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G. Lera and M. Nieto-Vesperinas
Instituto de Optica “Daza de Valdes,” Consejo Superior de Investigaciones Cientificas,
Serrano 121, 28006 Madrid, Spain
(Received 11 September 1989)

A study of the influence of the spatial structure and statistics of the pump beams in the phase-
conjugation process is made, showing that the reflectivity varies along the phase-conjugation mirror
when the phase factor in the coupling equations that describe the process is not constant. The mu-
tual coherence function of the generated field is calculated from the mutual reflectivity of the mirror
for two commonly used statistics for the partially coherent pump beams. Finally, the influence of
diffractional effects is also analyzed, showing that, in general, the fidelity of the process is degraded.

I. INTRODUCTION

Phase conjugation by four-wave mixing (FWM) has
been often studied by assuming the pump fields being
counterpropagating plane waves.’> However, it would
be desirable to have a theory that studies the case of spa-
tially varying pump waves. This has been partially ac-
complished in Refs. 3-5, where TEM,, pump beams and
some generalizations have been considered. Also, an ex-
periment with aberrated pump fields has been conducted
confirming the quality of the conjugation when the pump
waves are conjugates of each other.®

In this paper we attempt to expand further the theory
of space-varying pump fields. We investigate the spatial
coherence properties of the conjugation when depletion
between the signal and the conjugated field occurs, but no
diffractional effects are present, generalizing some results
obtained in Ref. 5. Furthermore, we investigate the
reflection characteristics when diffractional effects take
place.

The problem we shall address is that concerning how
the spatial structure of the beams and their coherence
properties affect the process of phase conjugation (PC) by
degenerate four-wave mixing (DFWM) in a Kerr-like
medium. First, we shall consider no diffractional effects,
later we shall study the influence of diffraction on the
fidelity of the phase-conjugation mirror (PCM)
reflectivity.

We assume that the two pumping beams (which from
now on will be labeled 1 and 2), are much stronger than
the signal and the “conjugated” beam. In this case, the
nondepleted pump approximation’ is valid, and the equa-
tions that describe the coupling between the signal and
the conjugated waves are

4 2
— Trg) PS’C 1)
c

(A+k?E, =

where k is the wave number and E;. are the electric
fields for the signal and conjugated wave, according to
whether the subscript is s or ¢, respectively. o is the fre-
quency common to all the interacting beams (degenerate
case).

The polarization function P, is given by

Ps,c ZX;.EIEZEZ,S (2)

where fis the susceptibility tensor. We have in Eq. (2) a
dyadic product. If all the beams are linearly polarized,
we can take all these equations in terms of scalars corre-
sponding to only one transversal component of the elec-
tric vectors with the only change of x¥ by a y, (the
effective susceptibility) which is given by the dyadic prod-
uct of y with the polarization vectors of the different
fields.

II. PC WITHOUT DIFFRACTIONAL EFFECTS

In this case, we may consider that our beams are de-
scribed by

E=04d(r)e’kT (3)

where 0 is de polarization vector of the field and 4 (r) is
slowly varying. By substituting Eq. (3) into (1), as it may
be seen in standard texts on nonlinear optics”® we arrive
at
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In this case we can write for the left-hand side of Eq.
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where ¢; . is the angle between the z axis and the wave

3
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vector k .. By making this substitution in Eq. (4) we ob-
tain
a As 4 21ria)2 i
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where Ak is the phase mismatch. In our calculations we
assume Ak to be 0. In the case of PC this means that if
we take k, = —k, the wave vector of the signal and conju-
gated beams will satisfy the same relation: k,=—k, . In
such a case we have that ¢, =¢, + .

With all these changes, Eqgs. (5) are transformed into
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Once one has arrived at this point, several approxima-
tions may be made in order to find an analytical solution
to Egs. (6). The simpler case of ®(r)=0 has been studied
in Ref. 4. This condition is equivalent to Eq. (11) in this
reference.

We follow a method similar to that given in Ref. 9 and
use the case where ®(r) is given by the following form:

®(r)=2B(r)g +P(R,0)

where B and & are arbitrary functions of R, r=(R,z),
and ¢ is given by

q(R,z)=fozK(r)dz .

We can then obtain the value of the conjugated field in
the plane z =0 of the PCM:

i(tanQ)e'®RO
Q/Q —iB(R)tan{} E;(R,0) @

where Q(R)=g¢(R,L), QR)={1+[B(R)]*}!?Q(R),
and L is the crystal length.

The main differences between this result and the stan-
dard one' are that here we have a dependence in the ratio
between the conjugate field and the signal with the point
of the surface of the PCM. Thus, different parts of the
signal transversal profile are “reflected” in different ways
depending on the place of the PCM where they arrive.
Moreover, there is a phase factor that affects the fidelity
of the conjugation process.

To analyze the statistical properties of the conjugated
field we consider the mutual coherence function of a field
which is defined as

[(R,R,)=(E(R,)E*(R,)) . (8)

E (R,0)=

One of the most important characteristics of a mirror is
its reflectivity. In the case of a PCM we shall consider in
what follows the mutual reflectivity which we define as

T, (R,,R,)
G(R,R,)=——""2 9)
I'*(R,R,)

When the two arguments of G are the same, say R, we
obtain the reflectivity (7?) at R. Now we are going to an-
alyze how the different properties of the pumping and
signal beams affect the mutual reflectivity G.

From Egs. (7), (8), and (9) it can be seen that a sufficient
condition to obtain a PCM whose response (which is
characterized by G) is independent of the signal (this be-
ing desirable in order to be capable of analyzing the gen-
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eral properties of the PCM) is that the signal has to be

statistically independent of the pumping beams. In this

case the mutual reflectivity according to Egs. (7), (8), and

(9) is given by

(taan)(taan)ei[q)(k"O)—q)(Rz'O)]

[QI/QI _iBltanQI][Qz/Qz +iB2tanﬂz] >
(10)

where Q, and Q, stand for (R,) and Q (R,), respective-
ly.

G(Rl,R2)=<

III. INFLUENCE OF THE SPATIAL STRUCTURE
OF THE PUMP BEAMS

In this section we shall suppose that we have pumping
waves with Gaussian transversal profile but without sta-
tistical fluctuations:

—[k} 2—(k1-r)2]/(kj2W2)eikj-r

Ei(r)=Aje

; (j=1,2).

W is the spot size and we take k;+k,=0. With this kind
of profile we obtain for the mutual reflectivity, given by
Eq. (10) (assuming B (R)=0),

G(R,R,)=tan(Q,)tan(Q,) .

In Fig. 1 we show the reflectivity [R(R)=G (R,R)]
for different directions of propagation of the pump waves.
If we take k, in the xz plane, it is expressed as

k,=k (sin6,0,cos0) .

The calculations of Fig. 1 have been done under the fol-
lowing conditions. K(0)=1/L and L =W, for four
different values of 6. It can be seen that the reflectivity
does not depend on R for 6=m/2 only. This particular
case corresponds to the main result of Ref. 9, namely, in
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FIG. 1. Reflectivity [R(R)] for four different directions of
propagation of the pump waves. 6=0,7/4,7/3,m/2.
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this special case, the influence of the finite profile only
affects the interaction length, but not the features of the
output beam. This is, of course, due to the fact that we
consider (as in Ref. 9) that the spatial distribution of the
pump beams does not vary with the propagation; that is,
there are no diffractional effects, and also we disregard
the possible appearance of other nonlinear effects, like
self-focusing, that may vary this spatial distribution.

IV. PUMP FIELDS WITH STATISTICS DUE
TO A RANDOM-PHASE SCREEN

Once the effect of a Gaussian profile for the pump
beams has been studied, we can use this result to analyze
the effect of only the partial coherence of the pumps.
This is a priori interesting because it is well known that
nonlinear optical processes are significantly influenced by
the coherence properties of the sources, and moreover, it
has been proven in other works'®”!? that in these pro-
cesses the efficiency can be increased significantly by the
partial coherence of the input beams. In this kind of
studies several particular statistics are generally
used.!0 12

We shall assume, first, that the randomness in the
pumping fields occurs only in their phases, as is the case
of beams passing through a random-phase screen.'°

We shall employ a colineal geometry. This geometry
has been used in several experimental setups to study the
angular dependence of PC in other kinds of media, like
SF,."* In this case we consider the pumps as being de-
scribed by

E;(r)= Aje"d’(R)eik"resz/Wz, j=12
where ¢ is a random phase whose statistics fulfills
(¢(R))=0 VR,
(R;—R,)?

(6(R))$(R,)) =0%exp VR,R,,

& being the coherence length and o being the root mean
square of ¢.

In order to separate the effect of the spatial structure of
the beams we have studied the ratio between the mutual
reflectivity in this case of partial coherence and in the
former case of complete coherence for the value 6=0.
This will be called the normalized mutual reflectivity (G ).

With the only assumption that #(R;) and #(R,) are
two jointly distributed Gaussian random variables'* it
can be easily shown that [again B (R)=0]

1—exp

G(R,,R,)=exp l—Zaz

In Fig. 2 G is represented as a function of |[R;—R,] in
spot size units, for four different values of the ratio §/W.
We can see that G always decreases with the separation
between the points of the surface of the mirror, but an in-
teresting feature is that in this kind of statistics, even for
greater values of &, it does not go to zero, approaching an
asymptotic value exp(—20?). In the case shown in Fig.
2, we have taken o0 =1.

(R,—R,)?
_T _
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FIG. 2. Normalized mutual reflectivity (G) as a function of

[(R;,—R,)/W]|, for four values of £/W (random-phase screen
statistics).

V. PUMP FIELDS WITH GAUSSIAN STATISTICS

In this section we are going to assume that the real and
imaginary parts of each pump field are independent
Gaussian variables, and that the real (imaginary) part of
the field at different points of the profile are Gaussian
variables with Gaussian correlation. This kind of statis-
tics has been found to accurately model the behavior of a
partially coherent light beam'® and also of beams generat-
ed by a “Gaussian Schell source.”'""!® An additional sup-
position that we made here is that Q (R) <<1 in order to
simplify the calculations. We have found two interesting
limiting cases.

In the first one, we take the pumping fields as being
completely independent of each other. Straightforward
calculations lead to

— —2(R;—R,)*/&

G(R,,R,)=¢ (11)

In Fig. 3 we show G against the distance between the
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FIG. 3. Normalized mutual reflectivity (G) as a function of
|R;—R,/|, for different values of £ (Gaussian statistics).
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points of the surface of the PCM under consideration, for
different values of the coherence radius §. It can be com-
pared with Fig. 2 and we see that the general behavior is
the same, decreasing G with the distance, but in this case
G tends to zero, while in the other case it does not. From
Eq. (11) it is easy to see that the normalized reflectivity
R(R)=G(R,R) has always a value equal to 1.

In the second case we have taken the pumping fields as
being completely dependent of each other, as is in many
experimental setups where there is only one pump beam
which is reflected in the backside of the nonlinear medi-
um, and the reflected beam plays now the role of the
second pump field. It is easy to calculate directly the
R(R), because what we have is that, due to the approxi-
mations adopted, the only random variable that remains
in & is the intensity of the pump beam, which follows a
negative exponential distribution

1
(1 ¢

By calculating the expected value of Eq. (10) with this
statistics one arrives at the result of Z(R)=2. Here we
can see the reason to use a partially coherent pump beam:
Like in the case of second-harmonic generation'®™!2
(SHG) we have found that the efficiency of the process (in
this case the reflectivity) may be enhanced by the use of
partially coherent beams. However in SHG the purpose
is only to obtain a SHG beam, the more intense the
better. In PC our main goal is not only to obtain a very
intense response, but also a good quality one, and for this
it is not enough that the & does not depend on R; it is
also necessary that G be independent of the position of
the PCM. If we are able to obtain a great coherence ra-
dius £ we can still take the advantage of having a greater
response.

P(I)

V1. PC WITH DIFFRACTIONAL EFFECTS

In this section we are going to study how the DFWM
process is affected by the finite extension of the beams.
The couple beam formalism leads us to a set of equations
which describe the propagation of the signal and conju-
gate beams inside the nonlinear medium under the parax-
ial approximation. We assume that both beams are prop-
agating with their axis close to the z axis. The basic
equations for this case are

2 .
5+AS:___4_.%€—!](ZPS(I) ,
¢ (12)

- 4r0®
ﬁ AC = —TGIkzPC(I') )
where A . are the slowly varying part of the fields, and
E(r)=A.,e™, E.(r)=A4. %,
2 2
="y O o d
dx dy oz

If we try to find from this set a new equation in which
only one of the fields is involved, we find a fourth-order
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linear differential equation, which in the case of plane
pump waves is simplified to

X(D)=XoE | (DE,(r)=yx,E% @R+ |
DD~ 4,= (2bk +a®>)D~ A, +2ia-V(D ™ A4,)
+4k*M|*,
2min®y E?
L
ke?

The solution of this equation is easily found to be, un-
der the usual conditions for PC [E_(R,L)=0],

2bk +a? tan(|ML|)

E.(R,0)=itan(|ML|) [1+i K M

. __tan’(|ML|) a-VES(R,0)
XEs (R,O) 1 |M| Y )

with the only supposition that

(13)

Ak=(a,b) .

It can be seen from Eq. (13), that if Ak=0 the spatial
structure does not influence the features of the PC (at
least under the paraxial approximation and with plane
pumping waves), because we obtain the classical result of
Ref. 1. However, the appearance of the last term of Eq.
(13) changes completely the result of the process, because
this term is not proportional to the conjugate of the sig-
nal field, but to its gradient. From Eq. (13) it is possible
to find under what condition a good conjugate is to be ex-
pected.

There are mechanisms, however, which may lead to a
phase mismatch, as can be that the pumping waves are
not exactly counterpropagating, or if their frequencies do
not coincide with one another or with the frequency of
the signal. A brief discussion of other sources for this
mismatch can be found in Ref. 17. To carry on our
analysis, we may suppose that the phase mismatch is due
to a change of the propagation direction of one of the
pump beams. Since, however, the results do not depend
on the physical origin of the mismatch, they will be valid
when the value of the mismatch is similar to the one used
here, even though due to a different cause.

We take one of the beams, say E,, propagating exactly
in the x-axis direction, and the other one almost counter-
propagating, but with a little component in the y-axis
direction. By taking the paraxial approximation, we can
say that the phase mismatch is given by

2

k
Y
2 k,,0

Ak= Tk

In order to simplify, we take the signal field at the
plane z =0 as being independent of x and real. If we
define 7 as the ratio between the reflectivity obtained in
this case and in the case Ak =0, we obtain



__tan(|ML|) k, dln4,

RR)= |1 T R

tan?(|ML|) k;
M2 16k?

We are going to assume that the mismatch is not very
large, so that the last term in Eq. (14) can be neglected.
Our aim is to analyze now how the PC process is
affected by several parameters that define the spatial dis-
tribution of a beam with Gaussian spatial structure but
with a given modulation. As an example, we shall con-
sider a sinusoidal modulation, in the case in which we
have a nonzero phase mismatch. Hence we take the dis-
tribution of the signal field in the z =0 plane as being

A,(R,0)=¢ """ sin(hy +a) .

(14)

We have done calculations for the normalized reflectivity
for several values of A, W, and the interaction length. We
define two new parameters:

_tan(IML) Ky p
4 M 2k AW

In Fig. 4 7 is shown for the spot size equal to 207/,
and for different values of p. This can be achieved by
varying the interaction length. For the smallest value of
p R tends quickly to one after decaying to zero when hy
increases. This means that in that case, the only
differences with the case of perfect matching are at those
points in which the signal is zero. Therefore the only
thing that takes place in this case is a reduction in the
visibility. If we increase the value of p the shape of R
changes, being more different with respect to the
matched case. The positions of the zeros are changed,
too. For p =0.3 the *“conjugated” is quite distorted, as
manifested by the poles of the 7 curve versus hy.

In Fig. 5 we show # versus hy for different values of
the spot size W for «=0.02 and p =0.05. The value 1 of

Reflect.
(7]
(-]
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- »
(-] (-]

1 | N

FIG. 4. Normalized reflectivity () along the PCM’s surface
(hy) for different values of p.

G. LERA AND M. NIETO-VESPERINAS 41

5.0

>

(-]

1
Hty o

o
[-]
1
oo i

— W
———W
oo W
[+ 3
P

Norm. Reflect.
®

-——
—
-_——

-

.

(-]
1

FIG. 5. Normalized reflectivity (%) along the PCM’s surface
(hy) for p =0.05, and different values of the spot size.

R corresponds to the matched case. We can see that
there is a strong dependence of this function with the
spot size; that is, with the finite extension of the beam.
Naturally, the results for /2 are only significant for
y <2W approximately, because for values of y greater
than 2W the intensity of the signal field is practically
zero.

Even for very low values of p there are points where &
goes to infinity (those points where the signal field is
zero). This means that for these points the output is not
zero, the visibility of the output image being degraded.
On the other hand, we can see that there are points at
which 7 is zero, so that, the fidelity of the conjugation at
these points is lost once again.

In Fig. 6 we show R for p =0.3 and the same values of
the other parameters. Because of the greater value of p
this time, the changes in & are very great and we find

5.0 4
=20
=02
4.0 =01
- /
8 /
5 3.0 //
[}
o
: 2.0 -
= 0.02
g = 03
< 1.0 -
0.0 .
0.0 0.8

FIG. 6. Normalized reflectivity (%) along the PCM’s surface
(hy) for p =0.3, and different values of the spot size.
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FIG. 7. Normalized reflectivity (%) along the PCM’s surface
(y /W) with W fixed and different values of the spatial frequen-
cy.

that here the “conjugation” process really does not work.
Another different feature that can be observed here is
that the zeros of & are placed at different points for
different values of W. _

In Fig. 7 we represent 7 for the same value of W and
vary the value of the spatial frequency h. The corre-
sponding values of the spatial period are T =50W, 8W,
5W, and 3W. Here we have taken a to be 7/2 and
g =0.1. Only when T/W is very large one can expect
the image to be slightly distorted. In all other cases the
output image presents a very different behavior than that
of the input.

From these figures, we can conclude, that the
reflectivity depends strongly on the spatial structure of
the fields, if there is a phase mismatch between the pump-
ing beams. On the other hand, we know that there are
many factors'’ that may produce the appearance of this
mismatch. Even if the mismatch is very small, there is a
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FIG. 8. Normalized reflectivity () along the PCM’s surface
(y /W) for different values of the interaction length L.

loss in the visibility due to the fact that the reflectivity
tends to infinity in those points in which the signal is null.
If the mismatch is not so small, the fidelity in the conju-
gation process is being gradually lost. For a Gaussian
beam of the kind studied here a natural condition to have
a good quality conjugation is that p,q <<1.

In Fig. 8 we analyze how A varies for a given value of
the phase mismatch (k,/k =0.002), for different values
of the interaction length. Here we take |MW|=1 and
a=1/2. For this small value of the phase mismatch, we
can see the behavior of the instability in the response
when one goes to the regime of oscillation |ML|—m /2.
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