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In this work, we investigate the influence of alloy composition inhomogeneities on the vibrational

properties of strained Si1�xGex/Si layers with x ranging from 0 to 0.5. We show that the

frequencies of the principal alloy vibrational modes (Ge-Ge, Si-Ge, and Si-Si) are strongly

influenced by the distribution of Ge atoms within the alloy layers, which becomes gradually

random following a series of sequential annealing steps. Our measurements suggest that the

composition dependence of the optical phonon frequencies in fully random and unstrained alloys is

well described by the results previously published by Alonso and Winer [Phys. Rev. B 39, 10056

(1989)]. In the general case of an alloy layer with unknown degree of compositional

inhomogeneity and/or strain relaxation, though the analysis of the Raman spectra is not

straightforward. Therefore, we propose an analytical/graphical method to accurately estimate the

Ge content and residual strain of SiGe layers exhibiting any level of compositional disorder or

strain status, by performing a single Raman measurement. This would be extremely useful in

situations where x-ray measurements cannot be conducted. We show that our procedure to treat the

Raman data holds for the whole compositional range but with different accuracy depending upon

the case: (i) For annealed SiGe layers (mostly strain relaxed) the Ge content x can be directly

determined with high accuracy of 60:01. (ii) For strained samples (usually as-grown samples) an

extra criterion must be adopted seeking for a graphical solution, accounting for the degree of

compositional inhomogeneity. In this case, the error in the determination of Ge content depends on

alloy composition, being the upper bound 60:02 for x < 0:3 and 60:03 for x > 0:3. VC 2012
American Institute of Physics. [http://dx.doi.org/10.1063/1.4737486]

I. INTRODUCTION

In the last two decades, strained SiGe/Si alloy layer struc-

tures attracted increasing attention due to their higher per-

formance as active electronic components. Larger carrier

mobilities,1,2 higher device-switching speeds,3–5 and lower

power consumption6 are some of the advantages that make

strained SiGe/Si structures a good alternative to their already

well established counterpart. Successful inclusion of Ge in a

great variety of device architectures such as heterojunction

bipolar transistors7–9 (HBTs), metal-oxide-semiconductor

field-effect transistors10–12 (MOSFETs), and optical modula-

tors13,14 has been already clearly demonstrated. The advan-

tages offered by this material system partly originate from the

larger carrier mobilities1 exhibited by Ge (le ¼ 3900 cm2/Vs,

lh ¼ 1800 cm2/Vs) as compared to Si (le ¼ 500 cm2/Vs,

lh ¼ 1450 cm2/Vs). Furthermore, the larger lattice constant of

Ge (a ¼ 5:658 Å) relative to that of Si (a ¼ 5:431 Å) usually

leads to a built-in strain which further affects the mobility.

This biaxial (�k ¼ �xx ¼ �yy) in-plane strain reduces the cubic

crystal symmetry of the SiGe layers leading to a splitting of

the heavy- and light-hole valence bands15 as well as the even-

tual splitting of conduction band valleys,15 with the conse-

quent modification of the effective mass (m�i ) and mobility of

the carriers (li / 1=m�i ). Thus, in order to design and fabri-

cate devices with specific transport properties based on

strained SiGe layers, a precise knowledge of the alloy compo-

sition and in-plane strain is mandatory.

Among the variety of techniques commonly used for

strain and composition determination, x-ray diffraction

(XRD) and Raman spectroscopy play a major role. However,

in some practical situations XRD is not the most convenient

technique, e.g., due to the required large crystal lateral size

of the samples (typically l � 1 mm), or due to the necessity

of performing angle-resolved measurements. In contrast,

micro-Raman spectroscopy appears as a suitable alternative

since it does not impose any of these technical constraints.

The typical lateral dimensions of the samples are no longer a

limitation due to the small diameter of the focused laser spot

(�1 lm for the visible range). In principle, a single measure-

ment in back-scattering geometry should be enough for a

precise determination of the composition of the layers given

the in-plane strain, or vice versa. This approach has been al-

ready applied by several authors to strained SiGe layers,16–25

pointing in their work to the difficulties encountered in some

situations to attain the desired accuracy. Although the under-

lying mathematics employed to extract composition and/or

strain values from the measured Raman spectra is extremely

simple, a cumbersome interrelation between the involved

physical parameters easily leads to misinterpretation of

the experimental results. It is instructive to search deeper for

the origin of such drawback of the Raman technique. In the

0021-8979/2012/112(2)/023512/8/$30.00 VC 2012 American Institute of Physics112, 023512-1
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linear response approximation, the Raman frequencies of the

principal alloy vibrational modes (Ge-Ge, Si-Ge and Si-Si)

for a biaxially strained SiGe layer read as

xiðx; �kÞ ¼ xi
0ðxÞ þ bi

sðxÞ � �k; (1)

where the superindex i accounts for the Ge-Ge, Si-Ge, or Si-

Si vibrational mode, x is the Ge content, �k is the in-plane

strain, x0 is the phonon frequency for the unstrained case,

and bsðxÞ is the strain shift coefficient. We point out that,

strictly speaking, bs ¼ bsðx; aÞ, where a accounts for the

strain status of the system, since its actual value is deter-

mined by the character of the stress being hydrostatic or ani-

sotropic (uniaxial, biaxial, etc.). As shown previously for

lower dimensional structures like quantum dots,22,26 a
strongly depends on dot shape, wetting layer composition,

and cap layer thickness. Nevertheless, in the present case of

strictly two-dimensional systems, such a dependence can be

neglected due to the pure biaxial nature of the stress exerted

on the SiGe layers. According to Eq. (1), x or �k can be com-

puted by performing a single Raman measurement (x) with

the previous knowledge of x0 and bs. Whereas, bi
sðxÞ was

only recently reported for the whole compositional range by

Reparaz et al.23,24 and independently by Pezzoli et al.,25 a

very poor agreement is found in the literature for the values

of xi
0ðxÞ. It turns out that the discrepancies appear if the sam-

ples were grown using different techniques and/or conditions

(see, for example, Refs. 16, 18, 24, 25, and 27–29). In conse-

quence, for a given x the determination of �k using Eq. (1)

results highly unreliable. For instance, the use in Eq. (1) of

the different values for x0, reported in Refs. 24 and 29, leads

to a discrepancy in the absolute value of �k as high as 1%,

which is unacceptable considering that the maximum in-

plane strain between Si and Ge is 4.2%. This uncertainty in

the unstrained phonon frequency x0 in SiGe alloys would,

thus, strongly restrict the applicability of the Raman scatter-

ing technique alone to the characterization of strained layers

of the pure materials; an unfortunate situation which consti-

tutes the motivation for the present study.

In this work, we investigate the origin of the large scat-

ter of the x0 values reported by many groups for the

unstrained frequency of the optical phonon modes in SiGe

alloys.16,18,24,25,27–29 Performing a series of sequential

annealing steps to several samples containing a strained

SiGe layer with different Ge concentrations, we demonstrate

that the formation during the growth procedure of Ge richer

regions within the alloy largely determines the value of x0

that would be measured by Raman scattering. The optical

phonon frequency of the Ge-Ge and Si-Si alloy modes

appears to be sensitive to the local composition of the corre-

sponding atomic species. The latter obviously depends on

the degree of homogeneity of the sample concerning alloy

disorder. Furthermore, we propose a simple analytical/graph-

ical method for the determination of average composition

and strain in SiGe alloys out of the data from a single Raman

measurement. Since the rational of the proposed method

takes into account compositional inhomogeneity effects, we

are able to provide a set of general criteria that allows for

the successful processing of the Raman data in almost any

experimental situation, irrespective of the degree of alloy

disorder and level of strain relaxation of the alloy layers.

II. EXPERIMENTAL DETAILS

The samples were grown on (001)-oriented Si substrates

using a solid-source molecular beam epitaxy (MBE) equip-

ment. Initially, the Si substrates were heated to 900 �C for

SiO2 desorption, after which a 100 nm thick Si buffer layer

was deposited using a decreasing substrate temperature ramp

between 900 and 500 �C. In the following stage, Si1�xGex

layers were grown at 400 �C (substrate temperature) with

various x values ranging between 0 and 0.5 and with thick-

nesses between 8 and 700 nm. A list of all the grown samples

is shown in Table I. The as-grown samples were removed

from the MBE chamber for further characterization using

Raman spectroscopy, XRD, and spectroscopic optical ellips-

ometry. Subsequently, each sample was re-introduced in the

MBE chamber in order to perform cumulative thermal

annealing in successive steps of 50 �C between 450 and

750 �C. After each annealing step the samples were removed

from the chamber for structural and optical inspection. The

total number of investigated samples, considering each

annealing step, amounts to 48 (6 different concentrations

� 8 annealing temperatures). We point out that each anneal-

ing step was performed in the MBE chamber to avoid any

oxidation of the samples due to the low residual pressure of

the chamber (about 10�10 mbar). Several initial annealing

attempts performed in a furnace with Ar atmosphere had led,

despite previous purging of the setup, to strong surface oxi-

dation of the SiGe layers.

Raman spectra were recorded using a LabRam HR800

system in backscattering geometry with a spectral resolution

of about 0.3 cm�1. As excitation source we used the

514.5 nm line of an air-cooled Arþ ion laser, which was

focused on the sample to a spot of around 2 lm in diameter.

Raman measurements were performed in crossed linear

polarization configuration z(x,y)�z, in order to minimize the

contribution of the second-order Raman signal (Si 2TA) aris-

ing from the Si substrate, whose energy is close to that of the

Ge-Ge mode. XRD data for the symmetric reflection (004)

were collected using a Siemens D-5000 diffractometer. X-

ray reciprocal space maps (q-plots) around two asymmetric

reflections: (224) and (2�24) were measured for the as-grown

samples and some of the annealed ones using a Bruker D8

with a two dimensional multi-channel detector. Note that the

TABLE I. Si1�xGex alloy-layer thickness (d) of the different samples deter-

mined by spectral ellipsometry. Ge content for the as-grown layers obtained

from XRD measurements (xxrd) and using the model discussed in Sec. IV B

(xmodel). Numbers in parentheses represent error bars.

Sample d (nm) xxrd xmodel

A 8(1) 0.15(1) 0.11(1)

B 700(10) 0.18(1) 0.18(1)

C 570(5) 0.22(1) 0.24(1)

D 114(4) 0.40(1) 0.41(2)

E 43(2) 0.44(1) 0.48(2)

F 20(1) 0.47(1) 0.47(2)

023512-2 Reparaz et al. J. Appl. Phys. 112, 023512 (2012)
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asymmetric reflections allow for the determination of the lat-

tice parameter in both the in-plane and out-of-plane direc-

tions. Spectroscopic ellipsometry measurements in the range

from 1.4 to 5.2 eV were performed at room temperature

using a SOPRA ES4G ellipsometer. As excitation light

source we used a 75 W high-pressure Xe arc lamp and the

reflected light was coupled into a double prism/grating

monochromator of 750 mm equivalent focal length, and

detected with a multi-alkali photomultiplier tube. The ellips-

ometry spectra of all measured alloy layers was used to esti-

mate the surface roughness of the layers through the

decrease of the imaginary part of the dielectric function (�2)

at the energy of the interband optical transition denoted as

E2.30 A surface roughness of about 1 nm was detected in the

worst case, which implies that the alloys exhibit practically

flat surfaces.

III. THEORETICAL CONSIDERATIONS

The application of a stress to a solid leads to a deforma-

tion of its crystal structure, which in the linear approximation

is usually expressed as31 rij ¼ cijkl � �kl, where rij and �kl

are the stress and strain tensor, respectively, and cijkl is the

fourth-rank tensor corresponding to the elastic constants.

The high degree of symmetry of cubic crystals reduces the

number of independent components of cijkl to only three,

which expressed in the more comfortable 6� 6 matricial

form31 are denoted by C11, C12, and C44. In the particular

case of a biaxially stressed layer in the x,y plane, it holds

rxx ¼ ryy ¼ rk and rzz ¼ r? ¼ 0. By replacing in the stress/

strain equation we obtain the following relations:

rk ¼ ðC11 þ C12Þ � �k þ C12 � �?; (2)

�? ¼ �
2C12

C11

� �k: (3)

On the other hand, Eq. (2) expresses how the stress translates

into internal strain, Eq. (3) stands for the Poisson effect: An

in-plane compression/expansion leads to an expansion/com-

pression in the growth direction. In addition, the in-plane

strain in the SiGe layers is expressed as �k ¼ ðak � aSiGeÞ
=aSiGe, where aSiGe is the lattice constant of the SiGe alloy

for the unstrained case (�ij ¼ 08i; j). Thus, combining the

previous relation for �k with Eqs. (1) and (3), we obtain a

system of two equations, which can be directly related

to measurable quantities such as xi (obtained from

Raman spectra), ak and a? (both from XRD measurements)

given by

xiðx; �kÞ ¼ xi
0ðxÞ þ bi

sðxÞ �
ak � aSiGeðxÞ

aSiGeðxÞ

� �
; (4)

a? � aSiGeðxÞ
aSiGeðxÞ

� �
¼ � 2C12ðxÞ

C11ðxÞ
�

ak � aSiGeðxÞ
aSiGeðxÞ

� �
: (5)

The values used here for bsðxÞ, aSiGeðxÞ, and CijðxÞ are

extracted from Refs. 24, 32, and 33, respectively, and listed

in Table II. Actually, the determination of x and �k can be

fully achieved from XRD data, using Eq. (5) which depends

on ak and a? only. Nevertheless, as already anticipated, it is

highly desirable to achieve this only by performing Raman

measurements due to the versatility of this technique. The

main problem with Eq. (4) is the large scatter in the xi
0 val-

ues, which leads to a large error in the determination of x or

�k. To overcome this problem, we need to understand the

reason for the different reported values of xi
0, which will nat-

urally lead us to a consistent picture of general validity for

the interpretation of the Raman spectra of SiGe alloys. For

the sake of clarity, we present first the experimental results

and then we explain the observed phenomenology.

IV. RESULTS AND DISCUSSION

A. Origin of the scatter of the x0 values

In this section, we intend to clarify the origin of the

large scatter reported in the literature for x0 (see Refs. 16,

18, 24, 25, and 27–29). For this purpose, we have performed

a series of cumulative sequential annealing steps in samples

with different x between 0 and 0.5. In Fig. 1(a), we show rep-

resentative spectra of the as-grown samples. The strongest

peak observed in each spectrum at 520.7 cm�1 arises from

the Si substrate first-order longitudinal-optical (LO) phonon.

This peak has been cut off in intensity for better visualization

of the remaining modes. At lower frequencies three modes

become apparent, which are identified as the principal

alloy modes as follows: (i) xGeGe � 300 cm�1, (ii) xSiGe

TABLE II. Composition dependence of the strain shift coefficients for the Ge-Ge, Si-Ge, and Si-Si modes extracted from Ref. 24. Lattice constants and elastic

constants extracted from Refs. 32 and 33, respectively. The polynomial parameters for the unstrained frequencies were obtained by a combined fit to the data

of Refs. 28 and 34.

Strain shift coefficients (cm�1) bGeGe
s ðxÞ ¼ �190� ðx� 1Þ4 � 460

bSiGe
s ðxÞ ¼ �190� ðx� 1Þ4 � 555

bSiSi
s ðxÞ ¼ �190� ðx� 1Þ4 � 650

Lattice constant (Å) aSiGe ¼ 5:431þ 0:198� xþ 0:028� x2

Elastic constants (GPa) C11ðxÞ ¼ 165:77� 37:24� x

C12ðxÞ ¼ 63:93� 15:67� x

Unstrained phonon frequencies (cm�1) xGeGe ¼ 284þ 5� xþ 12� x2

xSiGe ¼ 400þ 29� x� 95� x2 þ 213� x3 � 170� x4

xSiSi ¼ 520:7� 68� x

023512-3 Reparaz et al. J. Appl. Phys. 112, 023512 (2012)
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� 410 cm�1, and (iii) xSiSi � 510 cm�1. In all cases, the

peak intensities have been normalized to that of the LO

mode from the Si substrate. The phonon frequency of each

alloy mode for different Ge contents was obtained from the

maximum position of asymmetric Gaussian line-shapes fitted

to the Raman spectra. In particular, the Si-Ge mode exhibits

a large asymmetry for the higher Ge compositional range

which originates from alloy disorder. We anticipate that the

Raman spectrum of each sample is highly sensitive to varia-

tions in the local composition (at the nanoscale) of the alloy

layers. Alloys of materials with very dissimilar masses like

Si and Ge exhibit peculiar vibrational properties which, to

the lowest order approximation are roughly described by the

so-called one-bond-one-mode model.35 Within this model,

vibrations are highly localized to single bonds, being the

main phonon modes of the alloy the ones associated to the

three kinds of existing atom pairs Si-Si, Si-Ge, or Ge-Ge.

The vibrational frequency of each alloy mode, thus, is very

sensitive to the atomic composition of its immediate environ-

ment. Even more important is the fact that the main contribu-

tion to the Raman signal stemming from the Ge-Ge and Si-Si

modes arises from the Ge and Si-rich regions, respectively.

Hence, in inhomogeneous samples exhibiting certain degree

of compositional inhomogeneity, the different alloy modes

would sense a different average composition and residual

strain, the latter in case of a strained alloy layer. In fact, with

increasing Ge content the Ge-Ge and Si-Ge modes shift to

higher frequencies, whereas the Si-Si mode displays initially

a redshift and then a blueshift. Since the alloy layers are all

grown epitaxially on Si, the biaxial in-plane strain also

increases with Ge content, causing an overall blueshift of the

phonon modes. The main issue of this work is to obtain a

reliable procedure to separate the contributions to the mode

frequency given by Eq. (1) arising from the x0 and �k terms,

which are mixed in the frequency shifts observed in the spec-

tra of Fig. 1.

Figure 1(b) shows the effect of thermal annealing on the

phonon frequencies for a representative sample with

x ¼ 0:40. As the annealing temperature increases all the pho-

non frequencies shift systematically to lower energies. Two

main candidates appear as responsible for the observed shifts:

Interdiffusion of Si from the substrate into the alloy layer36

and the combined effect of alloy homogenization by Ge redis-

tribution and strain relaxation within the layers. If interdiffu-

sion occurs, its effect would be to decrease the average Ge

content of the layers, which would affect in opposite direc-

tions the frequencies of the Ge-Ge and Si-Si modes (see Fig.

3), contrary to what is observed in the Raman spectra of the

annealed samples. Moreover, we have grown three samples

(B, C, and D) with thicknesses large enough to ensure that if

interdiffusion with the substrate takes place, its effect is negli-

gible for any practical means. The behavior of the Raman fre-

quencies upon annealing is, in fact, exactly the same for the

thick and thin alloy layers, what completely rules out interdif-

fusion as the possible cause of the observed frequency shifts.

The dependence of the out-of-plane lattice parameter

a?ðxÞ on annealing temperature is shown in Fig. 2 for all

samples. We have confirmed first that for all compositions

the as-grown samples are pseudomorphic to the Si substrate

by performing x-ray reciprocal space maps (not shown). Fig-

ure 2 demonstrates that with increasing annealing tempera-

ture a? decreases (ak increases) leading to smaller values of

�k, which, in turn, would result in smaller frequencies for all

the modes with rates given by bi
s (see Eq. (4)). This effect is

more pronounced for the thicker samples (B, C, and D),

FIG. 1. (a) Representative Raman spectra of the Si1�xGex as-grown samples

with x ¼ 0:18; 0:22; 0:40; 0:44; 0:47 and the Raman intensity plotted in

logarithmic scale. (b) Representative spectra of the as-grown sample with

x ¼ 0:40 and for different annealing temperatures. Peak assignment to the

alloy optical Raman modes is indicated.

FIG. 2. Out-of-plane lattice parameter (a?) of the SiGe alloy layers deter-

mined by XRD measurements as a function of the annealing temperature for

samples A to E. The vertical line corresponds to the as-grown samples. Error

bars of the data points are around 60:001 Å.

023512-4 Reparaz et al. J. Appl. Phys. 112, 023512 (2012)
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indicating almost full strain relaxation after the first anneal-

ing step. For the thinner samples (A, E, and F) strain relaxa-

tion is less pronounced, which is easily explained

considering that the total elastic energy due to the lattice

mismatch with the Si substrate scales linearly with the thick-

ness of the layers. The most important point here is that all

these strain relaxation effects which differ from sample to

sample, depending mainly on thickness, are not able solely

to account for the magnitude of the observed monotonic red-

shifts of the mode frequencies with increasing annealing

temperature. Incidentally, we point out that Fig. 2 constitutes

itself an important result since it shows that over a certain

thickness, the strained SiGe layers are largely strain relaxed

at high annealing temperatures. This might be important for

a correct design of devices based on strained SiGe layers

which are intended to operate above room temperature.

Thus, having ruled out interdiffusion and strain relaxa-

tion effects alone, we are led to the conclusion that a differ-

ent degree of compositional disorder is at the origin of the

sample dependence of x0. Taking advantage of the fact that

the different samples were characterized by XRD and of our

knowledge of the strain shift coefficients,24 we are able to

reverse the problem and compute the value of x0 for each

studied sample. According to Eqs. (4) and (5), this problem

can be solved exactly using the measured values for xi and

ak. For the as-grown samples this calculation is straightfor-

ward since the SiGe layers are pseudomorphic to the sub-

strate (ak ¼ aSi). As the annealing temperature increases, the

XRD results indicate that the strain within the layers gradu-

ally relaxes (ak 6¼ aSi). In Fig. 3, we show the computed val-

ues of x0 for each phonon mode and annealing temperature.

In addition, we have included the reported values from Refs.

24 and 28, which represent two limiting cases for the present

set of samples as far as compositional inhomogeneities are

concerned. The values reported in Ref. 24 were measured in

fully strained samples grown by MBE at 400 �C. Since MBE

is a non-equilibrium growth technique, it is known that due

to the low deposition temperature, Ge tends to aggregate dur-

ing the growth of the strained alloy layer. An inhomogeneous

strain driven decomposition of the alloy leads to a non-

random distribution of the Ge atoms at the nanoscale,37

which affects the measured values for x0. In contrast, the x0

values reported in Ref. 28 were obtained from samples

grown using liquid-phase epitaxy (LPE) which is an equilib-

rium growth technique and, consequently, the Ge distribution

is expected to be as random or homogeneous as possible.

The open symbols in Fig. 3 show how the computed values

of x0 gradually shift down from the curve extracted from

Ref. 24 towards that of Ref. 28. The observed behavior rep-

resents the experimental confirmation of our ansatz that, de-

spite the fact that the average alloy composition remains

essentially constant as revealed by XRD, the distribution of

Ge atoms within the layers progressively randomizes with

each annealing step, leading to changes in phonon frequen-

cies associated to the thermally induced compositional ho-

mogenization of the alloy.

B. Determination of Ge content and residual strain
through a single Raman measurement

We now describe the procedure by which both x and �k
can be accurately determined for any strained SiGe layer.

For that purpose we employ the measured Raman frequen-

cies of the Ge-Ge and Si-Si modes, having the values of x0

extracted essentially from Ref. 28 (see Table II) as a refer-

ence for a random distribution of the Ge atoms within the

alloy layer. The Si-Ge mode, in contrast, is not relevant for

such a determination due to its approximately flat depend-

ence in the mid-compositional range (see Fig. 3), which

makes this mode almost insensitive to composition and/or

strain changes. Nevertheless, for Ge contents above 0.6,

where the Si-Si mode is usually absent in the Raman spectra

of the alloy, the Si-Ge mode can be used instead (fortunately,

for 0:6 < x < 1 the Si-Ge mode exhibits a marked composi-

tion dependence). We demonstrate the procedure choosing

as an example the as-grown sample E (xxrd ¼ 0:44), which

exhibits following Raman frequencies: xGeGe ¼ 299:4 cm�1

and xSiSi ¼ 505:7 cm�1. Applying Eq. (4) independently for

FIG. 3. Computed values for xi
0 using Eqs. (4) and (5) for each vibrational

mode and annealing temperature. The dashed and solid curves represent the

values of xi
0 from Refs. 24 and 28, respectively. Error bars of the data points

(not shown since they are smaller than the symbol size) are around

60:5 cm�1.
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each mode we obtain xGeGe ¼ 0:54 and xSiSi ¼ 0:35, which

both clearly differ from the average composition xxrd ¼ 0:44

determined by XRD. We note that whereas XRD probes a

comparatively large volume of the sample, yielding the

mean Ge content of the layers (x), the Raman modes are

highly sensitive to the local environment of the vibrating

atoms mainly circumscribed to the first-nearest neighbor

sphere. Thus, the formation of compositional inhomogene-

ities is only observed with Raman scattering, but remains

unnoticed in the XRD spectra. This effect has been already

theoretically studied,38,39 though no detailed experimental

investigation is available yet to the best of our knowledge.

In consequence, we have to modify Eq. (4) in order to

include the compositional inhomogeneity effect as

follows:

xGeGeðx; �kÞ ¼ xGeGe
0 ðxþ m� RÞ þ bi

sðxÞ � �k; (6)

xSiSiðx; �kÞ ¼ xSiSi
0 ðx� n� RÞ þ bi

sðxÞ � �k; (7)

where R is a correction factor to the average composition (x),

which accounts for the degree of compositional disorder

within the alloy layer. The factors m ¼ 1� x and n ¼ x, in

addition, allow for the local composition unbalance sensed

by each mode. We remark that no correction39,40 is applied

to the strain term of Eq. (4), which is the usual macroscopic

averaged �k as probed by XRD measurements. As seen in the

example of sample E, the Ge-Ge mode always probes a

higher Ge content (xGeGe � xxrd) but the Si-Si mode a lower

one (xSiSi � xxrd). Although m and n are expressed as linear

functions of x (simply satisfying the continuity relation

mþ n ¼ 1), more sophisticated models with higher order

terms are possible. Nevertheless, attempts using second order

terms did not bring any real benefit. The procedure consists

in solving the system of two coupled equations (6) and (7)

with two unknowns x and R for all the as-grown samples, for

which certainly holds that ak ¼ aSi. We list the obtained

layer compositions in Table I labeled as xmodel, together with

the values obtained from XRD measurements xxrd . The

agreement between these two determinations is more than

satisfactory, which demonstrates the validity of the devel-

oped method.

We go a step further and relax the condition of pseudo-

morphism previously imposed, which holds true for the as-

grown samples but not for the general case. Now is ak 6¼ aSi

which applies to most of the annealed samples (see Fig. 2),

since the effect of the successive annealing steps is not only

to randomize the Ge distribution but also to relax (partially

or totally) the built-in strain due to the lattice mismatch to

the Si substrate. This relaxation condition can be easily

expressed by introducing in the strain term of Eq. (4) a strain

factor S defined as �k ¼ S� �isoðxÞ ¼ S� ½aSiGeðxÞ � aSi	
=aSiGeðxÞ. We note that by definition, S ¼ 0 represents the

fully relaxed case, while S ¼ 1 corresponds to the fully

strained case. With this modification, Eqs. (6) and (7) read as

xGeGeðx; �kÞ ¼ xGeGe
0 ðxþm�RÞ þ bi

sðxÞ � S� �isoðxÞ; (8)

xSiSiðx; �kÞ ¼ xSiSi
0 ðx� n� RÞ þ bi

sðxÞ � S� �isoðxÞ: (9)

We now face the problem of solving a system of two coupled

equations with x, R, and S as unknowns. Although the present

problem is not uniquely solvable for obvious reasons, it is still

possible to guess a practical solution by a graphical procedure.

For this purpose, we return to the previous example of sample

E, where we now aim at finding a graphical solution for Eqs.

(8) and (9). In Fig. 4(a), we show the three-dimensional (3D)

plots of the strain parameter S ¼ Sðx;RÞ constituting possible

solutions of each of those equations. The left surface (orange)

represents the solutions for the Si-Si mode, and the right one

(violet) relates to the Ge-Ge mode. The intersection between

these surfaces gives the physically possible solutions of

the problem, in which both strain factors (S) from Eqs. (8) and

(9) are equal, i.e., both phonon modes are sensing the

same amount of strain relaxation, if any. This intersection

curve corresponds to an in-plane strain ranging from 0 to �max
k

¼ ½aSiGeð0:44Þ �aSi	=aSiGeð0:44Þ. It becomes clear from Fig.

4(a) that the Ge content cannot be directly deduced without

making further assumptions on the strain within the alloy

layer. This is due to the high Ge content of x ¼ 0:44, which

introduces a large strain for pseudomorphic growth on Si,

thus, leading to an extended intersection curve which spans an

FIG. 4. Three dimensional plots showing the solutions of Eqs. (8) and (9)

for the Ge-Ge (violet) and Si-Si (orange) modes, respectively. In panel (a),

we show the two surfaces for the as-grown sample E. The same surfaces are

shown in (b) for sample E after all the annealing sequences. The physically

reasonable solutions are given by the intersection of the two dimensional

surfaces as marked with a white line.
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interval of x and R values. Here we make use of what we cer-

tainly know from XRD data that the as-grown alloy layers are

almost fully strained (S � 1). Closer inspection of similar 3D

plots obtained for all other as-grown samples indicate that this

condition is always fulfilled for solutions for which the inho-

mogeneity factors R are minimal.

We consider next the case of sample E after all the

annealing steps (750 �C). In Fig. 4(b), we show again the

strain factors S ¼ Sðx;RÞ from Eqs. (8) and (9) plotted to-

gether but computed independently. We note that the only

difference with the previous case is the measured values for

xGeGe and xSiSi. The two surfaces exhibit a completely dif-

ferent behavior, being the solution only restricted to almost a

single vector in the x-R-S space. In this particular case, it

corresponds to the point ðx;R; SÞ ¼ ð0:43; 0:01; 0:05Þ, in

good agreement with the composition determined by XRD

xxrd ¼ 0:44 and the strain value � � 0 of this relaxed sample.

Consequently, the correction factor R results almost zero,

reflecting the fact that after repeated annealing the distribu-

tion of the Ge atoms in the alloy becomes random (see also

Fig. 3, where the data points in this case fall on top of the

reference curve of Ref. 28). The 3D plots given in Fig. 4

show that whereas strained layers exhibit a continuous set of

solutions over a relatively large compositional range, par-

tially (totally) relaxed layers show a set of solutions with a

small compositional dispersion.

Finally, we show in Fig. 5 the projection onto the x; S
plane of the intersection curves obtained by the procedure

demonstrated in Fig. 4 as solutions of the system given by

Eqs. (8) and (9) for all the as-grown samples (solid lines)

and the fully annealed ones (lines inside circular marks). The

dotted lines represent contour plots for different values of R,

though calculated only for the as-grown samples. While the

solutions for strained samples exhibit an interval of composi-

tions, the relaxed layers converge to almost a unique solu-

tion. In the latter case, we estimate from Fig. 5 that the

accuracy in the determination of the Ge content is about

60:01. For the strained samples, an extra criterion must be

adopted due to extra variability introduced by the in-plane

strain present in the alloy layers. Although all ðx; SÞ points

on the curves plotted in Fig. 5 are mathematical solutions of

the problem, only certain ðx;R; SÞ are physically realistic.

For fully strained layers (S ¼ 1) the right solution minimizes

the inhomogeneity factor R. In contrast, for unknown strain

relaxation and alloy disorder degree we found out empiri-

cally that the best result corresponds to the triad which maxi-
mizes the product S 
 R. From an exhaustive analysis of all

the 48 investigated samples we have found that the upper

limits for the error in the determination of the Ge content

rises to 60:02 for x < 0:3 and 60:03 for x > 0:3. We note

that large values of R are possible in highly inhomogeneous

samples which, nevertheless, are not usually obtained with

the conventional epitaxial growth techniques.

In practice, it is possible to estimate x and �k using the

following procedure:

1. Measure the Raman spectrum of a given sample and

extract xGeGe, xSiSi and/or xSiGe.

2. Using Eqs. (8) and (9), construct both surfaces in the x-R-S
space in a similar way to the plots of Fig. 4 and inspect

the intersection curve given by the constrain SGeGeðx;RÞ
¼ SSiSiðx;RÞ (for x � 0:6 use the SiGe mode instead of

the SiSi one).

3. Infer the Ge content and residual strain by analyzing the

extension of the intersection curve: If it clasps a whole

interval of strain factors containing S ’ 1, then the alloy

is under large biaxial strain and the most likely solution is

obtained by minimizing the compositional inhomogeneity

parameter R. Otherwise, search for the solution which

maximizes the product S 
 R. Finally, for almost strain-

relaxed samples the intersection curve restricts itself to a

short segment around values of S close to zero and the

solution is obtained with good accuracy directly from the

graph.

V. SUMMARY

In conclusion, our findings have provided deeper insight

into the vibrational properties of semiconductor alloys, which

turned out to be crucial for the quantitative understanding of

their Raman spectra. In particular, we have found that a dif-

ferent degree of compositional inhomogeneity is the origin of

the large scatter of the values reported for the unstrained fre-

quency x0 of the vibrational modes in SiGe alloys measured

by Raman scattering. We have shown that this effect is par-

ticularly important in samples grown using non-equilibrium,

epitaxial methods like MBE, whereas it is almost absent for

growth techniques such as LPE, where the alloy crystallizes

onto the substrate following an equilibrium phase diagram.

On this basis, we conclude that for fully random alloys x0

can be reliably obtained from the results published by Alonso

and Winer28 and summarized in Table II. Additionally, we

have developed a simple model that explains the behavior of

the alloy phonon modes, valid for samples exhibiting any

FIG. 5. Solutions of Eqs. (8) and (9) for all the as-grown samples (solid

lines) and annealed ones (circled lines) represented in the S; x plane. The

dotted black lines connect points with constant values of compositional

inhomogeneity degree R, representing real solutions, whereas the grey dot-

ted lines are a guide to the eye, representing estimated solutions.
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degree of compositional inhomogeneity and strain status.

Within this model, we introduce a correction to the Ge con-

tent in the form x! ðxþ m� RÞ for the Ge-Ge mode and

x! ðx� n� RÞ for the Si-Si mode to simultaneously fulfill

the equations for the phonon mode frequency xGeGe ¼
xðxþ m� R; �kÞ and xSiSi ¼ xðx� n� R; �kÞ, as given in

Ref. 28. This system can be solved exactly if �k is known a

priori, but requires an approximate graphical solution for sit-

uations where �k is unknown. In this way, we have success-

fully revisited the problem of the experimental determination

of alloy composition and residual strain by performing a sin-

gle Raman measurement. In practice, our analytical/graphical

method should be extremely useful in situations where XRD

measurements cannot be conducted, repositioning the Raman

spectroscopy technique among the top characterization tools

in semiconductor nano/micro-technology.
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S. Meyerson, and T. Tice, IEEE Trans. Electron Devices 42, 455 (1995).
9A. Gruhle, H. Kibbel, U. König, U. Erben, and E. Kasper, IEEE Electron

Device Lett. 13, 206 (1992).
10R. Oberhuber, G. Zandler, and P. Vogl, Phys. Rev. B 58, 9941 (1998).
11S. Verdonckt-Vandebroek, E. F. Crabbe, B. S. Meyerson, D. L. Harame,

P. J. Restle, J. M. C. Stork, and J. B. Johnson, IEEE Trans. Electron Devi-

ces 41, 90 (1994).
12T. Mizuno, S. Takagi, N. Sugiyama, H. Satake, A. Kurobe, and A. Tor-

iumi, IEEE Electron Device Lett. 21, 230 (2000).

13D. Marris, A. Cordat, D. Pascal, A. Koster, E. Cassan, L. Vivien, and S.

Laval, IEEE J. Sel. Top. Quantum Electron. 9, 747 (2003).
14O. Qasaimeh, J. Singh, and P. Bhattacharya, IEEE J. Quantum Electron.

33, 1532 (1997).
15D. J. Paul, Semicond. Sci. Technol. 19, R75 (2004).
16J. C. Tsang, P. M. Mooney, F. Dacol, and J. O. Chu, J. Appl. Phys. 75,

8098 (1994).
17T. S. Perova, R. A. Moore, K. Lyutovich, M. Oehme, and E. Kasper, Thin

Solid Films 517, 265 (2008).
18H. K. Shin, D. J. Lockwood, and J.-M. Baribeau, Solid State Commun.

114, 505 (2000).
19P. Dobrosz, S. J. Bull, S. H. Olsen, and A. G. O’Neill, Surf. Coat. Technol.

20, 1755 (2005).
20F. Pezzoli, E. Bonera, E. Grilli, M. Guzzi, S. Sanguinetti, D. Chrastina, G.

Isella, H. von Känel, E. Wintersberger, J. Stangl, and G. Bauer, Mater. Sci.

Semicond. Process. 11, 279 (2008).
21J. Schmidt, G. Vogg, F. Bensch, S. Kreuzer, P. Ramm, S. Zollner, R. Liu,

and P. Wennekers, Mater. Sci. Semicond. Process. 8, 267 (2005).
22J. S. Reparaz, A. Bernardi, A. R. Goñi, P. D. Lacharmoise, M. I. Alonso,
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