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ABSTRACT 

We report on the modification of graphene oxide (GO) with poly(vinyl alcohol) (PVA) leading to 

the mechanical improvement of GO based materials. First, GO was covalently functionalised with 

PVA by esterification of carboxylic groups on GO with hydroxyl groups of PVA resulting in 

functionalised f-(PVA)GO. This was carried out for PVA of six different molecular weights. This 

functionalised graphene oxide could be formed into a paper-like material by vacuum filtration. 

Papers prepared from f-(PVA)GO showed significant increases in mechanical properties compared 

to those prepared with GO or with simple mixtures of GO and PVA. The best performance was 

achieved for PVA functional groups with molecular weights between 50 and 150 kg/mol. 

Improvements in Young’s moduli of 60% and tensile strength of 400% were observed relative to 

GO-only paper. The improved mechanical properties are attributed to enhanced inter-flake stress 

transfer due to the covalently bonded PVA. Second, functionalised f-(PVA)GO was used as filler in 
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PVA-based composites. The application of a pre-selection method allowed the use of only the 

largest functionalised f-(PVA)GO flakes. This resulted in substantially reinforced PVA-f-(PVA)GO 

composites. Both modulus and strength increased by 40% relative to the pure polymer for f-

(PVA)GO loadings below 0.3 vol.%.  

 

1. INTRODUCTION 

Graphene has generated intense excitement in recent years due to its remarkable properties [1, 

2]. Of particular interest to materials scientists is the fact that graphene is the strongest and stiffest 

material known to man [3]. This immediately suggests that graphene sheets would be an ideal 

reinforcing agent for polymer composites as the reinforcement potential scales linearly with filler 

stiffness and strength [4]. In fact much work has already been done [5-7] showing that graphene and 

graphene oxide (GO) [8, 9] are potentially effective reinforcements [10-19]. However, it has also 

been shown that the fracture of polymer-graphene composites is associated with failure of the 

polymer graphene interface [19]. Such failure occurs when the graphene flake length is shorter than 

the critical length [4, 20]. While this obviously means the flakes are smaller than would be ideal, it 

also means that the polymer graphene interfacial strength is lower than would be desirable. This is 

unfortunate, as once the flake length is below the critical length, the rate of increase of strength with 

graphene volume fraction is limited by the interfacial strength [19]. This suggests that interfacial 

engineering is an important route to improve the properties of graphene composites. 

It is likely that both the stress transfer from polymer to graphene and the interfacial strength 

could be improved by functionalising graphene with polymer chains. So long as they are chemically 

similar, the grafted polymer chains will mix easily with the polymer matrix resulting in an improved 

interface. Chemically, such functionalisation is easier to achieve with graphene oxide that graphene 

as carboxylic acid groups present are good potential targets for chemical modification. To this end, 
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a number of groups have described covalent functionalisation of GO with polymer chains [21-27] 

.In some cases, this modification has resulted in very good reinforcement of polymers [23, 25, 26, 

28, 29]. However, significant increases in strength at low filler content have not really been 

observed. The exception was one paper which reported increases in strength from σB=37 MPa to 

σB=63 MPa for a volume fraction of Vf≈0.05%. This is equivalent to dσB/dVf≈55 GPa, a significant 

fraction of the theoretical value of 130 GPa [3, 4, 19]. 

We believe that it is worthwhile exploring polymer functionalisation of GO with the aim of 

improving the mechanical properties of GO based materials. For example, in composites 

compatibility with the polymer matrix, and interfacial stress transfer would be improved by 

functionalisation. We suggest that poly(vinyl alcohol) (PVA) is a good model polymer for this work 

as it is commonly used as a model matrix for nano-composite studies [30-32]. In this paper we first 

describe the functionalisation of graphene oxide with poly(vinyl alcohol) to give f-(PVA)GO. The 

functionalised graphene can be used to fabricate paper-like materials. We observe significant 

increase of mechanical properties of f-(PVA)GO papers compared to those prepared with GO or 

with simple mixtures of GO and PVA. Second, we describe the use of the functionalised f-

(PVO)GO as a filler material to prepare composites of f-(PVA)GO in PVA. These composites were 

significantly stiffer and stronger than the pristine polymer. 

 

2. EXPERIMENTAL PROCEDURE 

2.1 Materials 

Graphite powder, poly(vinyl alcohol) of different molecular weights, solvents, and all other types of 

reactants were purchased from Sigma-Aldrich Co. 

 

2.2 Graphite oxide synthesis  
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Preparation of graphite oxide was carried out using a slightly modified Hummers method; 

graphite powder was oxidized using NaNO3, H2SO4 and KMNO4 in an ice bath [33]. The material 

obtained was centrifuged at 2000 rpm for 10 minutes. The supernatant, containing inorganic salts 

was decanted, and the deposit washed several times with deionized water until the pH was neutral. 

This sediment was dried overnight in a vacuum oven at 80°C.   

 

2.3 Exfoliation of graphite oxide and functionalisation 

Graphene oxide, GO, was covalently attached to poly(vinyl alcohol) by a carbodiimide 

esterification reaction (see Figure 1) [34] following the experimental conditions of Salavagione et. 

al. with some modifications [27]. In a typical reaction, the graphite oxide (50 mg) was dispersed in 

10 ml of dimethyl sulfoxide (DMSO) and sonicated for 24 hours in order to effectively exfoliate 

and disperse the graphite oxide. Next, N,N-dicyclohexylcarbodiimide (DCC) (100 mg, 0.48 mmol) 

and 4-dimethylaminopyridine (DMAP) (5 mg, 0.04 mmol) were added and the resulting mixture 

bath-sonicated for 4 hours. 

 

Figure 1. Functionalisation of graphene oxide with poly(vinyl alcohol) by a carbodiimide 

esterification reaction. 
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Poly(vinyl alcohol) was then covalently attached to the GO. This was carried out for six 

different molecular weights between 6 to 500 kg/mol. For each molecular weight, a solution of 

poly(vinyl alcohol) (50 mg) in DMSO (10ml) was prepared and bath-sonicated until complete 

dissolution (30 to 120 min, depending on the molecular weight of PVA). Subsequently, both 

solutions were mixed, and the mixture bath-sonicated at room temperature for 2 days. The 

functionalised GO was precipitated by adding 40 ml of acetone to the mixture and the resulting 

solid filtered through a nylon membrane (0.45 µm), and washed with water (2L) in order to remove 

excess of PVA. The resulting functionalised GO material is referred to as f-(PVA)GO. 

  

2.4 Paper-like materials preparation 

Paper-like materials of GO, and of the six functionalised f-(PVA)GO materials were 

prepared as follows. In a typical procedure, 50 mg of the solid material were suspended in distilled 

water (500 mL), and the suspension bath-sonicated for 24 hours in order to obtain an aggregate-free 

dispersion. This low concentration dispersion was centrifuged at 500 rpm for 45 minutes to remove 

the largest aggregates, and the supernatant separated from the sediment. The supernatant was slowly 

filtered through a 0.45 µm polyester membrane, and the resulting paper-like material, peeled-off 

from the membrane, was dried at room temperature for 24 hours, followed by further thermal 

treatment at 60 oC during 24 hours. GO and f-(PVA)GO paper like materials, with an average 

thickness of 13 µm and 30 µm, respectively, were cut into 2.25 mm width strips for tensile testing 

measurements. In this way, six different f-(PVA)GO paper materials, using grafted PVA of 

different molecular weights (6, 18, 50, 78, 145, and 500 kg/mol), were prepared. Additionally, 

paper-like materials from mixtures of non-functionalised GO and PVA, using PVA of two 

molecular weights (6, and 50 kg/mol) were fabricated under the same conditions. 

 

2.5  PVA based composite preparation using functionalised f-(PVA)GO as filler 
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The functionalised f-(PVA)GO material obtained in the previous section was also used to 

prepare corresponding PVA-f-(PVA)GO composites. For these studies, the functionalised material 

with PVA of 50 kg/mol was used. With the purpose of maximizing reinforcement, a protocol of 

several centrifugation steps was followed in order to separate the larger-sized functionalised f-

(PVA)GO sheets from the smaller ones [19]. To achieve this, a suspension of f-(PVA)GO in 

distilled water (0.6 mg/mL) was prepared by 2 hours bath-sonication. The obtained dispersion was 

left at room temperature overnight and then centrifuged at 500 rpm for 45 minutes remove any large 

graphitic material. The supernatant was separated and centrifuged at 1000 rpm for 45 minutes. In 

this scenario, the smaller f-(PVA)GO flakes would remain dispersed while the larger flakes would 

be found in the sediment [35]. This sediment, containing large flakes, and therefore more suitable to 

maximize reinforcement [19], has been used to prepare composites of f-(PVA)GO in a PVA matrix. 

A given amount of the sediment was added to a 5 mg/mL PVA solution to prepare a set of 

composites at low mass fraction. For the matrix PVA, a molecular weight of 78 kg/mol was used, 

largely to facilitate comparison with other previously published data [19]. Additionally, to study the 

effect of flake size, composites were prepared using non-centrifuged supernatant f-(PVA)GO which 

contained both larger and smaller flakes. In all cases, the resulting dispersions had a constant mass 

of 60 mg (together polymer and filler). The dispersions were bath-sonicated for 4 hours, drop-casted 

into 1 cm × 2 cm × 2 cm Teflon trays and dried in a vacuum oven, first at 40 ºC until total 

evaporation of the solvent and afterwards at 80 ºC for 1 day. The drop-casted films obtained were 

~27 µm thick, and were cut into strips of 2.25 mm width. The mass fraction was converted to 

volume fraction assuming the densities of PVA and f-(PVA)GO to be 1300 and 2200 kg/m3 

respectively. This resulted in a set of films with volume fractions of 0, 0.05, 0.1, 0.24, and 0.36 

vol% f-(PVA)GO. 

 

2.6 Characterization 
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X-ray photoelectron spectroscopy (XPS) was performed on vacuum filtered films in a 

system equipped with a VG CLAM II electron analyzer and PSP twin anode source. Mg Kα 

(hν=1253.6 eV) spectra were recorded at 10 eV pass energy and 2 mm slits, yielding an overall 

energy resolution of 0.85 eV. Samples were introduced via a loadlock and measurement base 

pressure was better than 10-9 mbar. TEM samples were prepared by pipetting 5 µL of a dispersion 

in water onto holey carbon mesh grids (400 mesh) and allowing the solvent to evaporate under 

ambient conditions. Bright-field TEM images were taken with a Jeol 2100, operated at 200 kV. 

Infrared spectra (4000-500 cm-1) were recorded on a Perkin-Elmer Spectrum One 

spectrophotometer. SEM analysis was carried out in a Hitachi S-4300 field emission SEM. 

Mechanical testing was performed using a Zwick Roell tensile tester with 100 N load cell at a strain 

rate of 0.5 mm/mmin and 5 mm/min for paper-like materials, and PVA composites respectively.  

Under these conditions, five stripes of each material were tested. 

 

3. RESULTS AND DISCUSSION 

3.1 Functionalised f-(PVA)GO materials 

We initially characterized the functionalised GO material by transmission electron 

microscopy. Shown in figure 2A-C are TEM images of a typical sample after the smaller flakes 

have been removed by centrifugation (see below). While the initially prepared flakes had lateral 

sizes from a few hundred nanometers to a few microns, those in figure 2 have lengths between 1 

and 7 microns.  
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Figure 2. A-C) TEM images of graphene oxide flakes prepared during this work. Note, these 

images are of size selected flakes i.e. the smaller flakes have been removed. D) C1s X-ray 

photoelectron spectrum of the GO produced in this work. The experimental curve has been fit to 

four peaks after the Shirley background has been subtracted. Note that the spectrum has a global 

binding energy shift of 2.2 eV due to charging 

An analysis of the surface composition of the graphite oxide by XPS (Fig. 2D) showed a 

considerable degree of oxidation with several carbonaceous features related to carbon bonded to 

oxygen. In detail, the C1s XPS spectrum exhibited four features, at positions of 287 eV, 288.5 eV, 

289.5 eV and 291.3 eV in the proportions 61%, 2%, 34% and 3%, respectively. Previous analysis 

[9, 36-41] of GO using XPS has shown a number of groups with the mean observed position given 

in brackets: C-C (284.8 eV), C-OH (286.3 eV), C-O-C (287.0 eV), C=O (287.8 eV) and C(O)O 

(289.4 eV). It is likely that the peak observed by us at 287 eV represents C-C but is shifted by 2.2 

eV due to charging. With this in mind, we identify the peaks observed in this work along with their 

associated fractional contribution as C-C (287 eV, 61%), either C-O-C or C=O (289.5 eV, 34%), 
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C(O)O (291.3 eV, 3%) and C-OH (288.5 eV, 2%). We note that while these results are broadly in 

line with previous reports [9, 36-41], some notable differences exist. Usually, relatively intense 

peaks for both C=O and C-O-C are observed. Here only one peak is observed which we cannot 

definitively assign to either of these groups. Our work shows the C(O)O peak to be weak, in line 

with most reports and consistent with the expectations that this group should be limited to flake 

edges. In addition, as with our results, many reports show the C-OH peak to be relatively weak. 

However, at least one publicationshows the C-OH peak to almost as intense as the C-C peak [37]. 

In any case, these results show the GO produced here to be relatively well oxidized in line with 

expectations. 

FTIR analysis (Fig. 3) gave further evidence on the chemical oxidation of the graphite oxide 

surface, showing this spectrum the characteristic FTIR bands at 1570, 1715 and 3400 cm-1, that can 

be assigned to C=C, C=O (carboxylic acid moieties) and O-H stretching vibrations [42]. In the 

FTIR spectra of the neat PVA and functionalised f-(PVA)GO materials (Fig.3), the presence of an 

intense O-H stretching absorption between 3000 and 3500 cm−1 indicated the existence of strong 

intermolecular and intramolecular hydrogen bonding. The higher intensity and larger width of this 

band in the f-(PVA)GO spectrum suggested that these interactions are significantly stronger in the 

functionalised material. The absorption at 1720 cm−1, corresponding to the stretching vibration of 

C=O ester groups formed between the carboxylic acid groups of GO and the alcohol groups of 

PVA, appears with higher intensity in the f-(PVA)GO spectrum, indicating on one hand that PVA 

has indeed been covalently attached to the GO (scheme 1), and on the other that hydrogen bonding 

between C=O and OH has been established, agreeing with the observed increase of the OH band. 

The band at around 1100 cm-1 in PVA, corresponding to C-O stretching increased in intensity, and 

down-shifted by 32 cm-1 in the f-(PVA)GO material. Also this band became wider because of the 

appearance of new absorptions between 950 and 915 cm-1. These were assigned to characteristic 
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bands of the carboxylic group, not present in neat PVA. Based on the spectral results, it is 

reasonable to conclude on an effective functionalisation of the GO by PVA. 

 

Figure 3. FTIR spectra of thin paper-like materials of GO, PVA, and f-(PVA)GO. The paper-like 

materials were produced by vacuum filtration. The spectra have been shifted vertically for sake of 

clarity. 

 

3.2 Physical properties of paper-like materials 

 It is of interest to study the effect of functionalisation on the resulting properties of 

macroscopic materials. For this reason, we prepared paper-like materials from f-(PVA)GO (with 

PVA of 6 different molecular weights) and compared their mechanical properties with paper-like 

materials prepared from GO, and from mixtures of non-functionalised GO and PVA (with 2 

different molecular weights, 6 kg/mol, and 50 kg/mol). 

SEM analysis of the fracture surfaces of the GO paper-like material (Figure 4A) showed that 

GO paper consisted of GO flakes well-aligned in the plane of the paper as observed previously [43]. 

The majority of flakes appear to be above 1 µm in lateral size. However, the f-(PVA)GO paper-like 

material looks distinctly different (Figure 4B shows the functionalised material with PVA of 145 
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kg/mol as an example). While the fracture surface also appears to be stratified, the flakes seemed 

much less well defined. This is exactly what it would be expected if they were covered with a 

polymer coating, and is consistent with the effective functionalisation achieved and proved by FTIR 

results previously discussed. 

 

Figure 4. SEM images of fracture surfaces of vacuum filtered paper-like materials of A) GO and B) 

f-(PVA)GO. 

Effective functionalisation and formation of a thin PVA layer around GO in f-(PVA)GO 

drastically impacts on the mechanical properties of the corresponding papers. Representative stress 

strain curves for these samples are shown in Figure 5A. It can immediately be seen that the curves 

of f-(PVA)GO paper-like materials differed significantly from that of the GO paper. We can 

summarize this data by focusing on the Young’s modulus, Y, the tensile strength, σB, and the strain 

at break, εB, as shown in figure 5B-D. It is clear from this data that a simple mixing of GO with 

PVA has a negative effect on the modulus of the obtained paper, and results in no change of the 
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strength. In contrast, both, modulus and strength of the f-(PVA)GO paper-like material significantly 

increased in comparison with the GO paper. This is further evidence of the effective 

functionalisation of GO by PVA in the f-(PVA)GO papers. Otherwise, if the PVA and GO were 

only van der Waals bonded, one would expect to see mechanical performances similar to that of the 

simple GO and PVA mixtures. In contrast, the strain at break is similar for both, functionalised and 

mixed samples. In addition, εB increased on the introduction of the polymer. This indicates that 

while the presence of the polymer delays failure, the polymer does not need to be covalently bound 

to the GO. It may be that adsorbed polymer tends to form fibrils under strain connecting GO sheets 

and allowing the paper-like material to resist fracture to higher strains. 

 

Figure 5. Comparison of mechanical properties of paper-like materials from GO, f-(PVA)GO 

(functionalised)  and from simple mixtures of GO and PVA (non-functionalised). These 
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measurements were made for PVA of two different molecular weights, 6kg/mol and 50 kg/mol. A) 

Representative stress strain curves. B) Young’s modulus, C) ultimate tensile strength and C) strain 

at break. 

 

The modulus and strength data described above suggested that covalent attachment of 

polymer chains to the GO increases both inter-flake stress transfer (as evidenced by the modulus 

increase) and inter-flake shear strength (as evidenced by the strength increase). It is of interest to 

consider the mechanism controlling this. It is likely that PVA chains of two adjacent f-(PVA)GO 

sheets, would interact with each other through entanglement. Indeed, since paper fabrication is 

carried out in liquid phase, enough solvent is present to provide the PVA chains sufficient mobility 

to facilitate this process. Entanglement should increase both inter-flake stress transfer and shear 

strength. The degree of increase would be expected to depend on the molecular weight of the 

grafted chains. Lower molecular weight means smaller radii of gyration of the polymer coils and so 

more chains per unit area of flake surface [44]. This should improve both stress transfer and shear 

strength. On the other hand, high molecular weight would mean a higher degree of entanglement 

[45], again potentially resulting in improved stress transfer and shear strength. The trade-off 

between these two competing factors suggests that an optimum molecular weight may exist where 

the modulus and strength show maxima. 

To test this, we prepared f-(PVA)GO paper-like materials for a range of PVA molecular 

weights (6 kg/mol to 500 kg/mol). We measured the mechanical properties of these papers with 

representative stress strain curves shown in figure 6A. Plotted in figure 6B-D are the modulus, 

strength and strain at break values extracted from the stress strain curves. In each case, the red data 

point at Mw=0 represents GO. Although the modulus data was a little scattered, Y increased from ~ 

5 GPa for GO to ~8 GPa for the 50 kg/mol sample before falling off again. More dramatic changes 
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were observed for the strength, which increased from ~25 MPa to ~125 MPa for the 150 kg/mol 

sample before falling off for the 500 kg/mol sample. These were much larger relative changes than 

found for GO paper which is cross linked by divalent ions for example [46]. Interestingly the strain 

at break also increased from ~0.5% for the GO buckypaper to a peak value of ~2% for the 150 

kg/mol sample before falling off to ~1.5% for the 500 kg/mol sample. This behaviour is probably 

not surprising, as the presence of entangled strands from adjacent flakes would certainly delay 

failure.  

 

Figure 6. Mechanical properties of f-(PVA)GO paper-like materials as a function of the molecular 

weight of grafted PVA. A) Representative stress strain curves. B) Young’s modulus, C) ultimate 

tensile strength and C) strain at break. 



	   15	  

 

3.3 PVA composites with f-(PVA)GO as filler material 

Once it is known that the presence of covalently bonded PVA improves the inter-flake stress 

transfer and shear strength through processes such as chain entanglement, it becomes clear that 

interfacial stress transfer in polymer GO-PVA composites may be improved by the same 

mechanism. However, we note that flake size is very important for graphene-polymer composites 

with significant reinforcement only observed for large flakes [19, 47]. In fact, initially tests on 

composites of f-(PVA)GO in PVA using as-produced flakes showed no reinforcement. To address 

this, we used controlled centrifugation to remove smaller flakes and so increase the mean flake size 

[35]. We found that after size selection, the mean flake length and width were 3.0 and 1.7 µm 

respectively. 

We prepared composites of PVA filled with size selected flakes of both GO and f-

(PVA)GO. Representative tensile stress-strain curves for a subset of f-(PVA)GO in PVA 

composites are shown in figure 7A. It is clear from these curves that addition of f-(PVA)GO 

increased both modulus and strength of these composites. Similar curves for GO filled composites 

showed no reinforcements. Shown in figure 7B are data for composite Young’s modulus as a 

function of f-(PVA)GO volume fraction. The modulus increased linearly from ~2.5 GPa for PVA to 

~4.5 GPa for the 0.24 vol% sample beyond which the modulus falls off. The rate of increase in the 

linear regime is dY/dVf=610±60 GPa. Similarly, the strength increased from ~90 MPa for PVA to 

~140 MPa for the 0.24 vol% sample before falling off. The slope of the linear region was 

dσB/dVf=22±2 GPa. We note that these were significant increases and are competitive with the best 

published results for polymers filled with either GO or pristine graphene [7, 10, 17, 19]. For 

comparison purposes, the data for the GO filled composites are also shown, illustrating the lack of 
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reinforcement in this system. Shown in figure 7C is the strain at break as a function of filler content. 

Here the filler has no significant impact on the material ductility.  

 

Figure 7. Mechanical properties of composites prepared from f-(PVA)GO (Mw=50 kg/mol) 

dispersed in a PVA matrix (Mw=78 kg/mol. A) Representative stress strain curves. B) Young’s 

modulus, C) ultimate tensile strength and C) strain at break. 

 

We can put these results in perspective by comparison with the literature. We have 

performed a (non-exhaustive) survey of the literature for mechanical reinforcement of polymers 

using graphene and related materials [10-19, 23, 25, 26, 28, 29]. We characterized the degree of 

reinforcement in two ways. Firstly, we considered the rate of increase in modulus and strength with 
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filler volume fraction; dY/dVf and dσB/dVf. Obviously, good reinforcement is characterized by both 

of these parameters approaching their limiting values. These are determined by the mechanical 

properties of the filler; dY/dVf≤YG and dσB/dVf≤σG, where YG and σG are the graphene flake 

modulus and strength respectively [4, 19]. The maximum values these parameters can reach are 

~1100 GPa and ~130 GPa, respectively for pristine graphene [3] with graphene oxide displaying 

somewhat lower values [48-50] Shown in figure 8A is published data for dY/dVf plotted versus 

dσB/dVf. It is clear that a large spread exists in the data. However, the results presented here are 

among the best reported.  

 

Figure 8. A) Data for dY/dVf plotted as a function of dσB/dVf for polymer/graphene composites 

from the literature. The data is differentiated between polymers filled with graphene or GO and 

polymers filled with polymer functionalised GO. The data from this paper are included for 

comparison. We have limited this graph to composites studied by tensile testing. In addition, in 
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most cases, the rates of increase had to be estimated from the presented data. We assumed that 

polymer functionalised GO had a density similar to the matrix polymer. The theoretical maximum 

reinforcement is shown by the grey square. The dotted line represents ideal behaviour. B) Summery 

of increase in mechanical properties for graphene/polymer composites from the literature. The data 

consists of sets of two points joined by a line. In each case the lower data point represents the neat 

polymer. The upper data point represents the maximum reinforcement achieved. Note that one data 

set shows extremely good reinforcement. In this case the graphene volume fraction was 38% while 

for all other cases it was <6%. See table S1 for details of literature data. 

 

For composites filled with aligned flakes with length above the critical length, the rate of 

increase in modulus and strength are given by 

€ 

dY /dVf ≈ηLYYG  and 

€ 

dσB /dVf ≈ηLσσG . Here 

€ 

ηLY  

and 

€ 

ηLσ  are efficiency factors which scale with flake length and take values between 0 and 1. 

Assuming that 

€ 

ηLY  and 

€ 

ηLσ  have similar functional forms (true for the properties of typical 

graphene filled composites) [4], this means 

€ 

dY /dVf ≈ (YG /σG )dσB /dVf . It is known that 

€ 

YG /σG ≈10 for graphene and graphene oxide, thus 

€ 

dY /dVf ≈10dσB /dVf . This ideal behaviour has 

been plotted on figure 8A. It is clear from this plot that 

€ 

dσB /dVf  is smaller than predicted for all 

composites. This is consistent with the graphene flakes being smaller than the critical value as 

observed previously [19]. This means that, for a given flake size, the composite strength is limited 

by the interfacial strength. While the GO-PVA composites described here are still to the left of the 

line, they are closer to the line than any other of the well performing materials. This illustrates that 

interfacial strength is reasonably good in these composites, validating the strategy to engineer the 

interface. 

We can also assess reinforcement via the increase in modulus and strength from polymer to 

best performing composite. This data is presented here as pairs of points joined by a line. The lower 
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point represents the polymer while the upper point represents the composite. It is clear from this 

data that the reinforcement observed here is consistent with that achieved by other researchers. 

However, the properties of the best performing composite are among the best recorded, partly 

because the starting polymer has impressive mechanical properties. 

 

4. Conclusions 

 In conclusion, we have demonstrated the effective functionalisation of graphene oxide 

sheets with poly(vinyl alcohol). Functionalisation of GO with PVA allowed the preparation of 

vacuum filtered paper-like materials that were much stronger and stiffer than either those prepared 

from GO alone or simple mixtures of GO and PVA. We also found the mechanical properties of 

functionalised GO paper-like materials to depend strongly on the molecular weight of the attached 

polymer chains. The best performances are achieved for attached polymers with molecular weight 

between 50 and 150 kg/mol. Polymer functionalised GO flakes, f-(PVA)GO, were dispersed into 

polyvinylalcohol to form composites. Increases of approximate 60% in modulus and strength for f-

(PVA)GO loadings below 0.3vol% were achieved. This is among the best reinforcement observed 

for graphene based filler materials. 

 

Acknowledgements 

The authors would like to acknowledge Science Foundation Ireland, (grant number 07/IN.7/I1772), 

Spanish Ministry of Science and Innovation (MICINN) under project MAT2010-15026, Spanish 

Research Council CSIC under project 201080E124 and the Government of Aragon (DGA) under 

Project DGA-T66 CNN. M.C. thanks MICINN for her PhD contract and funding for research stay 

at TCD under FPI Programme BES-2008-003503. 



	   20	  

 

References 

[1] Geim AK. Graphene: Status and Prospects. Science. 2009;324(5934):1530-4. 

[2] Geim AK, Novoselov KS. The rise of graphene. Nature Materials. 2007;6(3):183-91. 

[3] Lee C, Wei X, Kysar JW, Hone J. Measurement of the Elastic Properties and Intrinsic 

Strength of Monolayer Graphene. Science. 2008;321(5887):385-8. 

[4] Padawer GE, Beecher N. On the strength and stiffness of planar reinforced plastic resins. 

Polymer Engineering & Science. 1970;10(3):185-92. 

[5] Yang YG, Chen CM, Y.F. W, Yang QH, Wang MZ. Oxidized graphene and graphene based 

polymer composites. New Carbon Materials. 2008;23(3):193-200. 

[6] Verdejo R, Bernal MM, Romasanta LJ, Lopez-Manchado MA. Graphene filled polymer 

nanocomposites. Journal of Materials Chemistry. 2011;21(10):3301-10. 

[7] Kuilla T, Bhadra S, Yao D, Kim NH, Bose S, Lee JH. Recent advances in graphene based 

polymer composites. Progress in Polymer Science. 2010;35(11):1350-75. 

[8] Stankovich S, Dikin DA, Dommett GHB, Kohlhaas KM, Zimney EJ, Stach EA, et al. 

Graphene-based composite materials. Nature. 2006;442(7100):282-6. 

[9] Stankovich S, Dikin DA, Piner RD, Kohlhaas KA, Kleinhammes A, Jia Y, et al. Synthesis 

of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon. 

2007;45(7):1558-65. 

[10] Liang J, Huang Y, Zhang L, Wang Y, Ma Y, Guo T, et al. Molecular-Level Dispersion of 

Graphene into Poly(vinyl alcohol) and Effective Reinforcement of their Nanocomposites. Advanced 

Functional Materials. 2009;19(14):2297-302. 

[11] Putz KW, Compton OC, Palmeri MJ, Nguyen ST, Brinson LC. High-Nanofiller-Content 

Graphene Oxide–Polymer Nanocomposites via Vacuum-Assisted Self-Assembly. Advanced 

Functional Materials. 2010;20(19):3322-9. 



	   21	  

[12] Miller SG, Bauer JL, Maryanski MJ, Heimann PJ, Barlow JP, Gosau J-M, et al. 

Characterization of epoxy functionalized graphite nanoparticles and the physical properties of 

epoxy matrix nanocomposites. Composites Science and Technology. 2010;70(7):1120-5. 

[13] Jiang L, Shen X-P, Wu J-L, Shen K-C. Preparation and characterization of 

graphene/poly(vinyl alcohol) nanocomposites. Journal of Applied Polymer Science. 

2010;118(1):275-9. 

[14] Kim I-H, Jeong YG. Polylactide/exfoliated graphite nanocomposites with enhanced thermal 

stability, mechanical modulus, and electrical conductivity. Journal of Polymer Science Part B: 

Polymer Physics. 2010;48(8):850-8. 

[15] Steurer P, Wissert R, Thomann R, Mülhaupt R. Functionalized Graphenes and 

Thermoplastic Nanocomposites Based upon Expanded Graphite Oxide. Macromolecular Rapid 

Communications. 2009;30(4-5):316-27. 

[16] Zhao X, Zhang Q, Chen D, Lu P. Enhanced Mechanical Properties of Graphene-Based 

Poly(vinyl alcohol) Composites. Macromolecules. 2010;43(5):2357-63. 

[17] Ramanathan T, Abdala AA, Stankovich S, Dikin DA, Herrera-Alonso M, Piner RD, et al. 

Functionalized graphene sheets for polymer nanocomposites. Nat Nanotechnol. 2008;3(6):327-31. 

[18] Yang X, Li L, Shang S, Tao X-M. Synthesis and characterization of layer-aligned poly(vinyl 

alcohol)/graphene nanocomposites. Polymer. 2010;51(15):3431-5. 

[19] May P, Khan U, O'Neill A, Coleman JN. Approaching the theoretical limit for reinforcing 

polymers with graphene. Journal of Materials Chemistry. 2012;22(4):1278-82. 

[20] Coleman JN, Khan U, Blau WJ, Gun’ko YK. Small but strong: A review of the mechanical 

properties of carbon nanotube-polymer composites. Carbon. 2006;44(9):1624-52. 

[21] Deng Y, Li Y, Dai J, Lang M, Huang X. An efficient way to functionalize graphene sheets 

with presynthesized polymer via ATNRC chemistry. Journal of Polymer Science Part A: Polymer 

Chemistry. 2011;49(7):1582-90. 



	   22	  

[22] Veca LM, Lu F, Meziani MJ, Cao L, Zhang P, Qi G, et al. Polymer functionalisation and 

solubilization of carbon nanosheets. Chemical Communications. 2009(18):2565-7. 

[23] Pramoda KP, Hussain H, Koh HM, Tan HR, He CB. Covalent Bonded Polymer–Graphene 

Nanocomposites. Journal of Polymer Science: Part A: Polymer Chemistry. 2010;48:4262-7. 

[24] Kim H, Kobayashi S, AbdurRahim MA, Zhang MJ, Khusainova A, Hillmyer MA, et al. 

Graphene/polyethylene nanocomposites: Effect of polyethylene functionalization and blending 

methods. Polymer. 2011;52(8):1837-46. 

[25] Gonçalves G, Marques PAAP, Barros-Timmons A, Bdkin I, Singh MK, Emami N, et al. 

Graphene oxide modified with PMMA via ATRP as a reinforcement filler. Journal of Materials 

Chemistry. 2010;20(44):9927-34. 

[26] Fang M, Wang K, Lu H, Yang Y, Nutt S. Covalent polymer functionalization of graphene 

nanosheets and mechanical properties of composites. Journal of Materials Chemistry. 

2009;19(38):7098-105. 

[27] Salavagione HJ, Gómez MA, Martínez G. Polymeric Modification of Graphene through 

Esterification of Graphite Oxide and Poly(vinyl alcohol). Macromolecules. 2009;42(17):6331-4. 

[28] Prasad KE, Das B, Maitra U, Ramamurty U, Rao CNR. Extraordinary synergy in the 

mechanical properties of polymer matrix composites reinforced with 2 nanocarbons. Proceedings of 

the National Academy of Sciences. 2009;106(32):13186-9. 

[29] Liu K, Chen L, Chen Y, Wu J, Zhang W, Chen F, et al. Preparation of polyester/reduced 

graphene oxide composites via in situ melt polycondensation and simultaneous thermo-reduction of 

graphene oxide. Journal of Materials Chemistry. 2011;21(24):8612-7. 

[30] Blighe FM, Young K, Vilatela JJ, Windle AH, Kinloch IA, Deng L, et al. The Effect of 

Nanotube Content and Orientation on the Mechanical Properties of Polymer–Nanotube Composite 

Fibers: Separating Intrinsic Reinforcement from Orientational Effects. Advanced Functional 

Materials. 2011;21(2):364-71. 



	   23	  

[31] Coleman JN, Cadek M, Blake R, Nicolosi V, Ryan KP, Belton C, et al. High Performance 

Nanotube-Reinforced Plastics: Understanding the Mechanism of Strength Increase. Advanced 

Functional Materials. 2004;14(8):791-8. 

[32] Young K, Blighe FM, Vilatela JJ, Windle AH, Kinloch IA, Deng L, et al. Strong 

Dependence of Mechanical Properties on Fiber Diameter for Polymer-Nanotube Composite Fibers: 

Differentiating Defect from Orientation Effects. ACS Nano. 2010 2010/11/23;4(11):6989-97. 

[33] Hummers WS, Offeman RE. Preparation of Graphitic Oxide. Journal of the American 

Chemical Society. 1958;80(6):1339. 

[34] Neises B, Steglich W. Simple Method for the Esterification of Carboxylic Acids. 

Angewandte Chemie International Edition in English. 1978;17(7):522-4. 

[35] Khan U, O'Neill A, Porwal H, May P, Nawaz K, Coleman JN. Size selection of dispersed, 

exfoliated graphene flakes by controlled centrifugation. Carbon. 2012;50(2):470-5. 

[36] Tang X-Z, Li W, Yu Z-Z, Rafiee MA, Rafiee J, Yavari F, et al. Enhanced thermal stability 

in graphene oxide covalently functionalized with 2-amino-4,6-didodecylamino-1,3,5-triazine. 

Carbon. 2011;49(4):1258-65. 

[37] Jeong H-K, Noh H-J, Kim J-Y, Jin MH, Park CY, Lee YH. X-ray absorption spectroscopy 

of graphite oxide. Europhysics Letters. 2008;82(6):67004. 

[38] Jeong HY, Kim JY, Kim JW, Hwang JO, Kim J-E, Lee JY, et al. Graphene Oxide Thin 

Films for Flexible Nonvolatile Memory Applications. Nano Letters. 2010 2010/11/10;10(11):4381-

6. 

[39] Akhavan O. The effect of heat treatment on formation of graphene thin films from graphene 

oxide nanosheets. Carbon. 2010 Feb;48(2):509-19. 

[40] Compton OC, Jain B, Dikin DA, Abouimrane A, Amine K, Nguyen ST. Chemically Active 

Reduced Graphene Oxide with Tunable C/O Ratios. Acs Nano. 2011 Jun;5(6):4380-91. 



	   24	  

[41] Pei S, Zhao J, Du J, Ren W, Cheng H-M. Direct reduction of graphene oxide films into 

highly conductive and flexible graphene films by hydrohalic acids. Carbon. 2010;48(15):4466-74. 

[42] Marcano DC, Kosynkin DV, Berlin JM, Sinitskii A, Sun Z, Slesarev A, et al. Improved 

Synthesis of Graphene Oxide. ACS Nano. 2010;4(8):4806-14. 

[43] Dikin DA, Stankovich S, Zimney EJ, Piner RD, Dommett GHB, Evmenenko G, et al. 

Preparation and characterization of graphene oxide paper. Nature. 2007;448(7152):457-60. 

[44] Israelachvili JN. Intermolecular and Surface Forces. 2nd ed. New York: Academic Press 

1991. 

[45] Rubinstein M, Colby RH. Polymer Physics: Oxford University Press 2003. 

[46] Park S, Lee KS, Bozoklu G, Cai W, Nguyen ST, Ruoff RS. Graphene oxide papers modified 

by divalent ions - Enhancing mechanical properties via chemical cross-linking. Acs Nano. 

2008;2(3):572-8. 

[47] Gong L, Kinloch IA, Young RJ, Riaz I, Jalil R, Novoselov KS. Interfacial Stress Transfer in 

a Graphene Monolayer Nanocomposite. Advanced Materials. 2010;22(24):2694-7. 

[48] Gómez-Navarro C, Burghard M, Kern K. Elastic Properties of Chemically Derived Single 

Graphene Sheets. Nano Letters. 2008;8(7):2045-9. 

[49] Paci JT, Belytschko T, Schatz GC. Computational Studies of the Structure, Behaviour upon 

Heating, and Mechanical Properties of Graphite Oxide. The Journal of Physical Chemistry C. 

2007;111(49):18099-111. 

[50] Suk JW, Piner RD, An J, Ruoff RS. Mechanical Properties of Monolayer Graphene Oxide. 

ACS Nano. 2010;4(11):6557-64. 

 



	   25	  

RESEARCH HIGHLIGHTS  

• Graphene oxide (GO) was covalently functionalised with poly(vinyl alcohol) (PVA) 

• PVA functionalised GO, i.e. f-(PVA)GO was processed into paper-like materials 

• Paper-like materials showed significant increase of mechanical properties 

• Largest preselected f-(PVA)GO flakes were used as filler in PVA composites 

• Composites showed significant reinforcement at filler loadings below 0.3 vol% 

 


