 
 

Analyse the simulated data 
(Figure 2, row 7) 

 
 
 

Compare real and simulated data, if appropriate 
(Figure 2, row 8) 

 
 
 

Reach conclusions 
(Figure 2, row 9) 

 
Figure 1 | Overview of simulation studies. A flow 
diagram of the steps in a simulation study. Further 
information about the various stages is provided in this 
Review, as indicated on the figure. 

models of connectivity following a split between eastern 
and western gorillas: equal migration, no migration and 
asymmetrical migration. Parameters included the timing 
of the split and the population size for each subspecies. 
The relevant parameter space is user-defined based on 
prior knowledge, such as field data. Users should explore 
a wide and realistic range of parameters and assump- 
tions. Thalmann  et al.47  used historical information 
(specifically, climatic changes that result in contraction 
of forest habitat) to set upper and lower bounds on the 
timing of the split. A pre-ABC or ABC algorithm can be 
chosen to explore the parameter space. The traditional 
pre-ABC approach is to choose a default set of parameter 
values and, varying one parameter at a time, to create a 
grid of parameter combinations covering a portion of 
the parameter space deemed relevant. As with all simu- 
lations, some assumptions  are necessary; the model 
used by Thalmann et al.47 assumed constant growth rate 
over time. 

Next, the user chooses summary statistics for com- 
paring pseudo data and real data. The chosen statistics 
should be informative for distinguishing among com- 
peting scenarios that are under consideration45  and 
should be strongly influenced by the parameters to be 
estimated. For example, FST is influenced by migration 
rates and population size, the number of alleles is influ- 
enced by bottlenecks, and FIS is influenced by admixture 
or inbreeding. Thalmann et al.47 used nucleotide diversity 
(π) and FST and chose the backward simulator SimCoal2 
owing to its speed and ability to simulate DNA sequences, 
multiple populations and changing migration matrices. 
The number of simulations to run depends on the num- 
ber and complexity of alternative models and on the 
computing resources available; typically between 102 and 
104  runs38,46–48  are used with the pre-ABC method 
and ~106 with ABC. 

As with predictive uses, analysis of pseudo data 
produces a distribution of summary statistics for each 
model. To compare these distributions to the statistics 
calculated from the real samples and to identify the 
model that best matches the observed data, several ad 
hoc methods exist. It is possible to determine where 
the observed values of the summary statistic fell on the 
distribution of simulated values in order to obtain a P 
value38,39. Thalmann et al.47 put the observed values into 
a linear regression equation obtained from the pseudo 
data sets (for example, time of split on FST) to identify 
the particular values of parameters. These ad hoc pro- 
cedures are in the process of being replaced by the ABC 
approach (BOX 2). 
 
Choosing simulation software 
Simulation programs differ greatly in the evolution- 
ary and demographic scenarios that they consider. In 
this section, we classify the areas of interest that can 
be addressed using simulations into five categories: 
historical events, migration, life cycle and population 
growth, recombination  and/or mutation and selection 
and/or phenotype. For each category, we describe avail- 
able options (FIG. 3; TABLE 1). We suggest that the gen- 
eral categories in FIG. 3 should be used to choose several 
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Start Predictive Inferential Validation 
 
 

Define scenario parameters 
of interest and the values 
to simulate 

Parameter space defined by the 
theoretical question and practical 
concerns 

Parameter space defined by prior 
knowledge (such as historical) 
on the competing hypotheses 

Parameter space defined to 
encompass most probable uses of 
the proposed statistic or method 

 
 
 

Choose appropriate 
summary statistics (SuSts) 

SuSts are used to monitor the 
outcome; they should measure 
the main properties of the 
system under investigation 

SuSts are used to compare real 
and simulated data; they should 
be informative about parameters 
and models being considered 

SuSts correspond to the point 
estimates (MLE, mean,  median 
or mode) obtained by the 
method under evaluation 

 
 

Choose an appropriate software package for this scenario 
 
 

How to use real 
data if available 

Not necessary but may be used 
to seed forward simulation 

Necessary for comparison 
with the simulated data 

Not necessary, but real data sets 
may complement simulations 

 
 

Use simulation tool to create many pseudo data sets 
 
 
 

Analysis Use population-genetics software 
to calculate SuSts on pseudo data 

Use population-genetics software 
to calculate SuSts on pseudo data 

Calculate measures of accuracy 
and precision from pseudo data 

 
 
 

Examine pseudo data 
and reach conclusions 

Analyse the stochastic variance 
of the predictions and contrast 
the outcomes of the different 
scenarios 

Compare SuSts from pseudo data 
to SuSts from real data to identify 
the models or parameters that are 
consistent with the observations 

The bias and error under different 
scenarios help to identify the 
region of parameter space for 
which estimates are reliable 

 
 

Finish Figure 2 | Designing predictive, inferential  and validation simulation studies. The left-hand  column indicates 
the steps in simulation study design, and the other columns show the similarities and differences in designing 
predictive, inferential and validation studies. Grey boxes designate actions that are applicable to all; coloured 
boxes denote differences. MLE, maximum likelihood estimation. 

 
 

possible simulators, and then the details in TABLE 1 
should be used to decide on the most appropriate. 
Trade-offs are apparent, as most simulators specialize 
in detailed modelling of demography and/or ecology 
or genetic architecture. When applicable, we mention 
‘speciality’ software programs that address a particular 
challenging or emerging topic. Supplementary informa- 
tion S1 (table) provides a list of original citations and (if 
available) a case study that incorporates the simulator, 
whereas Supplementary information S2 (table) provides 
a short description of all of the simulators we review. 
Readers should bear in mind the major methodological 
distinction between forward and backward simulators 
(BOX 1), as this difference strongly affects the choice of 
simulator for a specific study. 

 
Historical events. One reason for the development of 
the simulation approach has been to improve under- 
standing of the dynamics of genetic variation when the 
effect of multiple events over time is difficult to pre- 
dict with classical population-genetics  models. Most 
programs allow several historical events — including 
population size changes, population fusion or fission 
and speciation (TABLE 1). Typically, users need to con- 
sider the timing, length, intensity and sometimes the 
spatial location of events. Often they need to compare 

the effect of a particular event or sequence of events 
with the expected outcome under a null model, such 
as constant population size over time. Four simulation 
programs are of note. BottleSim simulates bottleneck 
dynamics in a single population of long-lived organisms 
with multiple overlapping generations (for example, for- 
est trees). Splatche and AquaSplatche simulate coloniza- 
tion and spatial expansions, and they model changes in 
the environment  (for example, fragmentation), rather 
than direct changes to population  sizes and migra- 
tion rates, allowing increased ecological realism. Last, 
IBDsim allows changes in both the population density 
and size of the ‘world’, which are fixed quantities in most 
simulators. 

Historical events can be deterministic or stochastic. 
Most programs allow for deterministic events, but sev- 
eral forward simulators explicitly address stochasticity, 
in that events do not necessarily occur at specific time 
points; this is useful in simulating fragile environments, 
disease outbreaks or climatic instability. RmetaSim, 
KernelPop and Vortex allow for stochasticity in timing 
and order of historical events, Nemo and QuantiNemo 
allow for stochasticity in extinction and harvest events, 
and Pedagog allows events to occur at any generation 
with a set probability, which is useful for recurring 
disturbances (such as fire and hurricanes). 
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a b c d e f 
 

Life history Demography Selection 
 
Migration  Recombination 

 
Suitable simulators 

 
Complex 

Complex 

Complex 

Complex 

Complex 

Complex 

Complex 

Complex 

Complex 

Complex 

Complex 

Complex 

Complex 

Complex 

Complex 

Complex 

Complex 

Complex 

Basic 

Basic 

None 

Complex 

Basic 

Basic 

None 

Complex 

Basic 

Complex 

Yes, var 
 
Yes Yes, 

var Yes, 

var No 

Yes, var 
 

Yes 

QuantiNemoe,v 

ForSim 

SimuPope,v 

QMSim 

Vortex 

SFScodea 

Easypop 
 

Complex 
 
Complex 

 
None 

 
Complex 

 
No RmetaSim   KernelPop 

 
Spip 

 
Complex 

 
Basic 

 
Complex 

 
Complex No 

 
Pedagog 

 
Complex 

 
Basic 

 
Complex 

 
Basic 

 
Yes, var 

 
Mendels Acc 

Complex 

Complex 

Complex 

Basic 

Basic 

Constant 

Complex 

None 

None 

Basic 

None 

None 

Yes 

No 

No 

Nemoe 

BottleSim 

cdpop 
 

Basic 
 
Complex 

 
None 

 
Complex 

 
No AquaSplatchee 

 
Splatchee 

 
IBDsim 

 
Basic 

 
Complex 

 
None 

 
Basic 

 
Yes, var 

 
SerNetEvolve 

 
fastsimcoala 

 
SimCoal2 

 
Genome 

 
mshot cosi 

Basic 

Basic 

Basic 

Complex 

Complex 

Complex 

None 

None 

Basic 

Basic 

Basic 

Basic 

 
Yes 

 
No 

 
Yes, var 

Coasim 

BayeSSCa 

mlcoalsim 

 
ms 

 

 
 
mbs 

 
Basic Complex 

 
Complex 

 
Basic Yes, var msms 

Basic 

Basic 

Basic 

Basic 

Basic 

Basic 

Basic 

Basic 

Basic 

Basic 

Basic 

None 

None 

None 

None 

Basic 

Basic 

None 

None 

None 

 
Yes, var 

Yes, var 

Yes, var 

Yes 

No 

 
GenomePop 

MaCS 

SNPsim 

FastCoal 
 
CoalFace 

Basic 

Basic 

Basic 

Basic 

 
Constant 

Constant 

Constant 

Constant 

Complex 

Complex 

Basic 

Basic 

 
Basic 

None 

Basic 

None 

 
Yes Yes, 

var Yes, 

var 

Yes, var 

FPG 

GenomeSimla 

FreGene 

SelSim 
 

Basic 
 
Constant 

 
Basic 

 
None 

 
Yes 

 
ForwSim 

 
Gene Artisan 

 
Figure 3 | Decision matrix for choosing a simulator. The figure presents 
a decision matrix with four categories to help the user match a simulator 
to their objective and study system. Details of the simulators are in TABLE 1 
and Supplementary information S1,S2 (tables). The user can choose an 
option in each column, starting on the left, and appropriate simulators are 
given on the right. a | Life history options. Basic, discrete generations and 
random mating within demes; complex, overlapping generations, 
complex mating or age-, stage- or population-specific fecundity. 
b | Demography options. Complex, changes to environment, migration or 
density or population fusion or fission; constant, constant population 
size; basic, changes in population size or growth rate. c | Selection 
options.  Basic, directional and/or balancing selection; complex, 
selection that is environment-based,  time variable, epistatic, frequency 

dependent, and so on; none, no selection. d | Migration options. Basic, 
user-defined matrix, stepping stone and/or Wright’s island model; 
complex, spatially explicit, density dependence, selective, age, sex or 
environmental effects; none, no migration. e | Recombination options. 
No, there is no recombination; yes, recombination rate is constant across 
sites; yes, var, variation in recombination rates (for example, hotspots) 
among sites possible. f | Simulators in grey boxes are backward 
simulators, and those in white boxes are forward simulators. 
Bold-bordered boxes have graphical user interfaces (GUIs), dashed lines 
require writing scripts in R or Python, and single grey lines use command 
lines. Several special features may be key to decision making; these are 
indicated by superscript letters: a, ancient DNA; e, environmental effects 
on selection or migration; v, time-  or frequency-variable selection. 
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Wright’s island model 
A population-genetics model 
in which all populations are 
of equal  size and contribute 
equally  to a global migrant 
pool, from which each 
population draws an equal 
proportion of immigrants 
each  generation. 

 
Hierarchical island model 
A variation on Wright’s island 
model  in which local sets  of 
populations are connected 
to each  other by a relatively 
high migration rate  and to 
other local sets  of populations 
by a relatively  low rate. They 
are well-suited to modelling 
species that  are distributed 
over several  continents. 

 
Geographic information 
system 
(GIS). A collection of spatially 
referenced data, such as 
geographical and altitudinal 
coordinates of individuals. 

 
k allele model 
A mutation model  in which 
each  allele can mutate to any 
of the other k – 1 possible 
alleles with equal  probability. 

 
Sequential Markov 
coalescent 
A simplified genealogical 
process that  aims to capture 
the essential features of the 
full coalescent model  with 
recombination while being 
scalable in the number of 
loci. Computation time is 
saved by only accounting 
for coalescence between 
lineages without  overlapping 
ancestral material. 

Life histories. Organisms differ widely in life cycle and 
reproductive biology, including in lifespan, mating sys- 
tem, sex ratios and age structure. Backward programs 
focus on genes rather than on individuals and only allow 
very simple customization of life history (BOX 1); thus, 
forwards-in-time  simulations are mainly considered 
here. In FIG. 3, we broadly classify simulators into ‘basic’ 
and ‘complex’ for life history, and TABLE 1 provides more 
detailed information about their capabilities. 

Several programs  (including  BottleSim, cdpop, 
RmetaSim, KernelPop, Pedagog and Vortex) allow an arbi- 
trarily complex life cycle with multiple overlapping stages 
that differ in survival, fecundity and dispersal capabilities; 
these are useful for simulating long-lived plant and animal 
species. The other programs assume two-stage lifecycles 
(non-reproductive juveniles and reproductive adults). The 
simplest mating scheme is a hermaphroditic species with 
random mating and a set proportion  of self-fertilizing 
(‘selfing’), but some simulators consider polygamy, poly- 
andry, monogamy and other complex mating behav- 
iours (TABLE 1), enabling species-specific customization. 
SimuPop is unique in allowing the mating system to vary 
across populations; for example, it allows different selfing 
rates in different populations, which is the case for many 
partial-selfing plants (such as Arabidopsis spp.). ForSim 
and QMSim allow phenotype-based assortative mating. 

Life history is also modelled through fecundity and 
population  growth parameters.  Generally, forward 
simulators model growth based on individual density- 
independent  fecundity up to a carrying capacity, but 
Vortex, RmetaSim and KernelPop allow fecundity to 
depend on density and/or selective pressures. Pedagog 
is the only simulator to offer carrying capacities for 
each age or stage group, which is useful for strongly age- 
structured species. Splatche and AquaSplatche simulate 
spatial expansions by allowing populations over their 
carrying capacity to ‘overflow’ into empty adjacent pop- 
ulations. Fecundity is typically Poisson-distributed,  but 
some simulators (namely, Pedagog, Vortex and SimuPop) 
allow the use of distributions that are more appropriate 
for organisms with a high potential reproductive out- 
put and a wide variance in reproductive success (for 
example, fish and plants). Backward simulators cannot 
model fecundity, because they are not individual-based, 
and so they generally consider constant  population 
size or logistic or exponential growth. 
 
Migration. The simplest migration model that is imple- 
mented by simulators is Wright’s island model80, which can 
be considered to be a null model against which other 
more complex models are compared. Most simulators 
allow a user-defined matrix of migration rates between 
each pair of populations, or they allow the stepping stone 
model, in which migration only occurs between adja- 
cent populations (TABLE 1). There are numerous other 
possibilities (TABLE 1) — for example, a hierarchical island 
model  (using Easypop or SimuPop), a propagule-pool 
migration model, in which immigrants to a given patch 
all originate in the same source patch, rather than in 
a migrant pool (using Nemo) and others. Usually, the 
migration matrix can be changed as a historical event. 

Several programs have been tailored to interest- 
ing, challenging migration and dispersal scenarios. In 
Splatche and AquaSplatche, the environment  quality 
(defined by a user-provided geographic information system 
(GIS) format file) is described by a ‘resistance’, which 
reduces optimal migration rates by reducing the survival 
of migrants; this is useful for a heterogeneous environ- 
ment (for example, fragmentation). In KernelPop and 
IBDsim, every individual has a particular spatial coor- 
dinate, rather than being a member of a population, and 
offspring move away from parents according to a dis- 
persal function, as in continuously distributed species 
or in those with long-distance dispersal. Easypop offers 
an isolation-by-distance model, in which migration rates 
exponentially decay with increasing distance, and Nemo 
and QuantiNemo  allow different migration rates for 
low and high population density. 
 
Recombination  and mutation. Nearly all simulators 
allow mutation, but they differ in the mutation models 
considered. Most implement the infinite alleles model 
and/or the k allele model. A number of simulators (TABLE 1) 
also model microsatellites (using various stepwise 
mutation models), SNPs and/or sequence data (includ- 
ing transition bias and heterogeneity in mutation rates 
among sites). In general, SNP data are simulated as sim- 
ple biallelic loci; FreGene, and to a lesser extent SimCoal2 
and CoaSim, can simulate ascertainment  bias. Few 
programs simulate amplified fragment length polymor- 
phisms (AFLPs) or restriction fragment length poly- 
morphisms  (RFLPs). Mutation  rate may be constant 
across loci or may be drawn from a distribution  (for 
example, gamma distribution for microsatellites). Only 
SFScode models insertions and deletions. 

A common  feature of simulators  is to consider 
recombination; this is done by including either a con- 
stant rate across loci or hotspots of recombination. Some 
simulators allow definition of the location and distance 
between each marker  (such as SelSim, SimCoal2, 
QuantiNemo,  SimuPop and FreGene). Until recently, 
backward simulation of entire genomes was impracti- 
cal because, when going back in the past, recombining 
DNA sequences could join (owing to coalescence) but 
could also split (owing to recombination); thus, forward 
simulations were preferred63,81. However, the sequential 
Markov coalescent82,83 process, which is an approximation 
of the coalescent model (which is implemented in MaCS 
and fastsimcoal), has solved this problem of recom- 
bination increasing the speed of backward genomic 
simulators. 

Users with basic bioinformatic skills can post-process 
simulation output to implement mutation or recombina- 
tion models that are not directly supported by the sim- 
ulator (for example, see REF. 84, or see Supplementary 
information S2 (table) for further information about its 
implementation  in ms2ms) or to modify the simulated 
data sets to introduce biases that are specific to certain 
markers or sequencing techniques (for example, SNP 
ascertainment bias). A modular approach — linking a 
simulator to another piece of software — can completely 
cover an individual researcher’s needs. 
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Selection and phenotypes. Modelling selection has vari- 
ous uses, including association studies31, quantitative trait 
locus (QTL) mapping and removing outlier loci from 
studies of neutral processes. The coalescent limits back- 
ward simulators to simple selection on single biallelic sites, 
but more than half of the forward simulators incorporate 
selection (TABLE 1) to varying degrees, some being quite 
complex. Because these simulators focus on individuals, 
selection is modelled at the phenotypic or genotypic level, 
on multiple sites for more than two alleles per site and on 
traits controlled by QTLs. Selection can be modelled with 
either multiplicative or epistatic effects (such as in FPG), 
can vary through time (such as in QuantiNemo)  or can 
interact with the environment at the population level (such 
as in Nemo). Additionally, because pedigrees are known, 
selection that is due to inbreeding depression or deleteri- 
ous mutations can be modelled (such as in Vortex and 
Nemo). There are many specialized approaches, includ- 
ing codon-based selection (implemented in GenomePop), 
species interaction between a parasite and its host (using 
Nemo), population-specific selection (using FreGene), 
overdominance (using FreGene), frequency-dependent 
selection (using SimuPop) and variance in effect sizes 
(using Mendels Accountant). For users with little exper- 
tise in genetics, Pedagog has built-in models for evolution 
of selected phenotypic traits (such as size, age at maturity, 
movement and survival). One specialized piece of soft- 
ware17  (GenomeSimla) simulates large-scale genomic 
data in population based case–control samples. 

 
Practical considerations 
Interface. Simulation packages differ in input and output 
(Supplementary information S1 (table)). Most packages 
run from the command line; model parameters are pro- 
vided in a text input file or as command line arguments. 
Others have a graphical user interface (GUI) for the 
input of parameters using text boxes, radio buttons, and 
so on. Command line interfaces are more amenable to 
batch analyses and incorporation in a software pipeline 
and are usually available on multiple operating systems. 
Parameter input files are also useful when creating many 
scenarios that differ at only one or two parameters. GUIs 
may be easier for novice computer users. Graphical out- 
put also facilitates quicker exploration, presentation and 
communication of results but provides less access to raw 
data. Several simulators are coded in high-level program- 
ming languages. For example, RmetaSim runs within R, 
enabling access to the analysis and plotting functions of 
R and genetic packages such as ade4. SimuPop and CoaSim 
are coded in Python and use R graphical functions. 

All programs output genotypes, haplotypes or allele 
frequencies, which are usually formatted for further 
analysis with specific software packages. Additional 
output may include data on genetic diversity and dif- 
ferentiation,  demography,  selection, phylogenetics, 
mutation and pedigrees. A few programs offer an inter- 
active graphical tool for visualizing data trends (for 
example, Splatche, AquaSplatche, Vortex and Mendels 
Accountant).  Mlcoalsim implements  a large num- 
ber of statistical tests (for example, neutrality tests). 
Some forward simulators collect output  information 

at user-defined  time points rather  than only at the 
simulation end (TABLE 1; Supplementary information S1 
(table)), which is useful when dynamics over time are 
of interest or if ancient DNA or museum specimens 
are available. 
 
Avoiding common problems. Many simulators provide 
manuals with tips, warnings, assumptions of the model 
and explanations of error messages; some provide com- 
plete tutorials, example scripts and troubleshooting 
instructions. Most are also published in peer-reviewed 
journal articles that outline the methodology and capa- 
bilities of the simulator and provide an empirical example 
(Supplementary information S1 (table)). Documentation 
should be used when choosing a simulator to understand 
how closely model assumptions match the investigator’s 
species and/or scenario or to identify features of speciality 
programs; it should also frequently be used during pro- 
gram use to run simulations and to analyse and interpret 
results successfully. Also, simulators do not model missing 
data or genotyping errors (the exception being Pedagog, 
which does), which may complicate comparison of real and 
simulated data. However, this problem can be overcome 
by using the modular approach described above. 

A common problem is errors during simulation com- 
putation that are due to typographical errors in input 
or end-of-line characters that are specific to the operat- 
ing system used to generate the input files. These can 
be avoided by using the functional example input files 
provided by some programs as a starting template. Also, 
two command line programs — ms and SimCoal2 — 
have GUIs to assist in creating input files. Simulation 
studies require several trial runs for familiarization and 
proofreading of input files. Preliminary checking under 
simple scenarios for which analytical results are available 
is recommended. 
 
Closing remarks and future directions 
There are several areas of improvement for simulators. 
The increasing need to model genome-level data requires 
substantial improvements in efficiency. A new forward- 
simulation method85, ForwSim, uses the simulated gene- 
alogy over several generations to identify chromosomes 
that are destined to disappear, which do not need to be 
included in ensuing generations. This results in marked 
gains in efficiency, but it currently assumes the stand- 
ard Wright–Fisher model. Efficiency gains have been 
achieved for backward simulators using the sequential 
Markov coalescent82,86, as noted above. Despite these 
advances, substantial improvements are still required 
to efficiently simulate data sets that consist of polymor- 
phisms throughout  the genome on the scale that new 
high-throughput sequencing technology allows87. It is 
important  to note that advances in efficiency do not 
suffice to simulate next-generation sequencing data sets 
properly; simulators should either model the genotyping 
errors and biases that are specific to this technology88,89, 
or they should at least produce raw data that can easily 
be modified by additional software modules. 

An emerging trend is to allow samples from multiple 
time points in the coalescent (for example, Bayesian Serial 
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considerations is also increasing90; in particular, spatially 
realistic scenarios with cost–distance matrices, metapo- 
pulation dynamics and environmental effects are of spe- 
cial interest to landscape genetics91. Simulators with these 
capabilities exist (such as cdpop, KernelPop and Splatche), 
but they all assume very simplistic demographic histories. 
Consideration of stochasticity in timing and severity of 
‘events’ is another current need that has been addressed by 
few simulators. Clever use of programs may circumvent 
this and other limitations; for example, Mardulyn and 
Milinkovitch44  used many repeated events to simulate 
frequent extinction and colonization of habitat patches. 
Using distributions rather than point values for param- 
eters will also help to simulate year-to-year stochasticity. 

Another consideration is designing programs that can 
easily be integrated in bioinformatic pipelines. Output in 
a commonly used format (for example, genepop, FSTAT 
or Arlequin) and/or  summaries across replicates will 
make programs more useful. Furthermore, the usability 
and accessibility of many programs could be markedly 
improved; some require at least moderate programming 
abilities, have difficult-to-construct input files or provide 
no documentation.  Simultaneously, users must become 
increasingly agile in command  line and R environ- 
ments92; benefits of mastering basic bioinformatic skills 

in order to compare them meaningfully to real data 
(for example, introducing genotyping errors or missing 
data), to manage large data sets, to carry out ABC or to 
create a sideways simulation pipeline (BOX 1). 

Users and designers of software packages will need 
to understand  further which aspects of real population 
demography and genetics are the most important under 
the different evolutionary scenarios of interest to avoid 
overparameterizing studies. Also, as simulation programs 
rely on summary statistics, their usefulness will increase 
with the development of new statistics designed to pro- 
vide information about particular evolutionary histories. 
A final direction is bridging ecological, population genetic 
and evolutionary timescales and developing processes to 
further study range-shift dynamics and species extinc- 
tion related to climate change. Substantial further work 
is also required to achieve multiple taxon simulations93. 

Computer  simulations are essential for explaining 
the origin and maintenance of genetic variation and, as 
this Review shows, they have applications in many dis- 
ciplines. It is clear that simulators need further improve- 
ments to mimic modern data sets. However, the past 
decade has witnessed much progress, and we expect 
simulations to become a standard tool for the study of 
genetic variation. 
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