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Abstract.

Mo/Au bilayers are among the most suitable materials to be used as Transition-

Edge Sensors (TES) in cryogenic microcalorimeters and bolometers, developed among

other fields for space missions. For this purpose the thermal stability of TES at

temperatures below 150 ˝C is a critical issue.

We report on the dependence of functional properties (superconducting critical

temperature, residual resistance and α) as well as on microstructure, chemical

composition and interface quality for optimized high quality Mo/Au bilayers on

annealing temperature and time. Data show that the functional properties of the

bilayers remain stable at T ă 150 ˝C, but changes in microstructure, interface

quality and functional properties were observed for layers heated at T ě 200 ˝C.

Microstructural and chemical composition data suggest that the measured changes

in RRR and TC at T ě 200 ˝C are mainly due to an increase in the average Au grain

size and to Au migration along the Mo grain boundaries at the Au/Mo interface.

A way to stabilize the functional properties of the Mo/Au bilayers against

temperature enhancements is proposed.
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1. Introduction

High performance radiation detectors based on Transition-Edge Sensors (TES) are being

developed for radiation detection in a wide range of frequencies, from millimetre waves

[1, 2] to gamma-rays [3, 4]. Among other fields such as particle physics, biochemistry and

materials sciences, TES are considered indispensable in astronomy; nowadays, they are

already used or proposed to be used in different telescopes on earth such as SCUBA-

2 [5] or APEX-SZ camera [6] and space missions, such as Micro-X sounding rocket

[7], SAFARI instrument on board of SPICA [8], or XMS on former IXO mission and

presently ATHENA [9, 10].

TES consist of a superconducting layer operated in the narrow temperature region

between the normal and superconducting state. Proximity effect bilayers such as

Al/Ag [11], Ti/Au [12], Mo/Ag [13], Mo/Cu [14, 15], Mo/AuPd [16] and Mo/Au

[17, 18, 19, 20], are preferred to single superconducting films [21]. Because of the

proximity effect [22] in these bilayers, the superconducting transition temperature (

TC,S) of the superconducting layer (S) is reduced by the deposition of a normal metal

layer (M) on top of it. When diminishing TES operation temperature down to „100

mK (the specified working temperature), the device sensitivity is observed to become

up to two orders of magnitude higher than that of conventional detectors based on

semiconductor thermistors. The TES sensitivity is mostly dictated by the sharpness

of the superconducting transition, which turns out to ultimately depend on the S/M

interface quality. Also, for device fabrication and operation the electrical resistivity is

another point of concern [23, 24].

Because of the high melting point, high conductivity, good chemical stability

and high hardness of Mo, the absence of intermetallic compounds and the lack of

interdiffusion predicted for temperatures lower than 300 ˝C, Mo-based bilayers are

foreseen to present a better response to ageing or temperature degradation than Ti/Au

or Al/Ag bilayers [17, 25]. Due to these features, to the excellent corrosion resistance of

Au and their outstanding performance as radiation detectors, Mo/Au TES have been

widely studied over the last decade [17, 18, 19, 20, 26].

Due to the possible temperature enhancements during launching, devices for space

applications have to be stable. To ensure device integrity, thermal cycling test are

required to discard outgassing, fracture of materials or assemblies due to dimensional

tests or short circuiting of electrical wiring, among others. That means that TES have

to preserve their functional properties in the temperature range specified in the test of

flight (T ď 150 ˝C) [27, 28]. Even when this condition is a must for space applications, to

our knowledge the thermal stability of Mo/Au bilayers has not been so far systematically

studied. For that purpose, one of the key parameters to be considered is the steadiness of

its interface. In principle, since Mo is a highly refractory material, annealing processes at

temperatures below 600 ˝C are not expected to influence its microstructural properties

[29]. This fact, together with the protection against oxidation or other impurities

provided by the Au layer, allows foreseeing no change in its superconducting properties.
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However, the high mobility of gold atoms at temperatures as low as 200 ˝C [30] could

promote an increase in the Au grain size and/or Au migration in the interface region.

These possible effects might induce variations in the electrical resistivity of the normal

layer or deterioration of the Mo/Au interface via stress generation and/or intermixing.

In this paper, the thermal stability of high quality optimized Mo/Au bilayers is studied.

For this purpose, the critical temperature (TC) the superconducting transition width,

the residual resistance (RN), the microstructural properties as well as the chemical

composition of as-deposited and annealed bilayers at different temperatures and times

are investigated.

2. Experimental details

Mo (50 nm) and Au (30 nm) layers were deposited at room temperature by RF and DC

sputtering respectively, on Si (100) single crystal substrates covered by a 300 nm Si3N4

(deposited by low-pressure chemical vapour deposition, LPCVD). Prior to deposition

the substrates were cleaned using a KOH solution (15 % wt concentration) at 70˝C for

4 minutes. The Ar working pressure was kept constant at 0.5 Pa during sputtering.

Typical growth conditions for the Au layers were a DC power of 10 W, giving rise to a

deposition rate of 0.1 nm/s; while, for Mo layers, the RF power was fixed to keep voltage

bias at a constant value of 230 V, giving rise to a deposition rate of 0.1 nm/s. Such

deposition conditions have been demonstrated to produce high quality, strain-free Mo

layers [31, 32]. The temperature reached during deposition is not expected to be higher

than 50˝C. Details on individual layer microstructure and bilayer functional properties,

and their correlation to deposition conditions, are described elsewhere [31, 32].

Some of the bilayers were annealed at different temperatures (100 ˝C ď T ď 300 ˝C)

for times between 30 min and 480 min. in air atmosphere and at atmospheric pressure.

The superconducting critical temperature and the electrical resistance were

measured on non-lithographed Mo/Au bilayers of millimetric size were measured using

the four-point resistance method through 25 µm thick Al bonding wire. The use

of non-lithographed samples was chosen to ensure that the changes observed with

annealing temperature were due to variations on the Mo/Au bilayers and not to their

manufacturing processes (lithography, contacting...). Measurements were carried out in

a commercial Physical Property Measurement System (PPMS) with a 3He option from

Quantum Design by applying a constant current of 10 µA. Special care was taken to

avoid remanent fields as much as possible by “quenching” the superconducting coil of

the measurement system before every measurement.

The grain size of each layer and their interface quality were characterized by

Transmission Electron Microscopy (TEM), using a F20 microscope fitted with a spherical

aberration corrector. The interface chemical composition was analyzed by means of

Electron Energy Loss Spectroscopy (EELS) in the same microscope using an Energy

Filter GIF-Tridiem spectrometer. The spot diameter was 0.5nm and the L2,3 (2520

eV) and M4,5 (2206 eV) edges were used for Mo and Au. The microstructure and
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residual stress were studied by X-ray diffraction (XRD) using a Bruker D8 Advance

diffractometer with a GADDS 2-D detector.

In order to ensure that observed changes are due to thermal treatments and not to

other factors such as ageing and/or irreproducibility in the measurement processes (due,

for instance, to remnant fields or thermal coupling), samples prior to and after annealing

were measured together with an as-deposited (control sample). In all the studied cases

control samples properties remain invariable between different cryogenic runs.

3. Results and discussion

The temperature-induced changes in the residual resistance ratio (RRR “

Rp300Kq{RN) and in TC for bilayers annealed for 30 min at temperatures in the range

from 100 to 300 ˝C are shown in figure 1. Errors in RRR are due to the measurement

sensitivity, while TC errors account for possible variations in remanent fields (typically

less than 2 Gauss after“quenching”the superconducting coil of the measurement system)

or sample thermalization. TC error is obtained from the changes in TC measured for

the control sample. These results evidence that annealings at Tď 150 ˝C do not lead

to significant RRR changes. However, RRR slightly increases for samples annealed at

T ě 200 ˝C.

As for the critical temperature, the bilayer annealed at T ď 100 ˝C exhibits the

same TC value than the as-deposited. The TC of the bilayer annealed at T “150 ˝C is

slightly smaller by 4˘1mK than that of the as-deposited sample. Nevertheless, the

change is too small to significantly affect the TES final performance. For bilayers

annealed at T ě 200 ˝C, TC slightly decreases by „ 10˘1mK.
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Figure 1: Variation in RRR and TC as a function of the annealing temperature

(∆RRR “ RRR after annealing ´ RRR prior to annealing and ∆TC “ TC, after annealing ´

TC, prior to annealing). All samples were heated for 30 minutes. Inset displays R(T)

measurement of a sample prior (˛) and after (˛) being heated at 200 ˝C for 30 minutes together

with its control sample (‚ and ˝).

We can therefore conclude that, within the error bars, both RRR and TC display
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the same behaviour, with a step change when the annealing temperature increases from

150 to 200 ˝C.

As shown in the inset in figure 1, the sharpness of the superconducting transition

(transition width „20 mK) is very much similar for as-deposited and all annealed

samples. In this work we are dealing with non-lithographed samples, thus the

logarithmic sensitivity value (α “ d logR{d log T ) of these bilayers is not expected to

provide relevant information on the quality or sensitivity of the final sensor. Thus, a

detailed determination of α, that would require much more data points, was beyond the

scope of the present study. From our RpT q measurements α can be roughly estimated as

„400, which is an order of magnitude smaller than those usually reported in literature

for lithographed samples of similar bilayers [33, 34, 35]. Within the obtained error bars,

no change of α is observed in the measured temperature range, although results do not

completely rule out small changes in α.

The dependence of TC andRRR on annealing time for samples heated at T “ 200 ˝C

is shown in figure 2. No further time dependence of these values, or α is observed when

samples are heated longer than 480 min. This is a very relevant finding, as it indicates

that one procedure to stabilize the bilayers against temperature enhancements would be

to heat them for at least 480 min. For annealing temperatures where no change in TC ,

RRR and α was observed (T ď 100 ˝C), these functional properties remain invariable

even when heated for longer annealing times i.e. 120 min. (not shown).
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Figure 2: RpT q measurement of a sample before and after being heated at 200 ˝C for 480

min and 960 min. Inset displays variation in RRR and TC as a function of the annealing time

for samples heated at 200 ˝C.

In order to account for experimental observations, microstructural studies were

carried out for Mo and Au layers and their interface. Moreover, the chemical composition
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of the Mo/Au interface and Mo/Si3N4(substrate) was also characterized.

XRD measurements (not shown) evidence that annealing induces no significant

modifications in the stress states of Mo and Au layers in the studied temperature range.

The grain size in as-deposited and annealed bilayers was characterised by means of

cross-sectional TEM images. TEM images shown in figure 3 reveal that the Mo average

column width, estimated as displayed in figure 3, does not change by annealing, whereas

the average Au grain size increases from 19 nm for the as-deposited bilayer to 25 nm for

that annealed at 300˝C for 30 min. To ensure a sufficiently large statistics, these values

were obtained averaging results over more than 30 grains, obtained from different TEM

images.

As it is well known, the resistance of a metal has two components: the electron

scattering with phonons and that with lattice imperfections. The first one, typically

proportional to temperature, mainly depends on the phonon concentration; the second

one, known as residual resistance, is the one which dominates the low temperature

behavior. Since no variation of the resistance temperature dependent part with

annealing is observed after eliminating geometrical factors, the measured RRR changes

might be necessarily related to variations in the residual resistance of the Au layer.

Thus, the measured enhancement in the Au average grain size will lead to a

reduction of the grain boundary scattering contribution to the residual resistivity. This

term can be expressed in granular films like our Au layers, according to Mayadas-

Shatzkes[36], as:

ρbulkM “ ρfilmM 3
”1

3
´
a

2
` a2 ´ a3 ln

´

1`
1

a

¯ı

(1)

Where a is defined as R
1´R

`0
D , being D the average grain size, R a factor

corresponding to the fraction of electrons specularly reflected at the boundary, ρbulkM

is the residual resistivity of a bulk sample, ρfilmM is the residual resistivity of the film

and `0 the electron mean free path of the metal. Assuming that ρbulkM “ 0.022 ¨ 10´8 Ωm

[37], `0 “ 40 nm[38], and ρfilmM the residual resistance measured for our samples, a R

value „0.43 (similar to other data found for (111) evaporated Au layers[30]) reproduces

the changes in RRR after annealing. Thus the observed enhancement in the average

Au grain size quantitatively accounts for the measured resistance change.

Regarding TC , even though the electrical resistivity can affect the bilayer TC for

thick enough layers [39], the measured residual resistance variation is too low to justify

the annealing-induced TC changes. Therefore, TC variations might be mostly related to

alterations in the interface quality [39], and thus, in the coupling between Mo and Au

layers.

In order to study the interface chemical sharpness EELS measurements were carried

out. EELS compositional profiles for an as-deposited and an annealed bilayer at 300 ˝C

for 30 minutes are depicted in figure 4. It is observed that annealing nearly doubles the

extension of the region in which the chemical composition is different from pure Au and

Mo (from 1.1˘0.3 nm for the as-deposited to 2.1˘0.3 nm for the annealed samples). Such
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Figure 3: (a) Cross-section TEM image of a 50/30 nm Mo/Au bilayer before being heated

at 300 ˝C for 30 minutes. (b) Cross-section TEM image of a 50/30 nm Mo/Au bilayer after

being heated at 300 ˝C for 30 minutes.

behaviour has been systematically observed for all profiles in all analyzed samples, while

the interface roughness, determined as the average distance between peaks and valleys in

different TEM images, slightly alters, as it might be expected considering that, because

of its high refractory character, Mo grains and microstructure will hardly be modified

by the temperatures used in the studied heat treatments. These data can be explained

by considering that Au migrates somehow in between Mo columns without significantly

modify the interface roughness. Such a modification in the chemical composition at

the interface might affect the coupling between Mo and Au layers, providing a plausible

explanation for the observed TC changes for samples heated at T ě 200 ˝C. This change

in the interface quality might also affect α; in fact is has been shown above that small

α changes can not be fully ruled out.
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Figure 4: Quantification EELS profiles along the Mo/Au interface for an as-deposited 50/30

nm Mo/Au bilayer (Left) and for a 50/30 nm Mo/Au bilayer after heating the sample to 300
˝C for 30 minutes (Right).
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Finally, to discard a possible influence of the substrate in the measured TC changes,

EELS compositional profiles of the Mo-substrate interface were also performed in an

as-deposited and an annealed bilayer at 300 ˝C for 30 minutes. As displayed in figure

5, no change in the chemical composition at the Mo-Si3N4 interface is observed within

the error margins. This fact, together with the absence of additional superconducting

transitions discards the formation of high TC superconducting compounds of N or Si

and Mo.
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Figure 5: Quantification EELS profiles along the Mo/Si3N4interface for an as-deposited 50/30

nm Mo/Au bilayer (Left) and for a 50/30 nm Mo/Au bilayer after heating the sample at 300
˝C for 30 minutes (Right).

4. Conclusions

We have shown that functional properties of Mo/Au bilayers are stable in the

temperature range specified in the test of flight ( T ď150 ˝C), which makes them

competitive candidates for future space missions. We present a complete study on

how TC , RRR and α for optimized sputtered Mo/Au bilayers deposited on Si3N4 are

modified by annealing them at temperatures above or equal to 200 ˝C, well below the

predicted limit for Mo/Au interdiffusion. The measured RRR changes are related to

RN variations that are associated to the increment in the Au average grain size, while

the main reason for the observed TC changes might be the atomic migration of Au in-

between Mo grain boundaries. No change in α is found within the error limits, regardless

of annealing time and temperature.

Despite these changes, we find out that, if required by any future application,

bilayers can be make stable against further heating in the studied temperature and time

ranges by heating the bilayers at T ě 200 ˝C for at least 480 min. after their deposition.
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