Supplementary information

Tightening or Loosening a pH-Sensitive double-Lasso Molecular Machine Readily Synthesized from an Ends-Activated [c2]Daisy Chain

Camille Romuald ${ }^{a}$, Ana Ardá Freire ${ }^{b}$, Caroline Clavel ${ }^{a}$, Jesús Jiménez-Barbero ${ }^{* b}$ and Frédéric Coutrot* ${ }^{a}$

${ }^{a}$ Institut des Biomolécules Max Mousseron (IBMM), UMR 5247 CNRS-Universités Montpellier 2 et 1, Bâtiment de Recherche Max Mousseron,
Ecole Nationale Supérieure de Chimie de Montpellier, 8 rue de l'Ecole Normale, 34296 Montpellier Cedex 5, France.
Fax: +33 467-14-43-44; Tel: +33 467-14-72-97; E-mail: frederic.coutrot@univ-montp2.fr - http://www.glycorotaxane.fr
${ }^{b}$ Centro de Investigaciones Biológicas (CIB-CSIC), Ramiro de Maetzu, 9 - E28040 Madrid, Spain. E-mail: jjbarbero@cib.csic.es
A. Synthesis of the stoppering azido precursor 1 3

1) Preparation of the anhydride 7 3
2) Preparation of the 1,2,3,4-tetra-O-acetyl- β-D-glucuronic acid $\mathbf{8}$ 4
3) Preparation of the 1-azido-2,3,4-tri-O-acetyl- β-D-glucuronic acid 9 4
4) Preparation of the pentafluorophenol 1-azido-2,3,4-tri-O-acetyl- β-D-glucuronic ester 1 5
B. Synthesis of the alkyne pseudo [c2]Daisy chain 2 5
5) Preparation of the tridec-2-yn-1-ol $\mathbf{1 0}$ 5
6) Preparation of the tridec-12-yn-1-ol $\mathbf{1 1}$ 6
7) Preparation of the 13-bromotridec-1-yne $\mathbf{1 2}$ 6
8) Preparation of the phthalimide $\mathbf{1 3}$ 7
9) Preparation of the tridec-12-yn-1-amine 14 7
10) Preparation of the crown ether $\mathbf{1 5}$ 8
11) Preparation of the compound $\mathbf{1 6}$ 8
12) Preparation of the compound 2 9
C. Synthesis of the non-interlocked threads $5 \mathbf{u}$ and $6 u$ 10
13) Preparation of the compound $\mathbf{1 7}$ 10
14) Preparation of the compound $\mathbf{1 8}$ 10
15) Preparation of the thread $\mathbf{1 9}$ 11
16) Preparation of the thread 20 12
17) Preparation of the thread $\mathbf{5 u}$ 13
18) Preparation of the thread $\mathbf{6 u}$ 14
D. Synthesis of the double-lasso 15
19) Preparation of the activated rotaxane dimer 3 15
20) Preparation of the double-lasso $\mathbf{4 a - b}$ 16
21) Preparation of the double-lasso 5a-b 17
22) Preparation of the double-lasso 6a-b 18
23) Reprotonation procedure of $\mathbf{6 a}-\mathbf{b}$ 18
E. Molecular Modeling 18
F. Stack plot ${ }^{1} \mathrm{H}$ NMR ($\mathbf{4 0 0} \mathrm{MHz}, 298 \mathrm{~K}$) of double-lasso 5 in different solvents 22
G. NMR Spectra 22

General Methods. All reactions were carried out under an atmosphere of argon unless otherwise indicated. All reagents were used as received without further purification. Dichloromethane was distilled over $\mathrm{P}_{2} \mathrm{O}_{5}$ and was degassed by bubbling Ar for 20 min . Analytical thin-layer chromatography (TLC) was performed on Merck silicagel 60 F254 plates. Compounds were visualized by dipping the plates in an ethanolic solution of 10% sulphuric acid, ninhydrine or an aqueous solution of KMNO_{4}, followed by heating. ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra were obtained on a spectrometer (respectively at 400.13 MHz and 100.62 MHz). Chemical shifts of ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR are given by using CHCl_{3} $\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{CH}_{3} \mathrm{OH}, \mathrm{CH}_{3} \mathrm{CN}$ and DMSO as references $(7.27 \mathrm{ppm}, 5.32 \mathrm{ppm}, 3.31 \mathrm{ppm}, 1.94 \mathrm{ppm}$ and 2.50 ppm respectively for ${ }^{1} \mathrm{H}$ spectrum, and $77.0 \mathrm{ppm}, 54.0 \mathrm{ppm}, 49.15 \mathrm{ppm}, 118.26 \mathrm{ppm}$, and 39.51 ppm respectively for ${ }^{13} \mathrm{C}$ spectrum). ${ }^{1} \mathrm{H}$ assignments were deduced from $2 \mathrm{D}{ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ NMR COSY experiments. ${ }^{13} \mathrm{C}$ assignments were deduced from $2 \mathrm{D}{ }^{13} \mathrm{C}-{ }^{1} \mathrm{H}$ NMR HMQC experiments. Coupling constants (J) are reported in hertz (Hz). Standard abbreviations indicating multiplicity were used as follows: s (singlet), br (broad), d (doublet), t (triplet), q (quartet), m (multiplet). Mass spectra (MS) and high-resolution mass spectra (HRMS) were recorded respectively on a ZQ Micromass apparatus, a MALDI and a Q-TOF Micromass apparatus supplied with an ESI source (Waters, 2001).

A. Synthesis of the stoppering azido precursor 1

1) Preparation of the anhydride 7

7

To a suspension of D-glucuronic acid ($1.97 \mathrm{~g}, 10.15 \mathrm{mmol}, 1 \mathrm{eq}$.$) in 30 \mathrm{~mL}$ of acetic anhydride at $5^{\circ} \mathrm{C}$ was added slowly in portions iodine ($260 \mathrm{mg}, 1.015 \mathrm{mmol}, 0.1$ equiv). The suspension was stirred 1 h at $5^{\circ} \mathrm{C}$ and then 4 h at room temperature. The solution was co-evaporated with toluene and the solid residue was triturated with diethyl ether. A white powder was obtained $(3.21 \mathrm{~g})$ with a yield of 78%.
${ }^{1} \mathbf{H}$ NMR (400 MHz, $\left.\mathbf{C D C l}_{3}, \mathbf{2 9 8 K}\right): \delta=5.79\left(\mathrm{~d}, 1 \mathrm{H},{ }^{3} \mathbf{J}_{H l-H 2}=8.3 \mathrm{~Hz}, \mathrm{H}_{1}\right), 5.35\left(\mathrm{t}, 1 \mathrm{H},{ }^{3} \mathrm{~J}_{H 4-H 3}={ }^{3} \mathbf{J}_{H 4-\mathrm{H} 5}\right.$ $\left.=8.3 \mathrm{~Hz}, \mathrm{H}_{4}\right), 5.27\left(\mathrm{t}, 1 \mathrm{H}^{3} \mathrm{~J}_{H 3-H 2}={ }^{3} \mathrm{~J}_{H 3-H 4}=8.3 \mathrm{~Hz}, \mathrm{H}_{3}\right), 5.10\left(\mathrm{t}, 1 \mathrm{H},{ }^{3} \mathrm{~J}_{H 2-H I}={ }^{3} \mathrm{~J}_{H 2-H 3}=8.3 \mathrm{~Hz}, \mathrm{H}_{2}\right)$, $4.31\left(\mathrm{~d}, 1 \mathrm{H},{ }^{3} \mathrm{~J}_{\mathrm{HF}-\mathrm{H} 4}=8.3 \mathrm{~Hz}, \mathrm{H}_{5}\right), 2.25\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{COOCOCH}_{3}\right), 2.29 \& 2.10 \& 2.04 \& 2.03 \& 2.02\left(5^{*} \mathrm{~s}\right.$, $\left.5 * 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CO}\right)$.
${ }^{13} \mathbf{C}$ NMR JMOD ($\left.\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}, \mathbf{2 9 8 K}\right): \delta=169.7 \& 169.3 \& 169.1 \& 168.6\left(\mathrm{COCH}_{3}\right), 164.7 \&$ $162.5\left(\underline{\mathrm{COOCOCH}}_{3}\right), 91.3\left(\mathrm{C}_{1}\right), 72.9\left(\mathrm{C}_{5}\right), 71.2\left(\mathrm{C}_{3}\right), 70.0\left(\mathrm{C}_{2}\right), 67.9\left(\mathrm{C}_{4}\right), 22.0\left(\mathrm{COOCOCH}_{3}\right), 20.6$ \& $20.4 \& 20.4\left(\underline{C H}_{3} \mathrm{CO}\right)$.
MS (ESI): $[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\left[\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{O}_{12} \mathrm{Na}\right]^{+}: 427.31$, found: 427.14
2) Preparation of the 1,2,3,4-tetra-O-acetyl- β-D-glucuronic acid 8

The anhydride $7(1.40 \mathrm{~g}, 3.46 \mathrm{mmol})$ was stirred overnight at room temperature in 60 mL of a solution consisting of THF / water 2:1. The THF was then evaporated and the aqueous solution was extracted with dichloromethane ($3 \times 50 \mathrm{~mL}$). The organic phase was dried over MgSO_{4}, filtered and evaporated to afford the acid compound $\mathbf{8}(1.23 \mathrm{~g})$ in a quantitative yield.
\mathbf{R}_{f} (AcOEt/éther de pétrole 4:1) 0.0
${ }^{1} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}$, CDCl $_{3}, \mathbf{2 9 8 K}$): $\delta=5.81\left(\mathrm{~d}, 1 \mathrm{H},{ }^{3} \mathbf{J}_{H-H 2}=6.9 \mathrm{~Hz}, \mathrm{H}_{1}\right), 5.39\left(\mathrm{t}, 1 \mathrm{H},{ }^{3} \mathrm{~J}_{H 3-H 2}={ }^{3} \mathbf{J}_{H 3-\mathrm{H} 4}\right.$ $\left.=8.7 \mathrm{~Hz}, \mathrm{H}_{3}\right), 5.29\left(\mathrm{t}, 1 \mathrm{H},{ }^{3} \mathbf{J}_{H 4-H 3}={ }^{3} \mathbf{J}_{H 4-H 5}=8.7 \mathrm{~Hz}, \mathrm{H}_{4}\right), 5.13\left(\mathrm{dd}, 1 \mathrm{H},{ }^{3} \mathbf{J}_{H 2-H 1}=6.9 \mathrm{~Hz}^{3}{ }^{3} \mathbf{J}_{H 2-H 3}=8.7 \mathrm{~Hz}\right.$, $\left.\mathrm{H}_{2}\right), 4.32\left(\mathrm{~d}, 1 \mathrm{H},{ }^{3} \mathrm{~J}_{\mathrm{H} 5 \cdot \mathrm{H4}}=8.7 \mathrm{~Hz}, \mathrm{H}_{5}\right), 2.14 \& 2.07 \& 2.04 \& 2.02\left(4 * \mathrm{~s}, 4 * 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CO}\right)$.
${ }^{13} \mathbf{C}$ NMR JMOD ($\mathbf{1 0 0} \mathbf{~ M H z}$, CDCl $_{3}, \mathbf{2 9 8 K}$): $\delta=170.0 \& 169.7 \& 169.6 \& 169.3 \& 168.9\left(\mathrm{C}_{6}\right.$ $\left.\mathrm{COCH}_{3}\right), 91.2\left(\mathrm{C}_{1}\right), 72.4\left(\mathrm{C}_{5}\right), 71.8\left(\mathrm{C}_{3}\right), 70.0\left(\mathrm{C}_{2}\right), 68.5\left(\mathrm{C}_{4}\right), 20.7 \& 20.5 \& 20.5 \& 20.4\left(\mathrm{CH}_{3} \mathrm{CO}\right)$.
MS (ESI): $[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\left[\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{O}_{11} \mathrm{Na}\right]^{+}: 385.28$, found: 385.10

3) Preparation of the 1-azido-2,3,4-tri-O-acetyl- β-D-glucuronic acid 9

To a solution of the 1,2,3,4-tetra- O-acetyl- β-D-glucuronic acid $\mathbf{8}$ ($3.93 \mathrm{~g}, 10.847 \mathrm{mmol}, 1$ equiv) in 25 mL of dichloromethane at $5^{\circ} \mathrm{C}$ were added trimethylsilylazide ($3.57 \mathrm{~mL}, 27.117 \mathrm{mmol}, 2.5$ equiv) and $\operatorname{tin}(\mathrm{IV})$ chloride ($5.4 \mathrm{~mL}, 5.423 \mathrm{mmol}, 1 \mathrm{M}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 0.5$ equiv). The reaction was allowed to stir overnight at $5^{\circ} \mathrm{C}$. A saturated aqueous solution of NaHCO_{3} was then added and the reaction mixture was stirred 20 min before separating the two layers. After a second wash with saturated NaHCO_{3}, the combined aqueous layers were acidified with hydrochloric acid 12 M and extracted with dichloromethane ($3 \times 30 \mathrm{~mL}$). The combined organic layers were dried over MgSO_{4}, filtered and concentrated to yield the compound $9(2.85 \mathrm{~g}, 75 \%$, ratio $\alpha / \beta: 17 / 83)$ as a colorless solid.
β isomer : ${ }^{1} \mathbf{H}$ NMR ($\left.\mathbf{4 0 0} \mathbf{~ M H z , ~} \mathbf{C D C l}_{3}, \mathbf{2 9 8 K}\right): \delta=5.30\left(\mathrm{t}, 1 \mathrm{H},{ }^{3} \mathbf{J}_{H 3-H 2}={ }^{3} \mathbf{J}_{H 3-\mathrm{H4}}=9.2 \mathrm{~Hz}, \mathrm{H}_{3}\right), 5.26(\mathrm{t}$, $\left.1 \mathrm{H},{ }^{3} \mathbf{J}_{H 4-H 3}={ }^{3} \mathrm{~J}_{H 4-H 5}=9.2 \mathrm{~Hz}, \mathrm{H}_{4}\right), 4.96\left(\mathrm{t}, 1 \mathrm{H},{ }^{3} \mathrm{~J}_{H 2-H I}={ }^{3} \mathbf{J}_{H 2-H 3}=9.2 \mathrm{~Hz}, \mathrm{H}_{2}\right), 4.76\left(\mathrm{~d}, 1 \mathrm{H},{ }^{3} \mathrm{~J}_{H l-H 2}=9.2\right.$ $\left.\mathrm{Hz}, \mathrm{H}_{1}\right), 4.18\left(\mathrm{~d}, 1 \mathrm{H},{ }^{3} \mathrm{~J}_{\mathrm{H} 5-\mathrm{H}}=9.2 \mathrm{~Hz}, \mathrm{H}_{5}\right), 2.07 \& 2.04 \& 2.02\left(3^{*} \mathrm{~s}, 3 * 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CO}\right)$.
${ }^{13} \mathbf{C}$ NMR JMOD ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{\mathbf{3}}, \mathbf{2 9 8 K}$): $\delta=170.2 \& 170.0 \& 169.4 \& 168.3\left(\mathrm{C}_{6} \mathbf{C O C H}_{3}\right), 87.7$ $\left(\mathrm{C}_{1}\right), 73.5\left(\mathrm{C}_{5}\right), 71.9\left(\mathrm{C}_{3}\right), 70.3\left(\mathrm{C}_{2}\right), 68.8\left(\mathrm{C}_{4}\right), 20.4 \& 20.4\left(\mathrm{CH}_{3} \mathrm{CO}\right)$.
MS (ESI): $[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\left[\mathrm{C}_{12} \mathrm{H}_{15} \mathrm{~N}_{3} \mathrm{O}_{9} \mathrm{Na}^{+}: 368.25\right.$, found: 368.00

1

To a cooled solution $\left(0^{\circ} \mathrm{C}\right)$ of the 1-azido-2,3,4-tri- O-acetyl-D-glucuronic acid $9(2.84 \mathrm{~g}, 8.224 \mathrm{mmol}$, 1 equiv) in 30 mL of dichloromethane was added oxalyl chloride ($1.44 \mathrm{~mL}, 16.449 \mathrm{mmol}, 2$ equiv). 3 mL of DMF was then slowly added to the stirring solution and evolution of gas was observed. The pale yellow solution was stirred for 30 min at $0^{\circ} \mathrm{C}$ and then for 2 h at room temperature. ${ }^{[1]}$ The solution was evaporated to give a solid, which was diluted in 30 mL of dichloromethane and added by pentafluorophenol ($1.82 \mathrm{~g}, 9.869 \mathrm{mmol}, 1.2$ equiv). The mixture was allowed to stir overnight at room temperature. The solution was washed with a saturated aqueous solution of $\mathrm{NaHCO}_{3}(2 \times 30 \mathrm{~mL})$. After separation, the aqueous layer was extracted with dichloromethane (2 x 30 mL). The organic layers were combined, dried over MgSO_{4} and concentrated. The crude was purified by chromatography on silicagel column (gradient elution petroleum ether/AcOEt 9:1 to 1:1) to yield the compound $\mathbf{1}$ as a colorless solid ($2.32 \mathrm{~g}, 56 \%$) and as a unique β stereoisomer.
\mathbf{R}_{f} (petroleum ether /AcOEt 1:1) 0.68
${ }^{1} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}$, CDCl $\left._{3}, \mathbf{2 9 8 K}\right): \delta=5.44\left(\mathrm{t}, 1 \mathrm{H}, \mathbf{J}_{\mathrm{H} 3-\mathrm{H} 2}={ }^{3} \mathbf{J}_{H 3-H 4}=9.2 \mathrm{~Hz}, \mathrm{H}_{3}\right), 5.32\left(\mathrm{t}, 1 \mathrm{H}, \mathbf{J}_{H 4-\mathrm{H} 3}\right.$ $\left.={ }^{3} \mathbf{J}_{H 4-H 5}=9.2 \mathrm{~Hz}, \mathrm{H}_{4}\right), 5.05\left(\mathrm{t}, 1 \mathrm{H},{ }^{3} \mathrm{~J}_{H 2-H l}={ }^{3} \mathbf{J}_{H 2-H 3}=9.2 \mathrm{~Hz}, \mathrm{H}_{2}\right), 4.83\left(\mathrm{~d}, 1 \mathrm{H},{ }^{3} \mathrm{~J}_{H l-H 2}=9.2 \mathrm{~Hz}, \mathrm{H}_{1}\right)$, $4.54\left(\mathrm{~d}, 1 \mathrm{H},{ }^{3} \mathrm{~J}_{\mathrm{H} 5-\mathrm{H}}=9.2 \mathrm{~Hz}, \mathrm{H}_{5}\right), 2.11 \& 2.06 \& 2.05\left(3 * \mathrm{~s}, 3 * 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CO}\right)$.
${ }^{13} \mathbf{C}$ NMR JMOD ($\left.\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}, \mathbf{2 9 8 K}\right): \delta=170.0 \& 169.1 \& 169.0\left(\mathbf{C O C H}_{3}\right), 162.5\left(\mathrm{C}_{6}\right), 88.2$ $\left(\mathrm{C}_{1}\right), 73.8\left(\mathrm{C}_{5}\right), 71.7\left(\mathrm{C}_{3}\right), 70.1\left(\mathrm{C}_{2}\right), 68.7\left(\mathrm{C}_{4}\right), 20.5 \& 20.4 \& 20.2\left(\mathrm{CH}_{3} \mathrm{CO}\right)$.

B. Synthesis of the alkyne pseudo [c2]Daisy chain 2

1) Preparation of the tridec-2-yn-1-ol 10

To a stirred solution of 1 -dodecyne ($5 \mathrm{~g}, 30.064 \mathrm{mmol}, 1$ equiv) in anhydrous THF at $5^{\circ} \mathrm{C}$ was added, under Argon, n-BuLi ($20.7 \mathrm{~mL}, 33.077 \mathrm{mmol}, 1.6 \mathrm{M}$ in THF, 1.1 equiv). After 30 min at $5^{\circ} \mathrm{C}$, paraformaldehyde was added by portions. The solution was further stirred during 1 h at $5^{\circ} \mathrm{C}$, then during one night at room temperature. The reaction mixture was quenched with 120 mL of $1: 1$ water/saturated water with $\mathrm{NH}_{4} \mathrm{Cl}$. The biphasic solution was separated and the aqueous layer
[1] D. P. Temelkoff, M. Zeller, P. Norris, Carbohydrate Research, 2006, 341, 1081-1090.
extracted twice with 100 mL of ethyl acetate. The organic layers were then combined, dried over MgSO_{4} and concentrated to afford compound $\mathbf{1 0}$ in a quantitative yield (5.90 g) as a yellow oil.
\mathbf{R}_{f} (petroleum ether /AcOEt 9:1) 0.21
${ }^{1} \mathbf{H}$ NMR $\left(\mathbf{C D C l}_{3}, 400 \mathrm{MHz}, \mathbf{2 9 8 K}\right): \delta(\mathrm{ppm})=4.25\left(\mathrm{t}, 2 \mathrm{H},{ }^{5} \mathbf{J}_{H 4-\mathrm{Hl}}=2.0 \mathrm{~Hz}, \mathrm{H}_{1}\right), 2.21\left(\mathrm{tt}, 2 \mathrm{H},{ }^{5} \mathbf{J}_{H 4-H l}=\right.$ $\left.2.0 \mathrm{~Hz},{ }^{3} \mathrm{~J}_{H 4-H 5}=7.2 \mathrm{~Hz}, \mathrm{H}_{4}\right), 1.55-1.46\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}_{5}\right), 1.42-1.33\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}_{6}\right), 1.33-1.20\left(\mathrm{~m}, 12 \mathrm{H}, \mathrm{H}_{7} \mathrm{H}_{8}\right.$ $\left.\mathrm{H}_{9} \mathrm{H}_{10} \mathrm{H}_{11} \mathrm{H}_{12}\right), 0.89\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{J}_{\mathrm{H} 13-\mathrm{H} 12}=6.9 \mathrm{~Hz}, \mathrm{H}_{13}\right)$.
${ }^{13} \mathbf{C}$ NMR JMOD ($\left.\mathbf{C D C l}_{3}, \mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{2 9 8 K}\right): \delta(\mathrm{ppm})=86.6 \& 78.2\left(\mathrm{C}_{2} \mathrm{C}_{3}\right), 51.4\left(\mathrm{C}_{1}\right), 31.9 \& 29.6$ \& $29.5 \& 29.3 \& 29.1 \& 28.9 \& 28.6 \& 22.7\left(\mathrm{C}_{5} \mathrm{C}_{6} \mathrm{C}_{7} \mathrm{C}_{8} \mathrm{C}_{9} \mathrm{C}_{10} \mathrm{C}_{11} \mathrm{C}_{12}\right), 18.7\left(\mathrm{C}_{4}\right), 14.1\left(\mathrm{C}_{13}\right)$.
2) Preparation of the tridec-12-yn-1-ol 11

To dry ethylene-1,2-diamine (80 mL) at $0-5^{\circ} \mathrm{C}$ under argon was added $\mathrm{NaH}(11.90 \mathrm{~g}, 0.297 \mathrm{~mol}, 10$ equiv, 60% in oil). The mixture was allowed to warm slowly at $60^{\circ} \mathrm{C}$ and stirred for 3 h to give a deep blue mixture. Then, it was cooled to $45^{\circ} \mathrm{C}$ before adding dropwise the tridec-2-yn-1-ol $\mathbf{1 0}(5.84 \mathrm{~g}$, $29.749 \mathrm{mmol}, 1$ equiv). The solution was stirred at $60^{\circ} \mathrm{C}$ for one night before being cooled to $0^{\circ} \mathrm{C} .100$ mL of water and 100 mL of diethyl ether were introduced slowly; then HCl 12 M was added until pH 1. Aqueous layer was extracted with diethyl ether ($4 \times 100 \mathrm{~mL}$). The organic layers were combined, dried and concentrated. The crude oil was purified by chromatography on a silicagel column (solvent elution: petroleum ether/AcOEt 1:1) to give the desired product ($3.56 \mathrm{~g}, 61 \%$) as a yellow oil.
\mathbf{R}_{f} (petroleum ether /AcOEt 1:1) 0.71
${ }^{1} \mathbf{H}$ NMR $\left(\mathbf{C D C l}_{3}, 400 \mathbf{M H z}, \mathbf{2 9 8 K}\right): \delta(\mathrm{ppm})=3.63\left(\mathrm{t}, 2 \mathrm{H},{ }^{3} \mathbf{J}_{H l-H 2}=6.6 \mathrm{~Hz}, \mathrm{H}_{1}\right), 2.18\left(\mathrm{td}, 2 \mathrm{H},{ }^{3} \mathbf{J}_{\mathrm{Hll}}-\right.$ $\left.{ }_{H I O}=7.1 \mathrm{~Hz},{ }^{4} \mathrm{~J}_{H 1 l-H 13}=2.6 \mathrm{~Hz}, \mathrm{H}_{11}\right), 1.94\left(\mathrm{t}, 1 \mathrm{H},{ }^{4} \mathrm{~J}_{\mathrm{Hl} 3-\mathrm{Hll}}=2.6 \mathrm{~Hz}, \mathrm{H}_{13}\right), 1.62-1.47\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{H}_{2} \mathrm{H}_{10}\right)$, 1.43-1.23 ($\mathrm{m}, 14 \mathrm{H}, \mathrm{H}_{3} \mathrm{H}_{4} \mathrm{H}_{5} \mathrm{H}_{6} \mathrm{H}_{7} \mathrm{H}_{8} \mathrm{H}_{9}$).
${ }^{13} \mathbf{C}$ NMR ($\left.\mathbf{C D C l}_{3}, \mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{2 9 8 K}\right): \delta(\mathrm{ppm})=84.4\left(\mathrm{C}_{12}\right), 68.0\left(\mathrm{C}_{13}\right), 62.2\left(\mathrm{C}_{1}\right), 32.4\left(\mathrm{C}_{2}\right) 29.4 \&$ 29.3 \& $29.3 \& 29.2 \& 28.9 \& 28.5 \& 28.2\left(\mathrm{C}_{3} \mathrm{C}_{4} \mathrm{C}_{5} \mathrm{C}_{6} \mathrm{C}_{7} \mathrm{C}_{8} \mathrm{C}_{9} \mathrm{C}_{10}\right)$, $25.6\left(\mathrm{C}_{11}\right)$.

3) Preparation of the 13-bromotridec-1-yne $\mathbf{1 2}$

To a solution of the tridec-12-ynol 11 ($2.40 \mathrm{~g}, 12.226 \mathrm{mmol}, 1$ equiv) in 40 mL of dry dichloromethane were added the tetrabromomethane ($8.11 \mathrm{~g}, 24.451 \mathrm{mmol}, 2$ equiv) and the triphenylphosphine ($6.41 \mathrm{~g}, 24.451 \mathrm{mmol}, 2$ equiv). The mixture was stirred at room temperature for 1 h ; then, the solvent was removed under reduced pressure. A solution of petroleum ether / ethyl acetate ($9: 1$) was added and the resulted precipitate was filtered and washed abundantly. The filtrate was evaporated and the crude was purified by chromatography on a silicagel column (elution: petroleum ether/AcOEt 9:1) to give the brominated product $\mathbf{1 2}(3.07 \mathrm{~g}, 97 \%)$ as a yellow oil.
${ }^{1} \mathbf{H}$ NMR $\left(\mathbf{C D C l}_{3}, 400 \mathrm{MHz}, \mathbf{2 9 8 K}\right): \delta(\mathrm{ppm})=3.42\left(\mathrm{t}, 2 \mathrm{H},{ }^{3} \mathbf{J}_{H 1-H 2}=6.9 \mathrm{~Hz}, \mathrm{H}_{1}\right), 2.19\left(\mathrm{td}, 2 \mathrm{H},{ }^{3} \mathbf{J}_{\mathrm{HIl}}\right.$. $\left.{ }_{H 10}=7.1 \mathrm{~Hz},{ }^{4} \mathrm{~J}_{\mathrm{Hll-Hl3}}=2.7 \mathrm{~Hz}, \mathrm{H}_{11}\right), 1.95\left(\mathrm{t}, 1 \mathrm{H}, \mathrm{J}_{H 13-H I l}=2.7 \mathrm{~Hz}, \mathrm{H}_{13}\right), 1.90-1.81\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}_{2}\right), 1.57-$ $1.48\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}_{10}\right)$, 1.48-1.23 (m, 14H, $\mathrm{H}_{3} \mathrm{H}_{4} \mathrm{H}_{5} \mathrm{H}_{6} \mathrm{H}_{7} \mathrm{H}_{8} \mathrm{H}_{9}$).
${ }^{13} \mathbf{C}$ NMR $\left(\right.$ CDCl $\left._{3}, \mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{2 9 8 K}\right): \delta(\mathrm{ppm})=84.4\left(\mathrm{C}_{12}\right), 68.0\left(\mathrm{C}_{13}\right), 33.7\left(\mathrm{C}_{1}\right), 32.7 \& 29.3 \& 29.3$ \& $29.3 \& 29.0 \& 28.6 \& 28.6 \& 28.4 \& 28.0\left(\mathrm{C}_{2} \mathrm{C}_{3} \mathrm{C}_{4} \mathrm{C}_{5} \mathrm{C}_{6} \mathrm{C}_{7} \mathrm{C}_{8} \mathrm{C}_{9} \mathrm{C}_{10}\right), 18.3\left(\mathrm{C}_{11}\right)$.

4) Preparation of the phthalimide $\mathbf{1 3}$

Potassium phthalimide ($3.40 \mathrm{~g}, 18.34 \mathrm{mmol}, 1.5$ equiv) was added to a solution of the 13 -bromotridec1 -yne $\mathbf{1 2}\left(3.17 \mathrm{~g}, 12.230 \mathrm{mmol}, 1\right.$ equiv) in 60 mL of DMF. After stirring for 4 h at $70^{\circ} \mathrm{C}$, the solvent was removed in vacuo. The solid residue was suspended in dichloromethane and filtered through a layer of silica gel. The filtrate was evaporated to give the desired product (3.98 g) in a quantitative yield as a yellow oil.
\mathbf{R}_{f} (Petroleum ether/AcOEt 75/25) 0.50
${ }^{1} \mathbf{H}$ NMR $\left(\mathbf{C D C l}_{3}, 400 \mathbf{M H z}, \mathbf{2 9 8 K}\right): \delta(\mathrm{ppm})=7.87-7.81\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}_{16}\right), 7.73-7.68\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}_{17}\right), 3.67$ $\left(\mathrm{t}, 2 \mathrm{H},{ }^{3} \mathbf{J}_{\mathrm{Hl}-\mathrm{H} 2}=7.4 \mathrm{~Hz}, \mathrm{H}_{1}\right), 2.17\left(\mathrm{td}, 2 \mathrm{H},{ }^{3} \mathbf{J}_{\mathrm{Hll-HlO}}=7.8 \mathrm{~Hz},{ }^{4} \mathbf{J}_{H I l-\mathrm{Hl} 3}=2.6 \mathrm{~Hz}, \mathrm{H}_{11}\right), 1.94\left(\mathrm{t}, 1 \mathrm{H}, \mathrm{J}_{\mathrm{Hl} 3-}\right.$ $\left.{ }_{H I I}=2.6 \mathrm{~Hz}, \mathrm{H}_{13}\right), 1.72-1.62\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}_{2}\right), 1.56-1.47\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}_{10}\right), 1.42-1.22\left(\mathrm{~m}, 14 \mathrm{H}, \mathrm{H}_{3} \mathrm{H}_{4} \mathrm{H}_{5} \mathrm{H}_{6} \mathrm{H}_{7}\right.$ $\mathrm{H}_{8} \mathrm{H}_{9}$).
${ }^{13} \mathbf{C}$ NMR JMOD $\left(\mathbf{C D C l}_{3}, \mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{2 9 8 K}\right): \delta(\mathrm{ppm})=168.0\left(\mathrm{C}_{14}\right), 133.5\left(\mathrm{C}_{17}\right), 131.9\left(\mathrm{C}_{15}\right), 122.8$ $\left(\mathrm{C}_{16}\right), 84.4\left(\mathrm{C}_{12}\right), 68.0\left(\mathrm{C}_{13}\right), 37.7\left(\mathrm{C}_{1}\right), 29.2 \& 29.2 \& 28.9 \& 28.8 \& 28.5 \& 28.3 \& 28.2 \& 26.6\left(\mathrm{C}_{2}\right.$ $\left.\mathrm{C}_{3} \mathrm{C}_{4} \mathrm{C}_{5} \mathrm{C}_{6} \mathrm{C}_{7} \mathrm{C}_{8} \mathrm{C}_{9} \mathrm{C}_{10}\right)$, $18.1\left(\mathrm{C}_{11}\right)$.
5) Preparation of the tridec-12-yn-1-amine $\mathbf{1 4}$

14

Hydrazine monohydrate ($2.14 \mathrm{~g}, 42.805 \mathrm{mmol}, 3.5$ equiv) was added to a solution of the phthalimide $13(3.98 \mathrm{~g}, 12.230 \mathrm{mmol}, 1$ equiv) in 60 mL of ethanol. The mixture was stirred at reflux for 4 h , and then cooled to room temperature. An aqueous solution of KOH $1 \mathrm{~N}(100 \mathrm{~mL})$ was added and the solvent was removed in vacuo. The solution was extracted with dichloromethane ($2 \times 100 \mathrm{~mL}$); then, the organic layers were combined, dried over MgSO_{4} and concentrated to yield the desired product $(2.10 \mathrm{~g}, 88 \%)$ as a yellow solid.
$\mathbf{R}_{f}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 9: 1\right) 0$
${ }^{1} \mathbf{H}$ NMR $\left(\mathbf{C D C l}_{3}, 400 \mathbf{M H z}, \mathbf{2 9 8 K}\right): \delta(\mathrm{ppm})=2.67\left(\mathrm{t}, 2 \mathrm{H},{ }^{3} \mathbf{J}_{\mathrm{Hl}-\mathrm{H} 2}=7.0 \mathrm{~Hz}, \mathrm{H}_{1}\right), 2.18\left(\mathrm{td}, 2 \mathrm{H}, \mathbf{J}_{\mathrm{HIl}}\right.$ $\left.{ }_{H 10}=7.2 \mathrm{~Hz},{ }^{4} \mathrm{~J}_{H I I-H 13}=2.7 \mathrm{~Hz}, \mathrm{H}_{11}\right), 1.93\left(\mathrm{t}, 1 \mathrm{H},{ }^{4} \mathbf{J}_{H 13-H I I}=2.7 \mathrm{~Hz}, \mathrm{H}_{13}\right), 1.56-1.47\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}_{10}\right), 1.47-$ $1.34\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{H}_{2} \mathrm{H}_{9}\right)$, 1.34-1.21(m, 12H, $\left.\mathrm{H}_{3} \mathrm{H}_{4} \mathrm{H}_{5} \mathrm{H}_{6} \mathrm{H}_{7} \mathrm{H}_{8}\right)$.
${ }^{13} \mathbf{C}$ NMR $\left(\mathbf{C D C l}_{3}, \mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{2 9 8 K}\right): \delta(\mathrm{ppm})=84.6\left(\mathrm{C}_{12}\right), 67.9\left(\mathrm{C}_{13}\right), 42.0\left(\mathrm{C}_{1}\right), 33.6\left(\mathrm{C}_{2}\right), 29.4 \&$ 29.4 \& 29.3 \& 28.9 \& $26.7\left(\mathrm{C}_{3} \mathrm{C}_{4} \mathrm{C}_{5} \mathrm{C}_{6} \mathrm{C}_{7} \mathrm{C}_{8} \mathrm{C}_{9} \mathrm{C}_{10}\right)$, $18.2\left(\mathrm{C}_{11}\right)$.

MS (ESI): $[\mathrm{M}+\mathrm{H}]^{+} ;$calcd for $\left[\mathrm{C}_{13} \mathrm{H}_{26} \mathrm{~N}\right]^{+}: 196.2$, found : 196.2
6) Preparation of the crown ether $\mathbf{1 5}$

This compound has been synthesized according to the procedure described by S. J. Cantrill, G. J. Youn, J. F. Stoddart. ${ }^{[2]}$
\mathbf{R}_{f} (AcOEt) 0.3
${ }^{1} \mathbf{H}$ NMR ($\left.\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}, \mathbf{2 9 8 K}\right): \delta(\mathrm{ppm})=9.83\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}_{1}\right), 7.43\left(\mathrm{dd}, 1 \mathrm{H}, \mathbf{J}_{\mathrm{H} 7-H 6}=8.2 \mathrm{~Hz},{ }^{4} \mathbf{J}_{H 7-H 3}\right.$ $\left.=1.9 \mathrm{~Hz}, \mathrm{H}_{7}\right), 7.38\left(\mathrm{~d}, 1 \mathrm{H},{ }^{4} \mathrm{~J}_{H 3-H 7}=1.9 \mathrm{~Hz}, \mathrm{H}_{3}\right), 6.94\left(\mathrm{~d}, 1 \mathrm{H},{ }^{3} \mathrm{~J}_{H 6-H 7}=8.2 \mathrm{~Hz}, \mathrm{H}_{6}\right), 6.90-6.86(\mathrm{~m}, 4 \mathrm{H}$, $\mathrm{H}_{15} \mathrm{H}_{16} \mathrm{H}_{17} \mathrm{H}_{18}$), 4.24-4.20 (m, 4H, H8 H ${ }_{25}$), 4.17-4.15 (m, 4H, H13 H20), 3.98-3.92 (m, 8H, H9 H $\mathrm{H}_{12} \mathrm{H}_{21}$ H_{24}), 3.86-3.84 (m, 8H, $\mathrm{H}_{10} \mathrm{H}_{11} \mathrm{H}_{22} \mathrm{H}_{23}$).
${ }^{13}$ C NMR JMOD ($\mathbf{1 0 0} \mathbf{~ M H z}$, CDCl $_{3}$, 298K): $\delta(\mathrm{ppm})=190.9\left(\mathrm{C}_{1}\right), 154.3 \& 149.1 \& 148.8\left(\mathrm{C}_{4} \mathrm{C}_{5} \mathrm{C}_{14}\right.$ $\left.\mathrm{C}_{19}\right), 130.2\left(\mathrm{C}_{2}\right), 126.9\left(\mathrm{C}_{7}\right), 121.4 \& 113.9\left(\mathrm{C}_{15} \mathrm{C}_{16} \mathrm{C}_{17} \mathrm{C}_{18}\right), 111.8\left(\mathrm{C}_{6}\right), 110.9\left(\mathrm{C}_{3}\right), 71.5 \& 71.4 \&$ 71.3 \& 69.7 \& 69.5 \& $69.4 \& 69.4 \& 69.3\left(\mathrm{CH}_{2} \mathrm{O}\right)$.

MS (ESI): $[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{25} \mathrm{H}_{42} \mathrm{O}_{9}$: 499.52, found: 499.27
7) Preparation of the compound 16

A solution of the crown ether aldehyde $15(5.78 \mathrm{~g}, 12.134 \mathrm{mmol}, 1$ equiv) and the tridec-12-yn-1amine $\mathbf{1 4}(2.37 \mathrm{~g}, 12.134 \mathrm{mmol}, 1$ equiv) in 200 mL of toluene was heated under reflux for 30 h using a Dean-Stark apparatus. The solvent was then evaporated to give a yellow oil. The mixture was diluted with $\mathrm{MeOH}(150 \mathrm{~mL})$, and then $\mathrm{NaBH}_{4}(2.30 \mathrm{~g}, 60.670 \mathrm{mmol}, 5$ equiv $)$ was added portionwise at $0-$ $5^{\circ} \mathrm{C}$. Stirring was maintained at room temperature for a further 5 h . Then, an aqueous solution of HCl $5 \mathrm{M}(100 \mathrm{~mL})$ was added to the reaction mixture. Methanol was evaporated, and the residue was

[^0]diluted with dichloromethane $(100 \mathrm{~mL})$ and washed with an aqueous solution of $\mathrm{NaOH} 5 \mathrm{M}(100 \mathrm{~mL})$. The two layers were separated and the aqueous layer was extracted with dichloromethane (2 x 200 mL). The organic layers were combined, dried over MgSO_{4} and concentrated. The crude (6.73 g) was directly engaged in the following reaction.

$\mathbf{R}_{f}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 9: 1\right) 0.1$

${ }^{1} \mathbf{H}$ NMR $\left(\mathbf{C D C l}_{3}, 400 \mathrm{MHz}, 298 K\right): \delta(\mathrm{ppm})=6.90-6.80\left(\mathrm{~m}, 7 \mathrm{H}, \mathrm{H}_{\mathrm{B}} \mathrm{H}_{\mathrm{D}} \mathrm{H}_{\mathrm{E}} \mathrm{H}_{\mathrm{N}} \mathrm{H}_{\mathrm{O}} \mathrm{H}_{\mathrm{P}} \mathrm{H}_{\mathrm{Q}}\right)$, 4.19$4.10\left(\mathrm{~m}, 8 \mathrm{H}, \mathrm{H}_{\mathrm{G}} \mathrm{H}_{\mathrm{L}} \mathrm{H}_{\mathrm{S}} \mathrm{H}_{\mathrm{X}}\right), 3.95-3.89\left(\mathrm{~m}, 8 \mathrm{H}, \mathrm{H}_{\mathrm{H}} \mathrm{H}_{\mathrm{K}} \mathrm{H}_{\mathrm{T}} \mathrm{H}_{\mathrm{W}}\right), 3.84\left(\mathrm{~s}, 8 \mathrm{H}, \mathrm{H}_{\mathrm{I}} \mathrm{H}_{\mathrm{J}} \mathrm{H}_{\mathrm{U}} \mathrm{H}_{\mathrm{V}}\right), 3.70(\mathrm{~s}, 2 \mathrm{H}$, $\left.\mathrm{H}_{1}\right), 2.60\left(\mathrm{t}, 2 \mathrm{H},{ }^{3} \mathrm{~J}_{\mathrm{H} 4-\mathrm{H} 3}=7.3 \mathrm{~Hz}, \mathrm{H}_{3}\right), 2.18\left(\mathrm{td}, 2 \mathrm{H},{ }^{3} \mathrm{~J}_{H 13-\mathrm{H} 12}=7.1 \mathrm{~Hz},{ }^{4} \mathrm{~J}_{H 13-\mathrm{H} 15}=2.7 \mathrm{~Hz}, \mathrm{H}_{13}\right), 1.94(\mathrm{t}$, $\left.1 \mathrm{H},{ }^{4} \mathrm{~J}_{\mathrm{H} 15-\mathrm{H} 13}=2.7 \mathrm{~Hz}, \mathrm{H}_{15}\right), 1.57-1.45\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{H}_{4} \mathrm{H}_{12}\right), 1.44-1.34\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}_{11}\right), 1.33-1.23\left(\mathrm{~m}, 12 \mathrm{H}, \mathrm{H}_{5}\right.$ $\mathrm{H}_{6} \mathrm{H}_{7} \mathrm{H}_{8} \mathrm{H}_{9} \mathrm{H}_{10}$).
${ }^{13} \mathbf{C}$ NMR ($\left.\mathbf{C D C l}_{3}, \mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{2 9 8 K}\right): \delta(\mathrm{ppm})=148.3 \& 148.2 \& 147.2\left(\mathrm{C}_{\mathrm{A}} \mathrm{C}_{\mathrm{F}} \mathrm{C}_{\mathrm{M}} \mathrm{C}_{\mathrm{R}}\right), 132.8\left(\mathrm{C}_{\mathrm{C}}\right)$, $120.7 \& 120.2 \& 113.4 \& 113.4 \& 113.3\left(\mathrm{C}_{\mathrm{B}} \mathrm{C}_{\mathrm{D}} \mathrm{C}_{\mathrm{E}} \mathrm{C}_{\mathrm{N}} \mathrm{C}_{\mathrm{O}} \mathrm{C}_{\mathrm{P}} \mathrm{C}_{\mathrm{Q}}\right), 83.9\left(\mathrm{C}_{14}\right), 70.5\left(\mathrm{C}_{\mathrm{I}} \mathrm{C}_{\mathrm{J}} \mathrm{C}_{\mathrm{U}} \mathrm{C}_{\mathrm{V}}\right), 69.2$ $\left(\mathrm{C}_{\mathrm{H}} \mathrm{C}_{\mathrm{K}} \mathrm{C}_{\mathrm{T}} \mathrm{C}_{\mathrm{W}}\right)$, $68.6\left(\mathrm{C}_{\mathrm{G}} \mathrm{C}_{\mathrm{L}} \mathrm{C}_{\mathrm{S}} \mathrm{C}_{\mathrm{X}}\right)$, $67.8\left(\mathrm{C}_{15}\right)$, $52.9\left(\mathrm{C}_{1}\right), 48.6\left(\mathrm{C}_{3}\right), 29.2 \& 28.9 \& 28.9 \& 28.9 \&$ $28.8 \& 28.4 \& 28.0 \& 27.9 \& 26.7\left(\mathrm{C}_{4} \mathrm{C}_{5} \mathrm{C}_{6} \mathrm{C}_{7} \mathrm{C}_{8} \mathrm{C}_{9} \mathrm{C}_{10} \mathrm{C}_{11} \mathrm{C}_{12}\right), 17.7\left(\mathrm{C}_{13}\right)$.
MS (ESI): $[\mathrm{M}+\mathrm{H}]^{+}$; calcd for $\left[\mathrm{C}_{38} \mathrm{H}_{58} \mathrm{NO}_{8}\right]^{+}: 656.4$, found : 656.3
8) Preparation of the compound 2

A solution of HCl 2 M in diethyl ether ($20 \mathrm{~mL}, 0.2 \mathrm{~mol}, 19$ equiv) was added to the amine $16(6.73 \mathrm{~g}$, $10.59 \mathrm{mmol}, 1$ equiv). The mixture was stirred for 30 min , and then diethyl ether was evaporated to give a solid. To a solution of the previous solid in milliQ water $(50 \mathrm{~mL})$ was added $\mathrm{NH}_{4} \mathrm{PF}_{6}(5.12 \mathrm{~g}$, $31.77 \mathrm{mmol}, 3$ equiv) and dichloromethane (50 mL). The biphasic solution was stirred vigorously for 30 min ; then, the two phases were separated and the aqueous layer was extracted with dichloromethane $(3 \times 30 \mathrm{~mL})$. The organic layers were then combined, dried over MgSO_{4} and concentrated. The crude was purified by chromatography on a silicagel column (solvent elution $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 98: 2\right)$ to yield the compound $2(8.40 \mathrm{~g}, 87 \%$ over the two steps) as a white solid.
$\mathbf{R}_{f}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 9: 1\right) 0.54$
${ }^{1} \mathbf{H}$ NMR $\left(\mathbf{C D C l}_{3}, 400 \mathrm{MHz}, \mathbf{2 9 8 K}\right): \delta(\mathrm{ppm})=6.93\left(\mathrm{dd}, 1 \mathrm{H},{ }^{4} \mathrm{~J}_{H D-H B}=1.5 \mathrm{~Hz},{ }^{3} \mathrm{~J}_{H D-H E}=8.4 \mathrm{~Hz}, \mathrm{H}_{\mathrm{D}}\right)$, 6.87-6.72 (m, 5H, $\left.\mathrm{H}_{\mathrm{E}} \mathrm{H}_{\mathrm{N}} \mathrm{H}_{\mathrm{O}} \mathrm{H}_{\mathrm{P}} \mathrm{H}_{\mathrm{Q}}\right), 6.60\left(\mathrm{~d}, 1 \mathrm{H},{ }^{4} \mathrm{~J}_{H B-H D}=1.5 \mathrm{~Hz}, \mathrm{H}_{\mathrm{B}}\right), 4.52-4.28\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}_{1}\right), 4.52-$ $3.59\left(\mathrm{~m}, 24 \mathrm{H}, \mathrm{CH}_{2} \mathrm{O}_{\mathrm{DB} 24 \mathrm{C} 8}\right), 3.58-3.30\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}_{3}\right), 2.19\left(\mathrm{td}, 2 \mathrm{H},{ }^{3} \mathrm{~J}_{H 13-H 12}=7.1 \mathrm{~Hz},{ }^{4} \mathrm{~J}_{H 13-\mathrm{H} 15}=2.7 \mathrm{~Hz}\right.$,
$\left.\mathrm{H}_{13}\right), 1.96\left(\mathrm{t}, 1 \mathrm{H},{ }^{4} \mathrm{~J}_{H I 5-\mathrm{HI} 3}=2.7 \mathrm{~Hz}, \mathrm{H}_{15}\right), 1.73-1.63\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}_{4}\right), 1.57-1.48\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}_{12}\right), 1.44-1.35(\mathrm{~m}$, $\left.2 \mathrm{H}, \mathrm{H}_{11}\right)$, 1.35-1.16 (m, 12H, $\mathrm{H}_{5} \mathrm{H}_{6} \mathrm{H}_{7} \mathrm{H}_{8} \mathrm{H}_{9} \mathrm{H}_{10}$).
 $\left.C_{R}\right), 124.7\left(C_{C}\right), 122.9\left(C_{D}\right), 121.0 \& 120.9 \& 112.9 \& 112.5 \& 111.7\left(C_{B} C_{E} C_{N} C_{0} C_{P} C_{Q}\right), 72.2 \&$ $71.8 \& 70.9 \& 70.8 \& 70.7 \& 70.3 \& 67.5 \& 67.0 \& 66.7\left(\mathrm{CH}_{2} \mathrm{O}_{\mathrm{DB} 2448}\right), 68.2\left(\mathrm{C}_{15}\right), 52.1\left(\mathrm{C}_{1}\right), 48.8$ $\left(\mathrm{C}_{3}\right), 29.3 \& 29.0 \& 28.6 \& 28.4 \& 26.6\left(\mathrm{C}_{4} \mathrm{C}_{5} \mathrm{C}_{6} \mathrm{C}_{7} \mathrm{C}_{8} \mathrm{C}_{9} \mathrm{C}_{10} \mathrm{C}_{11} \mathrm{C}_{12}\right), 18.3\left(\mathrm{C}_{13}\right)$.
MS (ESI): $\left[\mathrm{M}-2 \mathrm{PF}_{6}\right]^{2+}$; calcd for $\left[\mathrm{C}_{76} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{16}\right]^{2+}: 656.42$, found : 656.38
MS (MALDI): $\left[\mathrm{M}-1 \mathrm{H}-2 \mathrm{PF}_{6}\right]^{+}$calcd for $\left[\mathrm{C}_{76} \mathrm{H}_{15} \mathrm{~N}_{2} \mathrm{O}_{16}\right]^{+}: 1311.82$, found : 1311.8

C. Synthesis of the non-interlocked threads $5 u$ and $6 u$

1) Preparation of the compound $\mathbf{1 7}$

The compound $\mathbf{1}$ ($200 \mathrm{mg}, 0.391 \mathrm{mmol}, 2$ equiv) and the 1,12-diaminododecane ($39 \mathrm{mg}, 0.1955$ $\mathrm{mmol}, 1$ equiv) were stirred in 5 mL of dichloromethane at reflux for one night. The organic layer was washed successively with an aqueous solution of $\mathrm{HCl} 1 \mathrm{M}(2 \times 5 \mathrm{~mL})$, and with a saturated aqueous solution of $\mathrm{NaCl}(2 \times 5 \mathrm{~mL})$, then dried over MgSO_{4} and concentrated under vacuo to afford the compound $\mathbf{1 7}$ ($155 \mathrm{mg}, 93 \%$) as a white solid.
\mathbf{R}_{f} (petroleum ether /AcOEt 1:1) 0.28
${ }^{1} \mathbf{H}$ NMR ($\left.\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}, \mathbf{2 9 8 K}\right): \delta=6.49\left(\mathrm{t}, 2 \mathrm{H},{ }^{3} \mathbf{J}_{H 7-H 8}=5.8 \mathrm{~Hz}, \mathrm{H}_{7}\right), 5.24\left(\mathrm{t}, 2 \mathrm{H},{ }^{3} \mathbf{J}_{H 3-H 2}={ }^{3} \mathbf{J}_{H 3-H 4}\right.$ $\left.=9.3 \mathrm{~Hz}, \mathrm{H}_{3}\right), 5.08\left(\mathrm{t}, 2 \mathrm{H},{ }^{3} \mathrm{~J}_{\mathrm{H} 4-\mathrm{H} 3}={ }^{3} \mathrm{~J}_{H 4-\mathrm{H} 5}=9.3 \mathrm{~Hz}, \mathrm{H}_{4}\right), 4.87\left(\mathrm{t}, 2 \mathrm{H},{ }^{3} \mathrm{~J}_{\mathrm{H} 2-\mathrm{HI}}={ }^{3} \mathrm{~J}_{H 2-H 3}=9.3 \mathrm{~Hz}, \mathrm{H}_{2}\right), 4.77$ $\left(\mathrm{d}, 2 \mathrm{H},{ }^{3} \mathrm{~J}_{\mathrm{Hl}-\mathrm{H} 2}=9.3 \mathrm{~Hz}, \mathrm{H}_{1}\right), 3.99\left(\mathrm{~d}, 2 \mathrm{H},{ }^{3} \mathrm{~J}_{H 5-H 4}=9.3 \mathrm{~Hz}, \mathrm{H}_{5}\right), 3.21-3.12\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{H}_{8}\right), 2.03 \& 2.00 \&$ 1.96 ($3 * \mathrm{~s}, 3 * 6 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CO}$), $1.50-1.40\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{H}_{9}\right), 1.29-1.15\left(\mathrm{~m}, 16 \mathrm{H}, \mathrm{H}_{10} \mathrm{H}_{11} \mathrm{H}_{12} \mathrm{H}_{13}\right.$).
${ }^{13} \mathbf{C}$ NMR JMOD ($\left.\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}, \mathbf{2 9 8 K}\right): \delta=169.7 \& 169.3 \& 169.1\left(\mathrm{COCH}_{3}\right), 165.5\left(\mathrm{C}_{6}\right), 87.6$ $\left(\mathrm{C}_{1}\right), 74.1\left(\mathrm{C}_{5}\right), 71.6\left(\mathrm{C}_{3}\right), 70.3\left(\mathrm{C}_{2}\right), 69.0\left(\mathrm{C}_{4}\right), 39.1\left(\mathrm{C}_{8}\right), 29.3 \& 29.2 \& 29.0 \& 29.0 \& 26.6\left(\mathrm{C}_{9} \mathrm{C}_{10}\right.$ $\left.\mathrm{C}_{11} \mathrm{C}_{12} \mathrm{C}_{13}\right), 20.4 \& 20.3 \& 20.3\left(\mathrm{CH}_{3} \mathrm{CO}\right)$.
MS (ESI): $[\mathrm{M}+\mathrm{H}]^{+}$; calcd for $\left[\mathrm{C}_{36} \mathrm{H}_{55} \mathrm{~N}_{8} \mathrm{O}_{16}\right]^{+}: 855.37$, found : 855.46
2) Preparation of the compound 18

To a solution of compound $\mathbf{2}(300 \mathrm{mg}, 0.0374 \mathrm{mmol}, 1$ equiv) in dichloromethane (15 mL) were added $\mathrm{Boc}_{2} \mathrm{O}(245 \mathrm{mg}, 1.122 \mathrm{mmol}, 3$ equiv) and DIEA ($0.145 \mathrm{~mL}, 1.122 \mathrm{mmol}, 3$ equiv). The solution was stirred during 3 h at room temperature. The organic layer was washed successively with an aqueous solution of $\mathrm{HCl} 1 \mathrm{M}(2 \times 30 \mathrm{~mL})$, a saturated aqueous solution of $\mathrm{NaHCO}_{3}(2 \times 30 \mathrm{~mL})$, then dried over MgSO_{4} and concentrated under vacuo. The crude was purified by chromatography on a silicagel column (solvent elution $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 98: 2$) to yield the N -Boc protected compound $\mathbf{1 8}$ (272 mg , 96%) as a white solid.

$\mathbf{R}_{f}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 9: 1\right) 0.74$

${ }^{1} \mathbf{H}$ NMR ($\left.\mathbf{C D C l}_{3}, 400 \mathrm{MHz}, \mathbf{2 9 8 K}\right): \delta(\mathrm{ppm})=6.94-6.70\left(\mathrm{~m}, 7 \mathrm{H}, \mathrm{H}_{\mathrm{B}} \mathrm{H}_{\mathrm{D}} \mathrm{H}_{\mathrm{E}} \mathrm{H}_{\mathrm{N}} \mathrm{H}_{\mathrm{O}} \mathrm{H}_{\mathrm{P}} \mathrm{H}_{\mathrm{Q}}\right)$, 4.384.27 (br s, 2H, H_{I}), 4.21-4.09 (m, 8H, $\mathrm{H}_{\mathrm{G}} \mathrm{H}_{\mathrm{L}} \mathrm{H}_{\mathrm{S}} \mathrm{H}_{\mathrm{X}}$), 3.95-3.87 (m, 8H, H $\mathrm{H}_{\mathrm{K}} \mathrm{H}_{\mathrm{T}} \mathrm{H}_{\mathrm{W}}$), $3.83\left(\mathrm{~s}, 8 \mathrm{H}, \mathrm{H}_{\mathrm{I}}\right.$ $\left.\mathrm{H}_{\mathrm{J}} \mathrm{H}_{\mathrm{U}} \mathrm{H}_{\mathrm{V}}\right), 3.20-3.00\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}_{3}\right), 2.18\left(\mathrm{td}, 2 \mathrm{H},{ }^{3} \mathrm{~J}_{\mathrm{H} 13-\mathrm{Hl2}}=7.1 \mathrm{~Hz},{ }^{4} \mathrm{~J}_{H 13-\mathrm{Hl} 5}=2.7 \mathrm{~Hz}, \mathrm{H}_{13}\right), 1.94(\mathrm{t}, 1 \mathrm{H}$, $\left.{ }^{4} \mathbf{J}_{H I 5-H 13}=2.7 \mathrm{~Hz}, \mathrm{H}_{15}\right), 1.57-1.18\left(\mathrm{~m}, 18 \mathrm{H}, \mathrm{H}_{4} \mathrm{H}_{5} \mathrm{H}_{6} \mathrm{H}_{7} \mathrm{H}_{8} \mathrm{H}_{9} \mathrm{H}_{10} \mathrm{H}_{11} \mathrm{H}_{12}\right), 1.45\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{H}_{2}\right)$.
${ }^{13} \mathbf{C}$ NMR JMOD ($\left.\mathbf{C D C l}_{3}, 100 \mathbf{M H z}, \mathbf{2 9 8 K}\right): \delta(\mathrm{ppm})=148.8 \& 147.9\left(\mathrm{C}_{\mathrm{A}} \mathrm{C}_{\mathrm{F}} \mathrm{C}_{\mathrm{M}} \mathrm{C}_{\mathrm{R}}\right), 131.9\left(\mathrm{C}_{\mathrm{C}}\right)$, 121.4 \& 114.6 \& $113.8\left(\mathrm{C}_{\mathrm{B}} \mathrm{C}_{\mathrm{D}} \mathrm{C}_{\mathrm{E}} \mathrm{C}_{\mathrm{N}} \mathrm{C}_{\mathrm{O}} \mathrm{C}_{\mathrm{P}} \mathrm{C}_{\mathrm{Q}}\right)$, $79.3\left(\mathrm{COC}_{\left.\left(\mathrm{CH}_{3}\right)_{3}\right), 71.1\left(\mathrm{C}_{\mathrm{I}} \mathrm{C}_{\mathrm{J}} \mathrm{C}_{\mathrm{U}} \mathrm{C}_{\mathrm{V}}\right), 69.8\left(\mathrm{C}_{\mathrm{H}} \mathrm{C}_{\mathrm{K}}, C^{2}\right.}\right.$ $\left.\mathrm{C}_{\mathrm{T}} \mathrm{C}_{\mathrm{w}}\right), 69.3\left(\mathrm{C}_{\mathrm{G}} \mathrm{C}_{\mathrm{L}} \mathrm{C}_{\mathrm{S}} \mathrm{C}_{\mathrm{X}}\right), 68.0\left(\mathrm{C}_{15}\right), 51.4\left(\mathrm{C}_{1}\right), 46.3\left(\mathrm{C}_{3}\right), 29.5 \& 29.4 \& 29.4 \& 29.3 \& 29.0 \& 28.7$ \& $26.8\left(\mathrm{C}_{4} \mathrm{C}_{5} \mathrm{C}_{6} \mathrm{C}_{7} \mathrm{C}_{8} \mathrm{C}_{9} \mathrm{C}_{10} \mathrm{C}_{11} \mathrm{C}_{12}\right), 28.4\left(\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CCO}\right), 18.4\left(\mathrm{C}_{13}\right)$.
MS (ESI): $[\mathrm{M}+\mathrm{H}]^{+} ;$calcd for $\left[\mathrm{C}_{43} \mathrm{H}_{66} \mathrm{NO}_{10}\right]^{+}: 756.5$, found : 756.5

3) Preparation of the thread $\mathbf{1 9}$

In a typical procedure, $\mathrm{Cu}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{4} \mathrm{PF}_{6}(36 \mathrm{mg}, 0.0966 \mathrm{mmol}, 1$ equiv) and 2,6-lutidine ($1 \mathrm{mg}, 0.0097$ mmol, 0.1 equiv) were added successively to a solution of the azido compound $\mathbf{1 7}(41 \mathrm{mg}, 0.048$ mmol, 0.5 equiv) and the alkyne compound 18 ($73 \mathrm{mg}, 0.0966 \mathrm{mmol}, 1$ equiv) in 4 mL of dry dichloromethane. The mixture was stirred for 24 h at room temperature, after which time the solvent was evaporated under vacuo. The crude was then directly purified by chromatography on a silicagel column (solvent gradient elution $\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ acetone 1:0 to $3: 7$) to afford the thread $\mathbf{1 9}(80 \mathrm{mg}, 70 \%)$ as a yellow solid.

$\mathbf{R}_{f}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 9: 1\right) 0.63$

${ }^{1} \mathbf{H}$ NMR $\left(\mathbf{C D}_{3} \mathbf{C N}, 400 \mathbf{M H z}, \mathbf{2 9 8 K}\right): \delta(\mathrm{ppm})=7.79\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{H}_{14}\right), 7.17-7.05\left(\mathrm{~m}, 10 \mathrm{H}, \mathrm{H}_{\mathrm{E}} \mathrm{H}_{\mathrm{N}} \mathrm{H}_{\mathrm{O}} \mathrm{H}_{\mathrm{P}}\right.$ $\left.\mathrm{H}_{\mathrm{Q}}\right), 7.02\left(\mathrm{br} \mathrm{s}, 2 \mathrm{H}, \mathrm{H}_{\mathrm{B}}\right), 6.94\left(\mathrm{dd}, 2 \mathrm{H}, \mathrm{J}_{H D-H B}=1.4 \mathrm{~Hz},{ }^{3} \mathrm{~J}_{H D-H E}=8.3 \mathrm{~Hz}, \mathrm{H}_{\mathrm{D}}\right), 6.84\left(\mathrm{t}, 2 \mathrm{H},{ }^{3} \mathrm{~J}_{H 7-H 8}=5.7\right.$ $\left.\mathrm{Hz}, \mathrm{H}_{7}\right), 5.99\left(\mathrm{~d}, 2 \mathrm{H},{ }^{3} \mathrm{~J}_{H 1-H 2}=9.5 \mathrm{~Hz}, \mathrm{H}_{1}\right), 5.60\left(\mathrm{t}, 2 \mathrm{H},{ }^{3} \mathbf{J}_{H 2-H 1}={ }^{3} \mathrm{~J}_{H 2-H 3}=9.5 \mathrm{~Hz}, \mathrm{H}_{2}\right), 5.50\left(\mathrm{t}, 2 \mathrm{H},{ }^{3} \mathrm{~J}_{H 3-H 2}\right.$ $\left.={ }^{3} \mathrm{~J}_{H 3-H 4}=9.5 \mathrm{~Hz}, \mathrm{H}_{3}\right), 5.32\left(\mathrm{t}, 2 \mathrm{H},{ }^{3} \mathrm{~J}_{H 4-H 3}={ }^{3} \mathrm{~J}_{H 4-H 5}=9.5 \mathrm{~Hz}, \mathrm{H}_{4}\right), 4.34\left(\mathrm{~s}, 4 \mathrm{H}, \mathrm{H}_{28}\right), 4.30-4.22(\mathrm{~m}, 18 \mathrm{H}$, $\mathrm{H}_{5} \mathrm{H}_{\mathrm{G}} \mathrm{H}_{\mathrm{L}} \mathrm{H}_{\mathrm{S}} \mathrm{H}_{\mathrm{X}}$), 3.77-3.68 (m, 16H, $\mathrm{H}_{\mathrm{H}} \mathrm{H}_{\mathrm{K}} \mathrm{H}_{\mathrm{T}} \mathrm{H}_{\mathrm{W}}$), $3.59\left(\mathrm{~s}, 16 \mathrm{H}, \mathrm{H}_{\mathrm{I}} \mathrm{H}_{\mathrm{J}} \mathrm{H}_{\mathrm{U}} \mathrm{H}_{\mathrm{V}}\right.$), 3.20-3.12 (br t, 4H, $\left.\mathrm{H}_{26}\right), 3.11-3.04\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{H}_{8}\right), 2.66\left(\mathrm{t}, 4 \mathrm{H},{ }^{3} \mathrm{~J}_{\mathrm{HI6}-\mathrm{HI7}}=7.5 \mathrm{~Hz}, \mathrm{H}_{16}\right), 1.99 \& 1.97 \& 1.78\left(3{ }^{*} \mathrm{~s}, 3 * 6 \mathrm{H}\right.$,
$\mathrm{CH}_{3} \mathrm{CO}$), 1.66-1.56 (m, 4H, H ${ }_{17}$), 1.51-1.34 (m, 8H, H9 H25), $1.45\left(\mathrm{~s}, 18 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 1.33-1.19(\mathrm{~m}$, $44 \mathrm{H}, \mathrm{H}_{10} \mathrm{H}_{11} \mathrm{H}_{12} \mathrm{H}_{13} \mathrm{H}_{18} \mathrm{H}_{19} \mathrm{H}_{20} \mathrm{H}_{21} \mathrm{H}_{22} \mathrm{H}_{23} \mathrm{H}_{24}$).
${ }^{13} \mathbf{C}$ NMR JMOD $\left(\mathbf{C D}_{3} \mathbf{C N}, 100 \mathrm{MHz}, \mathbf{2 9 8 K}\right): \delta(\mathrm{ppm})=170.7 \& 170.2 \& 169.6\left(\mathrm{COCH}_{3}\right), 166.4$ $\left(\mathrm{C}_{6}\right), 149.4 \& 149.1 \& 148.9 \& 147.9\left(\mathrm{C}_{15} \mathrm{C}_{\mathrm{A}} \mathrm{C}_{\mathrm{F}} \mathrm{C}_{\mathrm{M}} \mathrm{C}_{\mathrm{R}}\right), 135.3\left(\mathrm{C}_{\mathrm{C}}\right), 124.1 \& 124.1 \& 117.6 \& 117.5$ \& $117.4\left(\mathrm{C}_{\mathrm{E}} \mathrm{C}_{\mathrm{N}} \mathrm{C}_{\mathrm{O}} \mathrm{C}_{\mathrm{P}} \mathrm{C}_{\mathrm{Q}}\right)$, $122.8\left(\mathrm{C}_{\mathrm{D}}\right), 121.5\left(\mathrm{C}_{14}\right), 116.5\left(\mathrm{C}_{\mathrm{B}}\right), 85.4\left(\mathrm{C}_{1}\right), 79.9\left(\mathrm{C}_{(}\left(\mathrm{CH}_{3}\right)_{3}\right), 75.9\left(\mathrm{C}_{5}\right)$, $72.8\left(\mathrm{C}_{3}\right), 70.8\left(\mathrm{C}_{2}\right), 69.8\left(\mathrm{C}_{4}\right), 69.5 \& 69.4 \& 69.2 \& 68.3 \& 68.2 \& 68.2 \& 67.9 \& 67.8 \& 67.8$ $\left(\mathrm{CH}_{2} \mathrm{O}_{\mathrm{DB} 24 \subset 8}\right), 50.0\left(\mathrm{C}_{28}\right), 47.5\left(\mathrm{C}_{26}\right), 39.7\left(\mathrm{C}_{8}\right), 30.2 \& 30.1 \& 30.1 \& 29.9 \& 29.9 \& 29.8 \& 29.8 \&$ 29.6 \& $27.4\left(\mathrm{C}_{9} \mathrm{C}_{10} \mathrm{C}_{11} \mathrm{C}_{12} \mathrm{C}_{13} \mathrm{C}_{17} \mathrm{C}_{18} \mathrm{C}_{19} \mathrm{C}_{20} \mathrm{C}_{21} \mathrm{C}_{22} \mathrm{C}_{23} \mathrm{C}_{24} \mathrm{C}_{25}\right), 28.5\left(\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}\right), 25.9\left(\mathrm{C}_{16}\right), 20.8 \&$ 20.7 \& $20.3\left(\mathrm{CH}_{3} \mathrm{CO}\right)$.

MS (ESI): $[\mathrm{M}+\mathrm{H}]^{+}$; calcd for $\left[\mathrm{C}_{122} \mathrm{H}_{185} \mathrm{~N}_{10} \mathrm{O}_{36}\right]^{+}: 2365.29$, found : 2365.40
4) Preparation of the thread 20

The thread 19 ($75 \mathrm{mg}, 0.0317 \mathrm{mmol}, 1$ equiv) was suspended in 2 mL of iodomethane and stirred for 4 days at room temperature. Then, iodomethane was evaporated under reduced pressure and the obtained solid was washed with diethyl ether to give a yellow solid. $\mathrm{NH}_{4} \mathrm{PF}_{6}(31 \mathrm{mg}, 0.1901 \mathrm{mmol}, 6$ equiv) and 5 mL of dichloromethane were added to a suspension of the previous product in 5 mL of milliQ water. The resulted bilayer solution was vigorously stirred for 30 min . After separation, the aqueous layer was extracted twice with 5 mL of dichloromethane. The organic layers were combined, dried over MgSO_{4} and concentrated to obtain the thread $\mathbf{2 0}(71 \mathrm{mg}, 84 \%)$ as a yellow solid.

$\mathbf{R}_{f}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 9: 1\right) 0.51$

${ }^{1} \mathbf{H}$ NMR ($\left.\mathbf{C D}_{3} \mathbf{C N}, 400 \mathrm{MHz}, \mathbf{2 9 8 K}\right): \delta(\mathrm{ppm})=8.53\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{H}_{14}\right), 7.01-6.85\left(\mathrm{~m}, 14 \mathrm{H}, \mathrm{H}_{7} \mathrm{H}_{\mathrm{B}} \mathrm{H}_{\mathrm{E}} \mathrm{H}_{\mathrm{N}}\right.$ $\left.\mathrm{H}_{\mathrm{O}} \mathrm{H}_{\mathrm{P}} \mathrm{H}_{\mathrm{Q}}\right), 6.81\left(\mathrm{dd}, 2 \mathrm{H},{ }^{4} \mathbf{J}_{H D-H B}=1.4 \mathrm{~Hz},{ }^{3} \mathbf{J}_{H D-H E}=8.1 \mathrm{~Hz}, \mathrm{H}_{\mathrm{D}}\right), 6.15-6.11\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}_{1}\right), 5.56-5.51(\mathrm{~m}$, $4 \mathrm{H}, \mathrm{H}_{2} \mathrm{H}_{3}$), 5.41-5.34 (m, 2H, H H_{4}), $4.32\left(\mathrm{~d}, 2 \mathrm{H},{ }^{3} \mathrm{~J}_{H 5-\mathrm{H} 4}=10.0 \mathrm{~Hz}, \mathrm{H}_{5}\right), 4.31\left(\mathrm{~s}, 4 \mathrm{H}, \mathrm{H}_{28}\right), 4.16-4.09(\mathrm{~m}$, $16 \mathrm{H}, \mathrm{H}_{\mathrm{G}} \mathrm{H}_{\mathrm{L}} \mathrm{H}_{\mathrm{S}} \mathrm{H}_{\mathrm{X}}$), $4.14\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{H}_{29}\right), 3.80-3.75\left(\mathrm{~m}, 16 \mathrm{H}, \mathrm{H}_{\mathrm{H}} \mathrm{H}_{\mathrm{K}} \mathrm{H}_{\mathrm{T}} \mathrm{H}_{\mathrm{W}}\right), 3.65\left(\mathrm{~s}, 16 \mathrm{H}^{2} \mathrm{H}_{\mathrm{I}} \mathrm{H}_{\mathrm{J}} \mathrm{H}_{\mathrm{U}} \mathrm{H}_{\mathrm{V}}\right)$, $3.18-3.07\left(\mathrm{~m}, 8 \mathrm{H}, \mathrm{H}_{8} \mathrm{H}_{26}\right), 2.79\left(\mathrm{t}, 4 \mathrm{H},{ }^{3} \mathrm{~J}_{\mathrm{H} / 6-\mathrm{Hl7}}=7.7 \mathrm{~Hz}, \mathrm{H}_{16}\right), 1.99 \& 1.99 \& 1.91(3 * \mathrm{~s}, 3 * 6 \mathrm{H}$, $\left.\mathrm{CH}_{3} \mathrm{CO}\right), 1.74-1.64\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{H}_{17}\right), 1.51-1.34\left(\mathrm{~m}, 12 \mathrm{H}, \mathrm{H}_{9} \mathrm{H}_{18} \mathrm{H}_{25}\right), 1.44\left(\mathrm{~s}, 18 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right)$, 1.33-1.17 (m, 40H, $\mathrm{H}_{10} \mathrm{H}_{11} \mathrm{H}_{12} \mathrm{H}_{13} \mathrm{H}_{19} \mathrm{H}_{20} \mathrm{H}_{21} \mathrm{H}_{22} \mathrm{H}_{23} \mathrm{H}_{24}$).
${ }^{13} \mathbf{C}$ NMR JMOD $\left(\mathbf{C D}_{3} \mathbf{C N}, 100 \mathrm{MHz}, \mathbf{2 9 8 K}\right): \delta(\mathrm{ppm})=170.6 \& 170.1 \& 170.0\left(\mathbf{C O C H}_{3}\right), 165.4$ $\left(\mathrm{C}_{6}\right), 149.4 \& 149.4 \& 149.3 \& 148.4 \& 146.9\left(\mathrm{C}_{15} \mathrm{C}_{\mathrm{A}} \mathrm{C}_{\mathrm{F}} \mathrm{C}_{\mathrm{M}} \mathrm{C}_{\mathrm{R}}\right), 133.9\left(\mathrm{C}_{\mathrm{C}}\right), 127.8\left(\mathrm{C}_{14}\right), 122.8 \&$ 121.6 \& $115.7 \& 115.6 \& 115.5 \& 114.8\left(\mathrm{C}_{\mathrm{B}} \mathrm{C}_{\mathrm{D}} \mathrm{C}_{\mathrm{E}} \mathrm{C}_{\mathrm{N}} \mathrm{C}_{\mathrm{O}} \mathrm{C}_{\mathrm{P}} \mathrm{C}_{\mathrm{Q}}\right)$, $87.8\left(\mathrm{C}_{1}\right), 79.8\left(\mathrm{C}_{(}\left(\mathrm{CH}_{3}\right)_{3}\right), 76.2$ $\left(\mathrm{C}_{5}\right), 72.1\left(\mathrm{C}_{3}\right), 70.7\left(\mathrm{C}_{2}\right), 69.2\left(\mathrm{C}_{4}\right), 70.4 \& 69.7 \& 69.6 \& 69.5 \& 69.4\left(\mathrm{CH}_{2} \mathrm{O}_{\mathrm{DB} 24 \mathrm{C} 8}\right), 50.0\left(\mathrm{C}_{28}\right), 47.4$ $\left(\mathrm{C}_{26}\right), 39.8\left(\mathrm{C}_{8}\right), 38.9\left(\mathrm{C}_{29}\right), 30.3 \& 30.2 \& 30.2 \& 30.1 \& 30.0 \& 29.9 \& 29.9 \& 29.7 \& 29.3 \& 27.4 \&$ $27.2\left(\mathrm{C}_{9} \mathrm{C}_{10} \mathrm{C}_{11} \mathrm{C}_{12} \mathrm{C}_{13} \mathrm{C}_{17} \mathrm{C}_{18} \mathrm{C}_{19} \mathrm{C}_{20} \mathrm{C}_{21} \mathrm{C}_{22} \mathrm{C}_{23} \mathrm{C}_{24} \mathrm{C}_{25}\right), 28.6\left(\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}\right), 23.8\left(\mathrm{C}_{16}\right), 20.8 \& 20.7 \&$ $20.5\left(\mathrm{CH}_{3} \mathrm{CO}\right)$.
5) Preparation of the thread $\mathbf{5 u}$

A suspension of the N -Boc protected compound $\mathbf{2 0}$ ($71 \mathrm{mg}, 0.0281 \mathrm{mmol}, 1$ equiv) in 3 mL of HCl 2 M in diethyl ether was stirred for 1 hour. The mixture was then evaporated and washed with diethyl ether to give a solid. $\mathrm{NH}_{4} \mathrm{PF}_{6}(27 \mathrm{mg}, 0.1686 \mathrm{mmol}, 6$ equiv) and 3 mL of dichloromethane were added to a suspension of the previous product in 3 mL of milliQ water. The resulted bilayer solution was vigorously stirred for 30 min . After separation, the aqueous layer was extracted twice with 5 mL of dichloromethane. The organic layers were combined, dried over MgSO_{4} and concentrated to obtain the thread $\mathbf{5 u}(68 \mathrm{mg}, 78 \%)$ as a pale yellow solid.
$\mathbf{R}_{f}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 9: 1\right) 0.40$
${ }^{1} \mathbf{H}^{\mathbf{H}} \mathbf{N M R}\left(\mathbf{C D}_{3} \mathbf{C N}, 400 \mathrm{MHz}, \mathbf{2 9 8 K}\right): \delta(\mathrm{ppm})=8.52\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{H}_{14}\right), 7.07-6.91\left(\mathrm{~m}, 14 \mathrm{H}, \mathrm{H}_{\mathrm{B}} \mathrm{H}_{\mathrm{D}} \mathrm{H}_{\mathrm{E}} \mathrm{H}_{\mathrm{N}}\right.$ $\left.\mathrm{H}_{\mathrm{O}} \mathrm{H}_{\mathrm{P}} \mathrm{H}_{\mathrm{Q}}\right), 6.89\left(\mathrm{t}, 2 \mathrm{H},{ }^{3} \mathrm{~J}_{\mathrm{H} 7-\mathrm{H8}}=5.9 \mathrm{~Hz}, \mathrm{H}_{7}\right), 6.16-6.12\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}_{1}\right), 5.57-5.52\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{H}_{2} \mathrm{H}_{3}\right), 5.41-$ $5.34\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}_{4}\right), 4.32\left(\mathrm{~d}, 2 \mathrm{H},{ }^{3} \mathrm{~J}_{H 5-\mathrm{H} 4}=10.0 \mathrm{~Hz}, \mathrm{H}_{5}\right), 4.19-4.09\left(\mathrm{~m}, 16 \mathrm{H}, \mathrm{H}_{\mathrm{G}} \mathrm{H}_{\mathrm{L}} \mathrm{H}_{\mathrm{S}} \mathrm{H}_{\mathrm{X}}\right), 4.14(\mathrm{~s}, 6 \mathrm{H}$, H_{29}), $4.04\left(\mathrm{~s}, 4 \mathrm{H}, \mathrm{H}_{28}\right), 3.84-3.75\left(\mathrm{~m}, 16 \mathrm{H}, \mathrm{H}_{\mathrm{H}} \mathrm{H}_{\mathrm{K}} \mathrm{H}_{\mathrm{T}} \mathrm{H}_{\mathrm{W}}\right), 3.67$ \& $3.66\left(2 * \mathrm{~s}, 16 \mathrm{H}, \mathrm{H}_{\mathrm{I}} \mathrm{H}_{\mathrm{J}} \mathrm{H}_{\mathrm{U}} \mathrm{H}_{\mathrm{V}}\right)$, 3.14$3.07\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{H}_{8}\right), 2.94\left(\mathrm{t}, 4 \mathrm{H},{ }^{3} \mathbf{J}_{\mathrm{H} 26-\mathrm{H} 25}=7.6 \mathrm{~Hz}, \mathrm{H}_{26}\right), 2.80\left(\mathrm{t}, 4 \mathrm{H},{ }^{3} \mathrm{~J}_{\mathrm{H} 16-\mathrm{Hl7}}=7.6 \mathrm{~Hz}, \mathrm{H}_{16}\right), 1.99$ \& 1.99 \& $1.91\left(3 * \mathrm{~s}, 3 * 6 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CO}\right), 1.74-1.65\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{H}_{17}\right), 1.65-1.56\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{H}_{25}\right), 1.46-1.35\left(\mathrm{~m}, 8 \mathrm{H}, \mathrm{H}_{9}\right.$ H_{18}), 1.35-1.19 (m, 40H, $\mathrm{H}_{10} \mathrm{H}_{11} \mathrm{H}_{12} \mathrm{H}_{13} \mathrm{H}_{19} \mathrm{H}_{20} \mathrm{H}_{21} \mathrm{H}_{22} \mathrm{H}_{23} \mathrm{H}_{24}$).
${ }^{13} \mathbf{C}$ NMR JMOD $\left(\mathbf{C D}_{3} \mathbf{C N}, 100 \mathrm{MHz}, \mathbf{2 9 8 K}\right): \delta(\mathrm{ppm})=170.6 \& 170.1 \& 170.0\left(\mathbf{C O C H}_{3}\right), 165.5$ $\left(\mathrm{C}_{6}\right), 150.3 \& 149.5 \& 149.4 \& 149.4 \& 146.9\left(\mathrm{C}_{15} \mathrm{C}_{\mathrm{A}} \mathrm{C}_{\mathrm{F}} \mathrm{C}_{\mathrm{M}} \mathrm{C}_{\mathrm{R}}\right), 127.8\left(\mathrm{C}_{14}\right), 125.0\left(\mathrm{C}_{\mathrm{C}}\right), 124.5 \&$ $122.7 \& 122.7 \& 116.8 \& 115.5 \& 115.4 \& 115.0\left(\mathrm{C}_{\mathrm{B}} \mathrm{C}_{\mathrm{D}} \mathrm{C}_{\mathrm{E}} \mathrm{C}_{\mathrm{N}} \mathrm{C}_{\mathrm{O}} \mathrm{C}_{\mathrm{P}} \mathrm{C}_{\mathrm{Q}}\right), 87.8\left(\mathrm{C}_{1}\right), 76.2\left(\mathrm{C}_{5}\right), 72.1$ $\left(\mathrm{C}_{3}\right), 70.7\left(\mathrm{C}_{2}\right), 69.2\left(\mathrm{C}_{4}\right), 70.7 \& 70.6 \& 70.6 \& 69.8 \& 69.8 \& 69.7 \& 69.6 \& 69.5 \& 69.4$ $\left(\mathrm{CH}_{2} \mathrm{O}_{\text {DB24C8 }}\right), 52.1\left(\mathrm{C}_{28}\right), 48.5\left(\mathrm{C}_{26}\right), 39.8\left(\mathrm{C}_{8}\right), 38.9\left(\mathrm{C}_{29}\right), 30.2 \& 30.2 \& 30.1 \& 30.0 \& 30.0 \& 29.9$ \& 29.9 \& 29.7 \& $29.6 \& 29.3 \& 27.4 \& 27.2 \& 26.9 \& 26.6\left(\mathrm{C}_{9} \mathrm{C}_{10} \mathrm{C}_{11} \mathrm{C}_{12} \mathrm{C}_{13} \mathrm{C}_{17} \mathrm{C}_{18} \mathrm{C}_{19} \mathrm{C}_{20} \mathrm{C}_{21} \mathrm{C}_{22}\right.$ $\left.\mathrm{C}_{23} \mathrm{C}_{24} \mathrm{C}_{25}\right), 23.7\left(\mathrm{C}_{16}\right), 20.8 \& 20.7 \& 20.5\left(\mathrm{CH}_{3} \mathrm{CO}\right)$.
MS (ESI): $\left[\mathrm{M}-3 \mathrm{PF}_{6}\right]^{3+}$; calcd for $\left[\mathrm{C}_{114} \mathrm{H}_{176} \mathrm{~F}_{6} \mathrm{~N}_{10} \mathrm{O}_{32}\right]^{3+}: 780.74$, found : 781.08
6) Preparation of the thread $\mathbf{6} \boldsymbol{u}$

A solution of the thread $\mathbf{5 u}\left(68 \mathrm{mg}, 2.447 .10^{-5} \mathrm{~mol}\right)$ in 5 mL of dichoromethane was washed with 5 mL of an aqueous solution of NaOH 1 M . After separation, the aqueous layer was extracted twice with 5 ml of dichlorométhane and the combined organic phases were dried over MgSO_{4} and then evaporated to obtain product $\mathbf{6 u}$ as a pale yellow solid (61 mg , quantitative).

$\mathbf{R}_{f}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 9: 1\right) 0.40$

${ }^{1} \mathbf{H}$ NMR $\left(\right.$ CD $\left._{3} \mathbf{C N}, 400 \mathrm{MHz}, \mathbf{2 9 8 K}\right): \delta(\mathrm{ppm})=8.54\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{H}_{14}\right), 7.02-6.82\left(\mathrm{~m}, 16 \mathrm{H}, \mathrm{H}_{7} \mathrm{H}_{\mathrm{B}} \mathrm{H}_{\mathrm{D}} \mathrm{H}_{\mathrm{E}}\right.$
 $\left.{ }^{3} \mathbf{J}_{H 5-H 4}=9.9 \mathrm{~Hz}, \mathrm{H}_{5}\right), 4.17-4.07\left(\mathrm{~m}, 16 \mathrm{H}, \mathrm{H}_{\mathrm{G}} \mathrm{H}_{\mathrm{L}} \mathrm{H}_{\mathrm{S}} \mathrm{H}_{\mathrm{X}}\right), 4.14\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{H}_{29}\right), 3.80-3.74\left(\mathrm{~m}, 16 \mathrm{H}, \mathrm{H}_{\mathrm{H}} \mathrm{H}_{\mathrm{K}}\right.$ $\left.\mathrm{H}_{\mathrm{T}} \mathrm{H}_{\mathrm{W}}\right), 3.65 \& 3.65\left(2 * \mathrm{~s}, 16 \mathrm{H}, \mathrm{H}_{\mathrm{I}} \mathrm{H}_{\mathrm{J}} \mathrm{H}_{\mathrm{U}} \mathrm{H}_{\mathrm{V}}\right), 3.64\left(\mathrm{~s}, 4 \mathrm{H}, \mathrm{H}_{28}\right), 3.14-3.07\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{H}_{8}\right), 2.79(\mathrm{t}, 4 \mathrm{H}$, $\left.{ }^{3} \mathbf{J}_{H 16-H 17}=7.7 \mathrm{~Hz}, \mathrm{H}_{16}\right), 2.51\left(\mathrm{t}, 4 \mathrm{H},{ }^{3} \mathrm{~J}_{\mathrm{H} 26-\mathrm{H} 25}=7.0 \mathrm{~Hz}, \mathrm{H}_{26}\right), 1.99 \& 1.99 \& 1.91\left(3{ }^{*} \mathrm{~s}, 3 * 6 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CO}\right)$, 1.74-1.64 (m, 4H, H17), 1.50-1.34 (m, 12H, H9 H18 H25), 1.34-1.18 (m, 40H, H $\mathrm{H}_{10} \mathrm{H}_{11} \mathrm{H}_{12} \mathrm{H}_{13} \mathrm{H}_{19} \mathrm{H}_{20}$ $\left.\mathrm{H}_{21} \mathrm{H}_{22} \mathrm{H}_{23} \mathrm{H}_{24}\right)$.
${ }^{13} \mathbf{C}$ NMR JMOD $\left(\mathbf{C D}_{3} \mathbf{C N}, 100 \mathrm{MHz}, \mathbf{2 9 8 K}\right): \delta(\mathrm{ppm})=170.6 \& 170.1 \& 170.0\left(\mathrm{COCH}_{3}\right), 165.4$ $\left(\mathrm{C}_{6}\right), 149.6 \& 149.5 \& 149.3 \& 147.0\left(\mathrm{C}_{15} \mathrm{C}_{\mathrm{A}} \mathrm{C}_{\mathrm{F}} \mathrm{C}_{\mathrm{M}} \mathrm{C}_{\mathrm{R}}\right), 136.1\left(\mathrm{C}_{\mathrm{C}}\right), 126.6\left(\mathrm{C}_{14}\right), 122.8 \& 122.7 \&$ $122.0 \& 115.7 \& 115.6 \& 115.4 \& 115.4\left(C_{B} C_{D} C_{E} C_{N} C_{O} C_{P} C_{Q}\right), 87.9\left(C_{1}\right), 76.2\left(C_{5}\right), 72.1\left(C_{3}\right), 70.8$ $\left(\mathrm{C}_{2}\right), 69.2\left(\mathrm{C}_{4}\right), 70.6 \& 69.8 \& 69.7 \& 69.7 \& 69.6 \& 69.5 \& 69.5\left(\mathrm{CH}_{2} \mathrm{O}_{\mathrm{DB} 24 \mathrm{C} 8}\right), 53.9\left(\mathrm{C}_{28}\right), 49.9\left(\mathrm{C}_{26}\right)$, $39.9\left(\mathrm{C}_{8}\right), 39.0\left(\mathrm{C}_{29}\right), 30.8 \& 30.3 \& 30.3 \& 30.2 \& 30.2 \& 30.1 \& 29.9 \& 29.7 \& 29.3 \& 28.1 \& 27.5$ \& $27.2\left(\mathrm{C}_{9} \mathrm{C}_{10} \mathrm{C}_{11} \mathrm{C}_{12} \mathrm{C}_{13} \mathrm{C}_{17} \mathrm{C}_{18} \mathrm{C}_{19} \mathrm{C}_{20} \mathrm{C}_{21} \mathrm{C}_{22} \mathrm{C}_{23} \mathrm{C}_{24} \mathrm{C}_{25}\right), 23.8\left(\mathrm{C}_{16}\right), 20.8 \& 20.8 \& 20.5$ $\left(\mathrm{CH}_{3} \mathrm{CO}\right)$.

D. Synthesis of the double-lasso

1) Preparation of the activated rotaxane dimer 3

In a typical procedure, $\mathrm{Cu}\left(\mathrm{CH}_{3} \mathrm{CN}_{4} \mathrm{PF}_{6}(73 \mathrm{mg}, 0.1955 \mathrm{mmol}, 1\right.$ equiv) and 2,6-lutidine (2 mg , $0.01955 \mathrm{mmol}, 0.1$ equiv) were added successively to a solution of the azido compound $\mathbf{1}(100 \mathrm{mg}$, $0.1955 \mathrm{mmol}, 1$ equiv) and the alkyne compound $2(157 \mathrm{mg}, 0.1955 \mathrm{mmol}, 1$ equiv) in 2 mL of dry dichloromethane. The mixture was stirred for 24 h at room temperature, after which time the solvent was evaporated under vacuo. The crude was then directly purified by chromatography on a silicagel column (solvent gradient elution $\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ acetone 1:0 to $3: 7$) to afford the rotaxane dimer $\mathbf{3}$ (239 mg , 93%) as a yellow solid.
$\mathbf{R}_{f}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 9: 1\right) 0.49$
${ }^{1} \mathbf{H}$ NMR $\left(\mathbf{C D}_{3} \mathbf{C N}, 400 \mathbf{~ M H z}, \mathbf{2 9 8 K}\right): \delta(\mathrm{ppm})=7.82\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{H}_{7}\right), 6.95-6.85 \& 6.69-6.56(\mathrm{~m}, 4 \mathrm{H}$, $\left.\mathrm{H}_{20}\right), 6.85-6.71\left(\mathrm{~m}, 12 \mathrm{H}, \mathrm{H}_{\mathrm{B}} \mathrm{H}_{\mathrm{D}} \mathrm{H}_{\mathrm{N}} \mathrm{H}_{\mathrm{O}} \mathrm{H}_{\mathrm{P}} \mathrm{H}_{\mathrm{Q}}\right), 6.42\left(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}_{\mathrm{HE}-\mathrm{HD}}=8.3 \mathrm{~Hz}, \mathrm{H}_{\mathrm{E}}\right), 6.11\left(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}_{\mathrm{Hl}-\mathrm{H} 2}=\right.$ $\left.9.3 \mathrm{~Hz}, \mathrm{H}_{1}\right), 5.77\left(\mathrm{t}, 2 \mathrm{H},{ }^{3} \mathbf{J}_{H 2-H l}={ }^{3} \mathbf{J}_{H 2-H 3}=9.3 \mathrm{~Hz}, \mathrm{H}_{2}\right), 5.62\left(\mathrm{t}, 2 \mathrm{H},{ }^{3} \mathrm{~J}_{H 3-H 2}={ }^{3} \mathbf{J}_{H 3-H 4}=9.3 \mathrm{~Hz}, \mathrm{H}_{3}\right), 5.56$ $\left(\mathrm{t}, 2 \mathrm{H},{ }^{3} \mathbf{J}_{H 4-H 3}={ }^{3} \mathrm{~J}_{\mathrm{H} 4-\mathrm{H}}=9.3 \mathrm{~Hz}, \mathrm{H}_{4}\right), 4.97\left(\mathrm{~d}, 2 \mathrm{H},{ }^{3} \mathrm{~J}_{H 5-H 4}=9.3 \mathrm{~Hz}, \mathrm{H}_{5}\right), 4.58-4.40\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{H}_{21}\right), 4.33-$ $3.64\left(\mathrm{~m}, 48 \mathrm{H}, \mathrm{CH}_{2} \mathrm{O}_{\mathrm{DB} 24 \mathrm{C} 8}\right), 3.47-3.34\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{H}_{19}\right), 2.68\left(\mathrm{t}, 4 \mathrm{H},{ }^{3} \mathrm{~J}_{\mathrm{H} 9-\mathrm{HIO}}=7.3 \mathrm{~Hz}, \mathrm{H}_{9}\right), 2.05 \& 2.00$ \& $1.81\left(3 * \mathrm{~s}, 3 * 6 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CO}\right), 1.75-1.67\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{H}_{18}\right), 1.67-1.58\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{H}_{10}\right), 1.40-1.18\left(\mathrm{~m}, 28 \mathrm{H}, \mathrm{H}_{11} \mathrm{H}_{12}\right.$ $\mathrm{H}_{13} \mathrm{H}_{14} \mathrm{H}_{15} \mathrm{H}_{16} \mathrm{H}_{17}$).
${ }^{13} \mathbf{C}$ NMR JMOD $\left(\mathbf{C D}_{\mathbf{3}} \mathbf{C N}, \mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{2 9 8 K}\right): \delta(\mathrm{ppm})=170.6 \& 170.3 \& 169.6 \& 164.0\left(\mathbf{C O C H}_{3}\right)$, $164.0\left(\mathrm{C}_{6}\right), 148.6$ \& 147.0 \& $146.9\left(\mathrm{C}_{8} \mathrm{C}_{\mathrm{A}} \mathrm{C}_{\mathrm{F}} \mathrm{C}_{\mathrm{M}} \mathrm{C}_{\mathrm{R}}\right), 126.2\left(\mathrm{C}_{\mathrm{C}}\right), 123.5 \& 122.9$ \& 120.5 \& 114.0 \& $112.9 \& 112.6 \& 112.6\left(\mathrm{C}_{\mathrm{B}} \mathrm{C}_{\mathrm{D}} \mathrm{C}_{\mathrm{E}} \mathrm{C}_{\mathrm{N}} \mathrm{C}_{\mathrm{O}} \mathrm{C}_{\mathrm{P}} \mathrm{C}_{\mathrm{Q}}\right), 121.5\left(\mathrm{C}_{7}\right), 85.6\left(\mathrm{C}_{1}\right), 74.5\left(\mathrm{C}_{5}\right), 72.7\left(\mathrm{C}_{3}\right), 70.3\left(\mathrm{C}_{2}\right)$, $69.3\left(\mathrm{C}_{4}\right), 73.0 \& 72.9 \& 72.9 \& 72.1 \& 71.4 \& 71.3 \& 71.2 \& 70.9 \& 70.9 \& 69.9 \& 69.2 \& 68.3 \&$ 68.3 \& $68.1 \& 67.9 \& 67.8\left(\mathrm{CH}_{2} \mathrm{O}_{\text {DB24C8 }}\right), 52.7\left(\mathrm{C}_{21}\right), 49.7\left(\mathrm{C}_{19}\right), 30.1 \& 30.0 \& 29.9 \& 29.8 \& 29.6 \&$ 29.4 \& 27.2 \& $27.1\left(\mathrm{C}_{10} \mathrm{C}_{11} \mathrm{C}_{12} \mathrm{C}_{13} \mathrm{C}_{14} \mathrm{C}_{15} \mathrm{C}_{16} \mathrm{C}_{17} \mathrm{C}_{18}\right), 25.9\left(\mathrm{C}_{9}\right), 20.7 \& 20.6 \& 20.3\left(\mathrm{CH}_{3} \mathrm{CO}\right)$.

HRMS (ESI): $\left[\mathrm{M}-2 \mathrm{PF}_{6}\right]^{2+}$; calcd for $\left[\mathrm{C}_{112} \mathrm{H}_{144} \mathrm{~F}_{10} \mathrm{~N}_{8} \mathrm{O}_{34}\right]^{2+}: 1167.4813$, found : 1167.5016

To a stirred solution of the rotaxane dimer $3(104 \mathrm{mg}, 0.0396 \mathrm{mmol}, 1$ equiv) in 80 mL of dichloromethane $\left(\mathrm{C}=5.10^{-4} \mathrm{M}\right)$ was added the dodecane-1,12-diamine $(7.92 \mathrm{mg}, 0.0396 \mathrm{mmol}$, 1equiv). The solution was stirred for 4 days at room temperature, then evaporated and the crude was purified by chromatography on siligagel column (solvent gradient elution $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ to $\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ acetone $3: 7$) to give the double-lasso $\mathbf{4 a - b}(32 \mathrm{mg})$ as a yellow solid in 33% yield.
$\mathbf{R}_{f}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 9: 1\right) 0.48$
${ }^{1} \mathbf{H}$ NMR $\left(\mathbf{C D}_{3} \mathbf{C N}, 400 \mathrm{MHz}, \mathbf{2 9 8 K}\right): \delta(\mathrm{ppm})=7.78\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{H}_{14}\right), 7.04-6.85$ \& 6.70-6.54 (m, 4H, $\left.\mathrm{H}_{27}\right)$, 6.84-6.70 ($\left.\mathrm{m}, 16 \mathrm{H}, \mathrm{H}_{7} \mathrm{H}_{\mathrm{B}} \mathrm{H}_{\mathrm{D}} \mathrm{H}_{\mathrm{N}} \mathrm{H}_{\mathrm{O}} \mathrm{H}_{\mathrm{P}} \mathrm{H}_{\mathrm{Q}}\right), 6.44 \& 6.43\left(2 * \mathrm{~d}, 2 \mathrm{H},{ }^{3} \mathrm{~J}_{H E-H D}=8.3 \mathrm{~Hz}, \mathrm{H}_{\mathrm{E}}\right), 5.99$ \& $5.99\left(2 * \mathrm{~d}, 2 \mathrm{H},{ }^{3} \mathrm{~J}_{\mathrm{Hl}-\mathrm{H} 2}=9.5 \mathrm{~Hz}, \mathrm{H}_{1}\right), 5.61 \& 5.60\left(2 * \mathrm{t}, 2 \mathrm{H},{ }^{3} \mathrm{~J}_{\mathrm{H} 2-\mathrm{HI}}={ }^{3} \mathrm{~J}_{\mathrm{H} 2-\mathrm{H} 3}=9.5 \mathrm{~Hz}, \mathrm{H}_{2}\right), 5.49(\mathrm{t}, 4 \mathrm{H}$, $\left.{ }^{3} \mathrm{~J}_{\mathrm{H} 3-\mathrm{H} 2}={ }^{3} \mathrm{~J}_{\mathrm{H} 3-\mathrm{H} 4}=9.5 \mathrm{~Hz}, \mathrm{H}_{3}\right), 5.32 \& 5.32\left(2 * \mathrm{t}, 2 \mathrm{H},{ }^{3} \mathrm{~J}_{H 4-\mathrm{H} 3}={ }^{3} \mathrm{~J}_{H 4-\mathrm{H} 5}=9.5 \mathrm{~Hz}, \mathrm{H}_{4}\right), 4.58-4.39(\mathrm{~m}, 4 \mathrm{H}$, $\left.\mathrm{H}_{28}\right), 4.23 \& 4.22\left(2 * \mathrm{~d}, 2 \mathrm{H},{ }^{3} \mathrm{~J}_{\mathrm{H} 5-\mathrm{H} 4}=9.5 \mathrm{~Hz}, \mathrm{H}_{5}\right), 4.34-3.61\left(\mathrm{~m}, 48 \mathrm{H}, \mathrm{CH}_{2} \mathrm{O}_{\mathrm{DB} 24 \mathrm{C} 8}\right), 3.49-3.34(\mathrm{~m}, 4 \mathrm{H}$, H_{26}), 3.09-2.96 (m, 4H, H8), $2.65\left(\mathrm{t}, 4 \mathrm{H}^{3}{ }^{3} \mathrm{~J}_{\mathrm{H} 16-\mathrm{H} 17}=7.4 \mathrm{~Hz}, \mathrm{H}_{16}\right), 1.98 \& 1.97 \& 1.79 \& 1.79\left(4^{*} \mathrm{~s}, 18 \mathrm{H}\right.$, $\mathrm{CH}_{3} \mathrm{CO}$), 1.76-1.66 (m, 4H, H25), 1.66-1.55 (m, 4H, H17), 1.41-1.14 (m, $48 \mathrm{H}, \mathrm{H}_{9} \mathrm{H}_{10} \mathrm{H}_{11} \mathrm{H}_{12} \mathrm{H}_{13} \mathrm{H}_{18}$ $\mathrm{H}_{19} \mathrm{H}_{20} \mathrm{H}_{21} \mathrm{H}_{22} \mathrm{H}_{23} \mathrm{H}_{24}$).
${ }^{13} \mathbf{C}$ NMR JMOD $\left(\mathbf{C D}_{3} \mathbf{C N}, 100 \mathrm{MHz}, \mathbf{2 9 8 K}\right): \delta(\mathrm{ppm})=170.7 \& 170.1 \& 169.7\left(\mathrm{COCH}_{3}\right), 166.2$ $\left(\mathrm{C}_{6}\right), 149.4 \& 148.6 \& 147.1 \& 146.9\left(\mathrm{C}_{15} \mathrm{C}_{\mathrm{A}} \mathrm{C}_{\mathrm{F}} \mathrm{C}_{\mathrm{M}} \mathrm{C}_{\mathrm{R}}\right), 126.2\left(\mathrm{C}_{\mathrm{C}}\right), 121.5\left(\mathrm{C}_{14}\right), 123.5 \& 123.5 \&$ $121.6 \& 114.1 \& 113.0 \& 112.9 \& 112.7 \& 112.6\left(C_{B} C_{D} C_{E} C_{N} C_{O} C_{P} C_{Q}\right), 85.5\left(C_{1}\right), 76.0\left(C_{5}\right), 72.9$ $\left(\mathrm{C}_{3}\right), 70.8\left(\mathrm{C}_{2}\right), 69.8\left(\mathrm{C}_{4}\right), 72.9 \& 71.5 \& 71.3 \& 71.3 \& 71.2 \& 71.0 \& 68.4 \& 68.2 \& 67.9 \& 67.9$ $\left(\mathrm{CH}_{2} \mathrm{O}_{\mathrm{DB} 24 \mathrm{C} 8}\right), 52.7\left(\mathrm{C}_{28}\right), 49.7\left(\mathrm{C}_{26}\right), 39.7\left(\mathrm{C}_{8}\right), 30.3 \& 30.3 \& 29.9 \& 29.8 \& 29.8 \& 29.5 \& 29.5 \&$ $29.4 \& 29.1 \& 27.5 \& 27.0 \& 26.9\left(\mathrm{C}_{9} \mathrm{C}_{10} \mathrm{C}_{11} \mathrm{C}_{12} \mathrm{C}_{13} \mathrm{C}_{17} \mathrm{C}_{18} \mathrm{C}_{19} \mathrm{C}_{20} \mathrm{C}_{21} \mathrm{C}_{22} \mathrm{C}_{23} \mathrm{C}_{24} \mathrm{C}_{25}\right), 25.9\left(\mathrm{C}_{16}\right)$, $20.8 \& 20.8 \& 20.4\left(\mathrm{CH}_{3} \mathrm{CO}\right)$.
HRMS (ESI): $\left[\mathrm{M}-2 \mathrm{PF}_{6}\right]^{2+}$; calcd for $\left[\mathrm{C}_{112} \mathrm{H}_{170} \mathrm{~F}_{10} \mathrm{O}_{32}\right]^{2+}: 1083.5991$, found : 1083.5991
3) Preparation of the double-lasso 5a-b

The double-lasso $\mathbf{4 a - b}(28 \mathrm{mg}, 0.0114 \mathrm{mmol})$ was suspended in 3 mL of iodomethane and stirred for four days at room temperature. Then, iodomethane was evaporated under reduced pressure and the obtained solid was washed with diethyl ether to give a yellow solid. $\mathrm{NH}_{4} \mathrm{PF}_{6}(11 \mathrm{mg}, 0.0683 \mathrm{mmol}, 6$ equiv) and 5 mL of dichloromethane were added to a suspension of the previous product in 5 mL of milliQ water. The resulted bilayer solution was vigorously stirred for 30 min . After separation, the aqueous layer was extracted twice with 5 mL of dichloromethane. The organic layers were combined, dried over $\mathbf{M g S O}_{4}$ and concentrated to afford the double-lasso $\mathbf{5 a - b}(32 \mathrm{mg})$ in a quantitative yield as a yellow solid.

$\mathbf{R}_{f}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 9: 1\right) 0.43$

${ }^{1} \mathbf{H}$ NMR (CD $\left.\mathbf{C N}_{3} \mathbf{C N}, 400 \mathrm{MHz}, \mathbf{2 9 8 K}\right): \delta(\mathrm{ppm})=8.50\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{H}_{14}\right), 7.00-6.88 \& 6.71-6.57(\mathrm{~m}, 4 \mathrm{H}$, $\left.\mathrm{H}_{27}\right), 6.84\left(\mathrm{t}, 2 \mathrm{H},{ }^{3} \mathrm{~J}_{H 7-H 8}=6.0 \mathrm{~Hz}, \mathrm{H}_{7}\right), 6.88-6.71\left(\mathrm{~m}, 12 \mathrm{H}, \mathrm{H}_{\mathrm{B}} \mathrm{H}_{\mathrm{D}} \mathrm{H}_{\mathrm{N}} \mathrm{H}_{\mathrm{O}} \mathrm{H}_{\mathrm{P}} \mathrm{H}_{\mathrm{Q}}\right), 6.42\left(\mathrm{~d}, 2 \mathrm{H},{ }^{3} \mathrm{~J}_{\mathrm{HE}-\mathrm{HD}}=\right.$ $\left.8.4 \mathrm{~Hz}, \mathrm{H}_{\mathrm{E}}\right), 6.15\left(\mathrm{~d}, 2 \mathrm{H},{ }^{3} \mathrm{~J}_{\mathrm{HI}-\mathrm{H} 2}=9.4 \mathrm{~Hz}, \mathrm{H}_{1}\right), 5.59-5.49\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{H}_{2} \mathrm{H}_{3}\right), 5.37 \& 5.36\left(2 * \mathrm{t}, 2 \mathrm{H},{ }^{3} \mathrm{~J}_{H 4-H 3}=\right.$ $\left.{ }^{3} \mathrm{~J}_{H 4-H 5}=9.4 \mathrm{~Hz}, \mathrm{H}_{4}\right), 4.58-4.40\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{H}_{28}\right), 4.31\left(\mathrm{~d}, 2 \mathrm{H},{ }^{3} \mathrm{~J}_{H 5-\mathrm{H} 4}=9.4 \mathrm{~Hz}, \mathrm{H}_{5}\right), 4.36-3.63(\mathrm{~m}, 48 \mathrm{H}$, $\left.\mathrm{CH}_{2} \mathrm{O}_{\text {DB24C } 8}\right), 4.13\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{H}_{29}\right), 3.48-3.35\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{H}_{26}\right), 3.11-3.02\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{H}_{8}\right), 2.78\left(\mathrm{t}, 4 \mathrm{H},{ }^{3} \mathrm{~J}_{\mathrm{H} 16-\mathrm{H} / 7}=\right.$ $\left.7.6 \mathrm{~Hz}, \mathrm{H}_{16}\right), 1.99 \& 1.99 \& 1.98 \& 1.91\left(4 * \mathrm{~s}, 18 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CO}\right), 1.78-1.63\left(\mathrm{~m}, 8 \mathrm{H}, \mathrm{H}_{17} \mathrm{H}_{25}\right), 1.46-1.33$ ($\mathrm{m}, 12 \mathrm{H}, \mathrm{H}_{9} \mathrm{H}_{18} \mathrm{H}_{24}$), 1.33-1.13 (m, $36 \mathrm{H}, \mathrm{H}_{10} \mathrm{H}_{11} \mathrm{H}_{12} \mathrm{H}_{13} \mathrm{H}_{19} \mathrm{H}_{20} \mathrm{H}_{21} \mathrm{H}_{22} \mathrm{H}_{23}$).
${ }^{13} \mathbf{C}$ NMR JMOD (CD $\left.\mathbf{C N}_{3} \mathbf{C N}, 100 \mathrm{MHz}, \mathbf{2 9 8 K}\right): \delta(\mathrm{ppm})=170.6 \& 170.1 \& 170.0\left(\mathrm{COCH}_{3}\right), 165.4$ $\left(\mathrm{C}_{6}\right), 148.6 \& 148.6 \& 147.1 \& 147.0 \& 146.9\left(\mathrm{C}_{15} \mathrm{C}_{\mathrm{A}} \mathrm{C}_{\mathrm{F}} \mathrm{C}_{\mathrm{M}} \mathrm{C}_{\mathrm{R}}\right), 127.6\left(\mathrm{C}_{14}\right), 126.2\left(\mathrm{C}_{\mathrm{C}}\right), 123.5 \&$ $121.6 \& 114.1 \& 112.9 \& 112.7 \& 112.6\left(C_{B} C_{D} C_{E} C_{N} C_{O} C_{P} C_{Q}\right), 87.9\left(C_{1}\right), 76.2\left(C_{5}\right), 72.1\left(C_{3}\right), 70.7$ $\left(\mathrm{C}_{2}\right), 69.2\left(\mathrm{C}_{4}\right), 72.9 \& 72.9 \& 71.5 \& 71.5 \& 71.3 \& 71.2 \& 71.0 \& 68.4 \& 68.2 \& 68.0 \& 67.9$ $\left(\mathrm{CH}_{2} \mathrm{O}_{\text {DB24C8}}\right), 52.7\left(\mathrm{C}_{28}\right), 49.7\left(\mathrm{C}_{26}\right), 39.9\left(\mathrm{C}_{8}\right), 38.9\left(\mathrm{C}_{29}\right), 30.4 \& 30.4 \& 30.0 \& 30.0 \& 29.9 \& 29.8$ $\& 29.7 \& 29.3 \& 29.3 \& 27.5 \& 27.1 \& 27.0\left(\mathrm{C}_{9} \mathrm{C}_{10} \mathrm{C}_{11} \mathrm{C}_{12} \mathrm{C}_{13} \mathrm{C}_{17} \mathrm{C}_{18} \mathrm{C}_{19} \mathrm{C}_{20} \mathrm{C}_{21} \mathrm{C}_{22} \mathrm{C}_{23} \mathrm{C}_{24} \mathrm{C}_{25}\right)$, $23.8\left(\mathrm{C}_{16}\right), 20.8 \& 20.7 \& 20.5\left(\mathrm{CH}_{3} \mathrm{CO}\right)$.
HRMS (ESI): $\left[\mathrm{M}_{\left.-3 \mathrm{PF}_{6}\right]^{3+} ; \text { calcd for }\left[\mathrm{C}_{114} \mathrm{H}_{176} \mathrm{~F}_{6} \mathrm{~N}_{10} \mathrm{O}_{32} \mathrm{P}\right]^{3+}: 780.7365 \text {, found : } 780.7440 ~}^{\text {, }}\right.$
4) Preparation of the double-lasso $\mathbf{6 a} \boldsymbol{a} \boldsymbol{b}$

A solution of the double-lasso $\mathbf{5 a - b}\left(22 \mathrm{mg}, 7.917 .10^{-6} \mathrm{~mol}\right)$ in 5 mL of dichoromethane was washed with 5 mL of an aqueous solution of NaOH 1 M . After separation, the aqueous layer was extracted twice with 5 ml of dichlorométhane and the combined organic phases were dried over MgSO_{4} and then evaporated to obtain product $\mathbf{6 a - b}$ as a yellow solid (20 mg , quantitative).
$\mathbf{R}_{f}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 9: 1\right) 0.46$
${ }^{1} \mathbf{H}$ NMR $\left(\mathbf{C D}_{3} \mathbf{C N}, 400 \mathrm{MHz}, \mathbf{2 9 8 K}\right): \delta(\mathrm{ppm})=9.54 \& 9.51\left(2 * \mathrm{~s}, 2 \mathrm{H}, \mathrm{H}_{14}\right), 7.04 \& 7.00(2 * \mathrm{t}, 2 \mathrm{H}$, $\left.{ }^{3} \mathbf{J}_{H 7-H 8}=6.0 \& 5.7 \mathrm{~Hz}, \mathrm{H}_{7}\right), 6.96-6.71\left(\mathrm{~m}, 14 \mathrm{H}, \mathrm{H}_{\mathrm{B}} \mathrm{H}_{\mathrm{D}} \mathrm{H}_{\mathrm{E}} \mathrm{H}_{\mathrm{N}} \mathrm{H}_{\mathrm{O}} \mathrm{H}_{\mathrm{P}} \mathrm{H}_{\mathrm{Q}}\right), 6.19$ \& $6.16\left(2 * \mathrm{~d}, 2 \mathrm{H},{ }^{3} \mathrm{~J}_{H 1-\mathrm{H} 2}\right.$ $\left.=9.2 \mathrm{~Hz}, \mathrm{H}_{1}\right), 5.58-5.50\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}_{4}\right), 5.44-5.29\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{H}_{2} \mathrm{H}_{3}\right), 4.40 \& 4.39\left(2 * \mathrm{~d}, 2 \mathrm{H},{ }^{3} \mathrm{~J}_{H 5-H 4}=9.2\right.$ $\left.\mathrm{Hz}, \mathrm{H}_{5}\right), 4.36 \& 4.36\left(2 * \mathrm{~s}, 6 \mathrm{H}, \mathrm{H}_{29}\right), 4.28-3.10\left(\mathrm{~m}, 48 \mathrm{H}, \mathrm{CH}_{2} \mathrm{O}_{\mathrm{DB} 24 \mathrm{C} 8}\right), 3.74-3.56\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{H}_{28}\right), 3.24-$ $3.10\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{H}_{26}\right), 3.08-2.95 \& 2.73-2.63\left(2 * \mathrm{~m}, 4 \mathrm{H}, \mathrm{H}_{8}\right), 2.53-2.42\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{H}_{16}\right), 2.00 \& 1.99(2 * \mathrm{~s}$, $18 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CO}$), 1.76-1.49 (m, $8 \mathrm{H}, \mathrm{H}_{17} \mathrm{H}_{25}$), 1.49-0.57 (m, $48 \mathrm{H}, \mathrm{H}_{9} \mathrm{H}_{10} \mathrm{H}_{11} \mathrm{H}_{12} \mathrm{H}_{13} \mathrm{H}_{18} \mathrm{H}_{19} \mathrm{H}_{20} \mathrm{H}_{21} \mathrm{H}_{22}$ $\mathrm{H}_{23} \mathrm{H}_{24}$).

5) Reprotonation procedure of $\mathbf{6} \boldsymbol{a}-\boldsymbol{b}$

The double-lasso $\mathbf{6 a - b}\left(20 \mathrm{mg}, 7.917 .10^{-6} \mathrm{~mol}\right.$) was suspended in 2 mL of a solution of HCl 2 M in diethyl ether and stirred for 30 min at room temperature. After evaporation, the solid was washed with diethyl ether. Then, $\mathrm{NH}_{4} \mathrm{PF}_{6}\left(6.4 \mathrm{mg}, 3.959 .10^{-5} \mathrm{~mol}, 5\right.$ equiv) and 2 mL of dichloromethane were added to a suspension of the previous product in 2 mL of milliQ water. The resulted bilayer solution was vigorously stirred for 30 min . After separation, the aqueous layer was extracted twice with 3 mL of dichloromethane. The organic layers were combined, dried over MgSO_{4} and concentrated to obtain the double-lasso $\mathbf{5 a - b}(20 \mathrm{mg}, 89 \%)$ as a yellow solid.

E. Molecular Modeling

NMR: NMR spectra were acquired on a Bruker Avance spectrometer operating at 500 MHz . For DOSY experiments the standard Bruker sequence with double stimulated echoes and 3 spoil gradients for convection compensation was employed. Pulse field gradients were incremented in 64 steps from 2% to 95% of the maximum gradient strength. 48 scans were
used for each increment with a gradients length of 1.8 ms and a diffusion time of 200 ms . The spectra were processed by using Bruker's Topspin 2.0 software, and the diffusion coefficients were obtained directly from the spectra. Different solvents $\left(\mathrm{CDCl}_{3}, \mathrm{CD}_{3} \mathrm{CN}\right.$ and DMSO-d6) and temperatures (from 298 to 278 K) were employed. In DMSO and CDCl_{3}, diffusion coefficient between the protonated and non-protonated species does not change (see for example figures 1, 2 and 3). However, a significant variation was observed in $\mathrm{CD}_{3} \mathrm{CN}$ at 278K (figure 4).

Figure 1. ${ }^{1} \mathrm{H}$ and DOSY spectra ($500 \mathrm{MHz}, \mathbf{C D}_{\mathbf{3}} \mathbf{C N}$ at $\mathbf{2 9 5 K}$). In black: spectra corresponding to the protonated species and, in red, spectra corresponding to the non protonated species. The diffusion coefficients of both compounds under these conditions is $1.23 \times 10(-9)$ (from value in the abscise axe -8.907).

 to the protonated species and, in red, spectra corresponding to the non protonated species. The diffusion coefficients of both compounds under these conditions is $8.00 \times 10(-10)$ (from value in the abscise axe -9.097).

Figure 3. ${ }^{1} \mathrm{H}$ and DOSY spectra (500 MHz , DMSO at 295K). In black: spectra corresponding to the protonated species and, in red, spectra corresponding to the non protonated species. The diffusion coefficients of both compounds under these conditions is $2.05 \times 10(-10)$ (from value in the abscise axe -9.688).

Figure 4. Partial DOSY spectra ($500 \mathrm{MHz}, \mathbf{C D}_{3} \mathbf{C N}, \mathbf{2 7 8} \mathbf{K}$) of the protonated double-lasso macrocycle 5 (in blue) and the deprotonated double-lasso macrocycle 6 (in black) The diffusion coefficients of protonated compound 5 and deprotonated compound 6 are respectively $8.93 \times 10(-10)$ and $9.66 \times 10(-10)$ under these conditions.

Modeling: The structures of compounds $\mathbf{5 a}, \mathbf{5 b}, \mathbf{6 a}$ and $\mathbf{6 b}$ were built in Maestro. As a starting point for the two interlocked DB24C8 units (in 5a and 5b), we took the crystallographic structure of a dibenzo-24-crown-8-ether deposited in the Cambridge crystallographic Data Centre (CCDC) with the TEVBEB CCDC code. The structures were submitted to minimization by use of conjugate gradients and/or Monte Carlo Torsional Sampling Conformational Search (MCMM) with the OPLS2005 force field with electrostatic treatment for acetonitrile, and 1500 minimum number of steps. The modeling of compounds 5 and $\mathbf{6}$ was carried out in using a continuum solvent model: (Generalized-Born/Surface Area, GB/SA). The actual counterions were not included in the calculations, given the lack of proper parameters of the force field for PF°. However, we performed several calculations
employing other simple counterions, such as phosphate (Figure 5). None effect in the results was observed.

Figure 5. OPLS2005 minimised structure of compound 5b with $\mathrm{H}_{2} \mathrm{PO}_{4}{ }^{-}$counterions on the triazolium.
F. Stack plot and partial zoomed stack plot ${ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}, 298 \mathrm{~K})$ of double-lasso 5 in different solvents

RMN ($400 \mathrm{MHz}, 298 \mathrm{~K}$) compound 5

$\underbrace{}_{10}$

RN ($400 \mathrm{MHz}, 298 \mathrm{~K}$) compound 5

NMR Spectra

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$)

JMOD ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$)

	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1			1 1 1
00	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30			2010

\% \%			\%
K	$1 / 1$	¢	$\underbrace{\sim}$

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$)

	1	1	1	1	1	1	1	1	1	1	,	1	1	1	1	1	1	1	1	1	7
10.0	9.5	9.0	8.5	8.0	7.5	7.0	6.5	6.0	5.5		4.5	4.0	3.5	3.0	2.5	2.0	1.5	1.0	0.5	0.0	-0.5

JMOD ${ }^{13} \mathrm{C}$ NMR（ $100 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$ ）

\ulcorner	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	
200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$)

JMOD ${ }^{13} \mathrm{C}$ NMR（ $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ， 298 K ）

	$\begin{aligned} & \stackrel{\circ}{\infty} \\ & \dot{J} \end{aligned}$	$\underset{\substack{\text { ¢ } \\ \text { ¢ }}}{\text { ¢ }}$	
V／r	1		\1！

L＇L8－
Nスペ

111！
This journal is © The Royal Society of Chen
This journal is © The Royal Society of Chen
\qquad
\qquad
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$)

JMOD ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$)

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$)

10

JMOD ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$)

10

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$)

JMOD ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$)

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$)

	,	1	1	1	1	1	1	1	1	1	1		1	1	1	1	1	1	1	1	
10.0	9.5	9.0	8.5	8.0	7.5	7.0	6.5	6.0	5.5	5.0		4.0	3.5	3.0	2.5	2.0	1.5	1.0	0.5	0.0	-0.5

JMOD ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$)

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$, 298 K)

\ulcorner	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
10.0	9.5	9.0	8.5	8.0	7.5	7.0	6.5	6.0	5.5	$\stackrel{5.0}{f 1}^{\text {f }}$		4.0	3.5	3.0	2.5	2.0	1.5	1.0	0.5	0.0

Oion

Γ	1	1	1	1	1	1	1	1	1	,	,	1	1	1	1	1	1	1	1	
200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$)

14

「	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	
10.0	9.5	9.0	8.5	8.0	7.5	7.0	6.5	6.0	5.5	5.0	4.5	4.0	3.5	3.0	2.5	2.0	1.5	1.0	0.5	0.0	-0.5

JMOD ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$)

	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	
200	190	180	170	160	150	140	130	120	110	$\begin{gathered} 100 \\ \mathrm{f} 1(\mathrm{ppm}) \end{gathered}$	90	80	70	60	50	40	30	20	10	0

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$)

\ulcorner	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
10.0	9.5	9.0	8.5	8.0	7.5	7.0	6.5	6.0	5.5	5.0	4.5	4.0	3.5	3.0	2.5	2.0	1.5	1.0	0.5	0.0	-0.5

oion

JMOD ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$, 298 K)

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$)

仿

JMOD ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$)

	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10

Γ	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
10.0	9.5	9.0	8.5	8.0	7.5	7.0	6.5	6.0	5.5	5.0		4.0	3.5	3.0	2.5	2.0	1.5	1.0	0.5	0.0	-0.5

JMOD ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$, 298 K)

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$)

	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
0.0	9.5	9.0	8.5	8.0	7.5	7.0	6.5	6.0	5.5	5.0	4.5	4.0	3.5	3.0	2.5	2.0	1.5	1.0	0.5	0.0

JMOD ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$)

	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	
200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0

 〈り

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$)

	1	1	1	1	1	1	1	1	T	1		1		1		1	1	1	1	1	\checkmark
10.0	9.5	9.0	8.5	8.0	7.5	7.0	6.5	6.0	5.5		4.5	4.0	3.5	3.0	2.5	2.0	1.5	1.0	0.5	0.0	-0.5

	$\stackrel{\stackrel{9}{7}}{\stackrel{\rightharpoonup}{7}}$
IV	

|

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}, 298 \mathrm{~K}$)

JMOD ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}, 298 \mathrm{~K}$)

「	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1			1 1 1 1
200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30			2010

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}, 298 \mathrm{~K}$)

Γ	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	,
10.0	9.5	9.0	8.5	8.0	7.5	7.0	6.5	6.0	5.5	5.0	4.5	4.0	3.5	3.0	2.5	2.0	1.5	1.0	0.5	0.0	-0.5

JMOD ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}, 298 \mathrm{~K}$)

Γ	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10

|
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}, 298 \mathrm{~K}$)

「	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	7
10.0	9.5	9.0	8.5	8.0	7.5	7.0	6.5	6.0	5.5	5.0	4.5	4.0	3.5	3.0	2.5	2.0	1.5	1.0	0.5	0.0	-0.5

JMOD ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}, 298 \mathrm{~K}$)

	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	,	1
200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}, 298 \mathrm{~K}$)

Γ	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
10.0	9.5	9.0	8.5	8.0	7.5	7.0	6.5	6.0	5.5	5.0	4.5	4.0	3.5	3.0	2.5	2.0	1.5	1.0	0.5	0.0

JMOD ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}, 298 \mathrm{~K}$)

Γ	1	1	1	1	1	1	1	1	1	,	1	1	1	1	1	1	1	1	1	
200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}, 298 \mathrm{~K}$)

(

JMOD ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}, 298 \mathrm{~K}$)

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}, 298 \mathrm{~K}$)

「	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	7
10.0	9.5	9.0	8.5	8.0	7.5	7.0	6.5	6.0	5.5	5.0	4.5	4.0	3.5	3.0	2.5	2.0	1.5	1.0	0.5	0.0	-0.5

N

JMOD ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$, 298 K)
M
${ }^{1} \mathrm{H}$ NMR ($\left.400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}, 298 \mathrm{~K}\right)$

5a

b
|
.

$$
0
$$

「	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	7
10.0	9.5	9.0	8.5	8.0	7.5	7.0	6.5	6.0	5.5	5.0	4.5	4.0	3.5	3.0	2.5	2.0	1.5	1.0	0.5	0.0	-0.5

JMOD ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}, 298 \mathrm{~K}$)

Γ	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	
200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}, 298 \mathrm{~K}$)

6a

6b

	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	\square
10.0	9.5	9.0	8.5	8.0	7.5	7.0	6.5	6.0	5.5	5.0	4.5	4.0	3.5	3.0	2.5	2.0	1.5	1.0	0.5	0.0	-0.5

[^0]: [2] S. J. Cantrill, G. J. Youn, J. F. Stoddart, J. Org. Chem. 2001, 66, 6857-6872.

