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ABSTRACT: 

Recent progress in quantum optics and quantum information has brought the long-standing dreams 
of quantum simulators and even quantum computers (almost) within reach. Here, we review some 
current theoretical pathways supporting experimental progress towards quantum simulators. In 
this, we focus mainly on topological aspects and numerical studies of quantum computation. 
Keywords: Quantum Simulators, Quantum Computers, Coherent Control, Bose-Hubbard Model, 

Topology, Quantum Hall Effect, Artificial Gauge Fields, Ultra-Cold Atoms. 

RESUMEN: 

Los recientes avances en óptica cuántica e información cuántica han permitido alcanzar el sueño de 
muchos años de los simuladores cuánticos e incluso los ordenadores cuánticos están (casi) al 
alcance. Aquí, revisamos algunos vías teóricas actuales que sustentan el progreso experimental hacia 
simuladores cuánticos. Para ello, nos centramos principalmente en los aspectos topológicos y los 
estudios numéricos de la computación cuántica. 

Palabras clave: Simuladores Cuánticos, Computadoras Cuánticas, Control Coherente, Modelo de 
Bose-Hubbard, Topología, Efecto Hall Cuántico, Campos Artificiales de Calibre, 
Átomos Ultra-Fríos. 
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1. Introduction 
The simple laws of nature often give rise to 
beautifully complex situations that are 
enormously difficult to grasp, let alone predict. 
Quantum systems, in particular, are notoriously 
difficult to study because their complexity grows 
exponentially with the number of particles they 
contain. Thus the largest simple (spin one-half) 
quantum systems that can currently be 
simulated exactly contain approximately 40 
spins (depending on symmetries), and at the 
current rate of computational progress, it would 
only get to about 100 by the year 2100. A 
radically different approach is therefore needed 
to tackle such complex systems –current 
methods are simply not powerful enough. 

Nature, of course, ”solves” the equations 
governing its evolution seemingly effortlessly. 
Many scientists have therefore embraced the 
idea of building a device, in which model 
processes could be used to simulate highly 
complex problems. After all, if we were able to 
fully control and manipulate a sufficient number 
of quantum particles, we could make them 
perform the evolution that corresponds to 

another (possibly interesting and difficult to 
solve) quantum system. The idea of building 
quantum simulators, or even general purpose 
quantum computers was famously proposed by 
Richard P. Feynman in 1982 [1]. However, 
neither theoretical understanding nor 
experimental control were sufficient to consider 
building such a device at that time. Tremendous 
scientific progress of the past ten to twenty 
years however, has approached different 
disciplines working on quantum systems 
−condensed matter physics, quantum 
information theory, atomic, molecular and 
optical physics– is now bringing us closer to this 
long-held vision. 

Nevertheless, the experimental progress has 
been so sudden that there are still many basic 
questions about quantum simulators in general 
−and specific models in particular – that need to 
be explored. After participating in the worldwide 
efforts to advancing quantum optics in general 
and quantum information and ultracold atomic 
gases in particular for over a decade, we 
therefore present some current topics towards 
quantum simulators, on which we are working. 
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First, we review our recent studies concerning 
quantum communication networks. Second, we 
will discuss control possibilities of quantum 
states and studies of the Bose-Hubbard model. 
Then, we discuss numerical and mathematical 
studies of such systems and finally show slightly 
more exotic yet highly active current trends of 
the field before concluding this article.  

 

2. Quantum communication 
networks 

Because not only communication networks, but 
the theory of information itself, is grounded in 
physical theories, and quantum theory is the 
most fundamental physical description of the 
world, it has become apparent that in the future 
communication networks will be based on 
quantum information theory. We have obtained 
promising results on the distribution of 
entanglement (the principle resource in 
quantum information) across large networks, a 
fundamental subject about which very little is 
known. The problems in the design of quantum 
networks stem from the various imperfections in 
prepared quantum states. One fruitful avenue is 
to exploit classical bond percolation theory 
which is the most basic description of classical 
regular networks with imperfect connections. In 
previous work, we showed how a typical 
quantum network prepared with pure but 
imperfectly entangled states can be mapped 
directly to a well understood classical 
percolation model. In particular, we 
demonstrated several methods by which a 
quantum network corresponding to a certain 
bond percolation model can be pre-processed 
with quantum operations, transforming it into a 
different network that corresponds to a different 
percolation model with dramatically improved 
connectivity properties [2-4]. Recently, we 
extended this idea with preprocessing steps that 
produce multi-partite states [5]. These multi-
partite methods have a much wider range of 
applicability, and also introduce mappings to 
different classes of percolation models, such as 
the site percolation models. Another direction 
we have explored is entanglement concentration 
on complex networks, beginning with the Erdös-
Reyni model [6]. Here we found that a different 

sequence of quantum operations produces rare 
subgraphs at initial entanglement densities that 
are much lower than those densities required 
after a direct mapping to classical graph theory. 
We are currently extending these studies in two 
directions. On hand we are considering more 
realistic complex networks, for instance models 
exhibiting scale-free and smallworld properties. 
On the other hand it is important to learn how to 
treat fairly general classes of mixed states 
because approximating states on real networks 
by pure states will not yield even qualitatively 
correct results in the foreseeable future. We 
have found that combining these two elements 
has produced new optimization questions that 
we have successfully analyzed. These results will 
be published soon. 

 

3. Coherent control of many-body 
physics by strong time-periodic 
forcing 

When asking how to control the quantum state 
or the dynamics of a small quantum system like 
an atom or a single spin, a common answer will 
be to use coherent radiation, that is time-
periodic forcing. A powerful and intuitive 
theoretical framework in this context is given by 
the dressed atom picture [7]. In contrast, when 
talking about the quantum physics of strongly 
correlated many-body systems, time-periodic 
forcing is usually considered merely as a probe 
within the regime of linear response.1

                                                 
1 Exceptions like superconducting devices or in the future 
also nanomechanical resonators are in fact constructed such 
that only a few degrees of freedom, those of the order 
parameter or a single oscillatory mode, are relevant within 
an effective description. Thus the many-body character of 
the system is not relevant on the level where coherent 
control schemes are considered. 

 However, 
within the last years it has been shown that 
strong time-periodic forcing is also a powerful 
and versatile tool for the coherent control of the 
quantum state of a many-body system. A striking 
example is a recent experiment in the group of 
Ennio Arimondo in Pisa, where a quantum phase 
transition has been induced solely by dressing a 
many-body lattice systems of ultra-cold atoms 
by a fast lattice oscillation [8,9]. It is not by 
chance that these new developments emerge in 
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the field of ultracold atoms where quantum 
optics and condensed matter physics fuse in a 
fruitful manner. Here we will give a brief 
overview of the subject, clearly with a focus on 
contributions of the members of the quantum 
optics theory group at ICFO. 

A single particle that can hop between 
neighboring sites m of a one-dimensional tight-
binding lattice resembles a spin degree of 
freedom with quantum numbers m, subjected to 
a static magnetic field transverse to the chosen 
quantization corresponding to the tunnel 
coupling. From the spin model it is well known 
that a second, rapidly sinusoidally oscillating 
magnetic field oriented along the quantization 
axis will "dress" the system such that the 
strengths of the static field appears to be 
modified by factor depending on the amplitude 
of the time-periodic field (effective modification 
of atomic g factors [10]). Accordingly, in the 
tight-binding model a rapidly oscillating force 
(akin to an "ac-voltage" for a charged particle) 
will cause a modification of the tunnel coupling 
between neighbouring sites. Such a modification 
of tunnelling in a driven lattice has been 
predicted by Dunlap and Kenkre [11] who 
pointed out that a complete suppression of 
tunnelling is possible such that the spreading of 
wave packets is hindered (dynamic localization). 
Independently, the phenomenon has been 
described by Haenggi and co-workers (coherent 
destruction of tunneling) [12] as well as by 
Holthaus [13].  

When considering a system of ultra-cold 
atoms in an optical lattice a tight-binding 
description is usually well justified. However, in 
competition to tunnelling, the particles will also 
interact with each other, giving rise to intriguing 
many-body physics [14]. Thus, one can ask: (i) Is 
it still possible to dress the lattice by time-
periodic forcing such that tunnelling processes 
are modified in a coherent way? And, if yes: (ii) 
Can one use this kind of dressing as a tool to 
reliably manipulate the many-body state of a 
lattice system in a non-trivial way? (iii) Does the 
dressing procedure even allow the realization of 
many-body quantum states or dynamics that is 
qualitatively different from the physics 
encountered already the undriven system? And, 
finally: (iv) Can the scenario generalized to other 

forms of time-periodic forcing giving rise to a 
greater variety of dressed lattice models? All 
these questions can be answered affirmatively. 

By employing quantum Floquet theory on the 
manybody level, it has been worked out in [9] 
that the tunnel modification stays intact, even in 
the presence of strong on-site interaction 
between the particles, while the interaction 
among the particles is not altered by the 
dressing. The only condition to be fulfilled is that 
the frequency of the forcing is large compared to 
the energy scales given by both interaction and 
tunneling such that resonant excitation is 
suppressed on a time-scale being large 
compared to the experiment. By separation of 
time-scales, a fast motion induced by the forcing 
can be integrated out. (A systematic description 
of processes beyond the simple modification of 
tunnelling as they become relevant when the 
frequency is lowered and their application for 
spectroscopy are described in [15].). In a cold 
atom system the required kind of forcing can be 
achieved inertially, simply by shaking the lattice, 
i.e. by moving it back and forth. Recently, in the 
Arimondo group in Pisa the expansion of a BEC 
in a shaken lattices has been observed to be 
modified as predicted, without significant 
heating [16,17]. This answers question (i). 

A further prediction results directly from the 
fact that the tunneling can be suppressed 
strongly by shaking: It should be possible to 
bring a bosonic system adiabatically from its 
superfluid ground state having delocalized 
particles (found in the tunneling-dominated 
regime) through a quantum phase transition to a 
Mott insulator state with the particles localized 
(being the ground state when tunneling is weak) 
and back [9]. This effect has also been observed 
experimentally in Pisa [8], which answers 
question (ii). 

Apart from quenching the tunneling matrix 
element, one can even change its sign by 
dressing the lattice by shaking. This will have 
intriguing consequences in a non-bipartite 
lattice such as the triangular lattice [18]. Here, a 
sign-change in the hopping induces frustration 
to the kinetics of the particles. As a consequence, 
in the weakly interacting regime the dressed 
system features a superfluid "ground state" with 
staggered currents around the triangular lattice 
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plaquettes, breaking time-reversal symmetry. In 
the hard-core boson limit of strong interaction, 
the dressed system resembles a frustrated 
quantum antiferromagnet that is conjectured to 
host an exotic spin-liquid ground state. Referring 
to (iii), by lattice shaking novel physics is 
expected to emerge that is hardly found in 
standard bosonic lattice systems. 

In order to address question (iv), we wish to 
point out that there are also other interesting 
dressing scenarios based on oscillatory potential 
scenarios. E.g. Hemmerich and Moirais Smith 
have proposed a scheme allowing to create an 
artificial staggered magnetic field pattern in a 
cubic lattice [19,20]. Another possibility is to use 
the forcing in order to coherently couple 
energetically distant single-particle levels. Such 
a technique can be used to re-establish coherent 
tunneling in a lattice subjected to a strong static 
potential tilt suppressing tunneling and leading 
to a localization of single particle states 
(Wannier-Stark effect) [21]. This effect has been 
observed experimentally in Pisa by observing 
the expansion of a BEC in a tilted lattice [22]. 

 

4. Bose-Hubbard model with 
occupation dependent parameters 

Systems of ultra-cold atoms provide a unique 
setup for the controlled realization of many-
body physics with possible applications ranging 
from quantum metrology to realizations of 
quantum computers and quantum simulators 
[23]. A very important and ubiquitous tool for 
the manipulation of cold atom systems are 
practically defect-free spatially periodic 
potentials as they can be created by using 
standing laser waves. These periodic potentials, 
also known as optical lattices, can be used to 
trap atoms at each minima of the periodic 
potential or sites. Due to the unprecedented 
experimental control over the motion of atoms 
in the optical lattices, these systems are 
playground for realization of quantum 
simulators. So a crucial aspect for achieving this 
goal is to theoretically model these systems and 
investigate their properties. Such a model which 
quantitatively describe ultra-cold bosonic atoms 
in optical lattices is called Bose-Hubbard model. 
This model is characterized by two parameters: 

1) the tunneling rate of an atom between two 
adjacent sites, denoted by J 2) interaction 
strength at each site, denoted by U. The atoms 
are usually interacting via repulsive force so U is 
positive When the lattice is deep, i.e ∞→JU /  
each site has fixed number of atoms, a state 
known as Mott-insulator. In the opposite limit, 
each site can have different number of atoms 
and the corresponding state is called a 
superfluid state. The transition from Mott-
insulator to superfluid state is characterized by 
delocalization of single particle and hole over the 
entire optical lattice. One aspect of this model is 
independence of J and U on the number of atoms 
present in each site. This assumption breaks 
down when the interaction between the atoms 
increases. At present we are studying novel 
physics arises from the effect of strong 
interactions. We find that, with increasing 
interaction strength a new state arises where 
superfluidity is due to motion of two particles 
always moving together as shown in Fig. 1, like a 
two-person forward roll in a circus. As a result 
the two particles behave as a single object [24]. 
Subsequently they live in a exotic lattice, which 
is different than the original one. We also find 
that with increasing interaction, the building 
constituents of the superfluid phase changes to a 
object containing two particles which now lives 
in the same site. 

 
Fig. 1: The leftmost picture displays the pair of particles. 
They first tunnel to a state where one particle is at the top of 
another as shown in the middle picture. Then one of them 
tunnel again like a two-person forward roll in a circus as 
shown in the rightmost picture. 

 

5. Mathematical foundations and 
fundamental problems of quantum 
mechanics 

On top of projects directly related to 
experimental studies, there are topics that are 
more mathematical in nature, and often related 
to our most fundamental understanding of 
quantum mechanics itself. Typical examples 
falling into this category are entanglement and 
separability of quantum states. Entanglement 
[25] is receiving a lot of attention due to its 
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various applications outperforming classical 
physics with the most prominent examples 
being quantum teleportation [26] or 
entanglement-based cryptography [27]. The 
problem of judging if a given composite quantum 
state is entangled, the so-called separability 
problem [28] arises naturally and turns out to be 
very difficult to solve. A well-known way to 
tackle the separability problem is, for example, 
based on the notion of one and many-copy 
entanglement witnesses. The latter, introduced 
in a series of papers [29-31] and thoroughly 
investigated in the literature (cf. [25,28]), are 
quantum observables whose mean values on one 
or many copies (in a collective sense) of a given 
quantum state can judge if the state is entangled, 
but also they allow to estimate the amount of 
entanglement the state has. Such criteria are 
then not only useful as a theoretical 
entanglement detectors, but also are promising 
from the experimental point of view. Using the 
theory of majorization it was recently possible to 
develop methods allowing for construction of 
such many-copy entanglement witnesses, which, 
in some instances, give necessary and sufficient 
separability criterion provided that sufficiently 
many copies of a state are at our disposal [32]. 
Interestingly, first experiments involving two-
copy entanglement witnesses were already 
performed [33-35]. A different ways of dealing 
with the separability problem could be to study 
the geometry of the sets of density matrices or to 
characterize the entanglement witnesses with 
respect to their optimality in entanglement 
detection (cf. [25,28]). 

Another line of research lying at a heart of 
quantum information concerns distillation of 
secure cryptographic key from quantum states. 
On the one hand, interesting questions are those 
concerning relations between the latter and 
entanglement, in particular bound 
entanglement. This phenomenon, discovered in 
1998 by the Horodecki family [36], is the 
existence of entangled quantum states (called 
the "black holes" of quantum information [37]) 
which need entanglement to be created, but 
from which no entanglement can be extracted 
within the distant laboratories paradigm. For 
instance, only recently, the longstanding open 
problem about possibility of secure key 
distillation from bound entanglement was solved 

[38,39]. They provided a paradigm of secure key 
distillation within which even bound entangled 
states can be used to establish secret 
cryptographic key. Basing on these seminal 
results, analogous problem was later analyzed in 
the scenario of many communicating users and a 
similar conclusion was drawn, namely, there 
exist multipartite bound entangled states 
allowing to establish secure key in such scenario 
[40,41]. Still, however, a question from which 
entangled states we can or cannot draw 
cryptographic key has not been answered. It is 
already known that any state from which one 
may distill bits of secure key has to be entangled 
[42,43], but whether any entangled state may be 
used to obtain secure bits remains an open 
problem. On the other hand, by exploring the 
aforementioned paradigm of secure key 
distillation, it was recently possible to prove that 
quantum states which represent perfectly secure 
bits of cryptographic key (the so–called private 
states) violate Bell inequalities [44], i.e., they 
allow to obtain correlations that cannot be 
reproduced by classical means. This allowed for 
establishing new link (beyond the already 
known as e.g. [45]) between privacy and another 
resource known in quantum physics 
−nonlocality. 

Yet another highly interesting line of 
research focuses on the relationship between 
two peculiar properties of quantum mechanics: 
contextuality and nonlocality. These properties 
are expressed by the celebrated Kochen-Specker 
and Bell Theorems respectively. Both Theorems 
are of a fundamental importance for our 
understanding of quantum mechanics, as they 
touch upon the questions: Is quantum mechanics 
fundamental and definite or is there a deeper 
level? Is quantum mechanics non-local and if so 
in which sense? Apart from that, there are also 
fascinating practical applications of the 
mentioned theorems to quantum cryptography, 
e.g. Bell inequalities are used for secure data 
transmission. Let us recall that contextuality of 
quantum mechanics, the subject of the Kochen-
Specker theorem, means that one cannot 
reproduce predictions of quantum mechanics by 
assuming that observables have some definite, 
preascribed values that would not depend on the 
other observables, i.e. would be non-contextual, 
context independent. On the other hand, Bell 
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Theorem states that one cannot reproduce 
certain quantum correlations using classical 
statistics, obeying the principle of locality. 
Connecting the two Theorems is thus a step 
towards building a more coherent 
understanding of quantum theory, with some 
possible importance for practical use. The 
interesting question here is in what sense non-
locality can be understood as a form of 
contextuality with spatially separated contexts. 
More precisely, for which classes of Bell 
inequalities one can construct a Kochen-Specker 
type of paradox, and vice versa: how to construct 
a Bell inequality for a given Kochen-Specker 
paradox and what properties it possesses. So far 
the most promising have been Bell inequalities 
with a so called algebraic violation. These are the 
inequalities which single out the “most non-
local” probability distributions in a sense that a 
probability distribution maximally violating such 
an inequality can have no local part. 

On an even more mathematical level there 
are studies that connect quantum mechanics and 
harmonic analysis. The latter is an important 
branch of mathematics, which deals with groups 
and their representations. The developed 
formalism establishes a new link between 
physics (quantum mechanics, theory of 
entanglement) and mathematics (harmonic 
analysis). The core of the formalism is a non-
commutative analogue of Fourier Transform, 
which changes the mathematical representation 
of quantum states and operations. Quantum 
mechanical states, for example, become 
functions on some non-commutative group, 
having a specific positivity properties—so called 
positive definiteness. The resulting 
mathematical framework is slightly general than 
the standard quantum mechanical one—it is a 
kind of a “generating function formalism” for the 
latter. This is the most interesting of its features, 
discovered so far. Interestingly, such properties 
as e.g. entanglement are elegantly represented 
within the formalism and we were able to prove 
a harmonic-analytical version of Peres-
Horodecki Theorem. This is a fundamental 
theorem in the theory of entanglement, 
providing necessary and sufficient conditions for 
entanglement in terms of certain quantum 
operations (positive maps). The research 
currently done within this harmonic analytical 

framework consists of: i) searching for new 
entanglement criteria, ii) studying quantum and 
general non-signaling correlations, and, at a 
more fundamental level, iii) an attempt to 
reformulate quantum mechanics in terms of the 
developed framework. That is, starting from a 
group, interpreted as a group of changes of a 
reference frame, and representations of states 
through positive definite functions on the group. 
This approach could be called a 
“transformational” interpretation of quantum 
mechanics, as opposed to e.g. C*-algebraic one, 
which is “observational”.  

 

6. Numerical simulation of quantum 
systems 

Numerical studies of quantum optical systems 
have turned out to be a powerful tool for 
progress. Identifying suitable models for target 
quantum simulators, and developing 
experimental proposals to carry out the 
simulations are therefore important aspects of 
numerical studies. Ideally, a system needs to be 
rich and hard enough so that it is worth devoting 
all the effort that it requires a quantum 
simulation. An example of such systems are 
those with long-ranged interactions [46], which 
lead to novel states of matter and are quite hard 
to study with traditional methods [48-51]. A 
core part of our work is to test and characterize 
models suitable for simulations [47] using 
traditional numerical approaches. For this, we 
employ a battery of state-of-the-art techniques, 
which includes the novel class of algorithms 
based on tensor networks. Generally speaking, 
these algorithms approximate a given system 
with a state of a predetermined maximal amount 
of entanglement. In this way, it is, for example, 
possible to find novel ordering effects in 
disordered quantum systems [52]. 

Another crucial property for in systems is 
that they must be simple enough to be within 
experimental reach with the technology 
available today, or in the near future. At the 
stage of designing a quantum simulation, it is 
critical to have frequent contact with 
experimentalists to receive feedback and 
improve the proposals. Recently, for example, 
we proposed and then implemented (with 
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colleagues in the Institute for Quantum 
Computing in Canada) a quantum simulation 
that demonstrated the effect that an 
environment has on the geometric phase of a 
system – the first time that this “open-system” 
phase has been ever measured [53]. 
Furthermore, our previous experience with 
these specific quantum simulations (done in 
nuclear magnetic resonance experiments) 
allowed us to tune our environment near an 
effective quantum critical point. Now, we are 
building on this experience and designing 
further experiments that will allow us to explore 
how to use geometric phases for quantum 
computing.  

 

7. Exotic magnetic phases for spin 
−3/2 and 5/2 ultra-cold fermions 

Ultra-cold atoms loaded into optical lattices can 
simulate different quantum many body models 
with well controllable parameters. Above all 
they can mimic the celebrated and fundamental 
models of several areas of physics: the Bose- as 
well as the fermion Hubbard model, and the 
Heisenberg model. [14,54,55] The experimental 
realization of high spin-F Bose-Einstein 
condensates [56] and Fermi gases [57-59] highly 
stimulates the studying of the high spin versions 
of these models. A series of novel phases of these 
model were predicted in earlier works like 
valence bond solids, two orbital SU(N) 
magnetism, chiral spin liquid. 

The spin −3/2 fermion system as the simplest 
case beyond F=1/2 was intensively studied: such 
systems exhibit a generic SO(5) or 
isomorphically, Sp(4) symmetry and based on 
this symmetry property a general analysis was 
made by Wu [60]. Here, among others the half-
filled system was analyzed in detail within a 
mean-field approximation. 

In the strong coupling limit at quarter filling 
the low energy properties of the system can be 
described by high spin magnetic exchange. This 
effective model was investigated [61-63] for 
special values of the couplings along the high 
symmetric SU(4) lines: the ground state of the 
system in these two part of the parameter space 
is Neel order and plaquette order, respectively. 

However, far away from these high symmetric 
lines the effective spin model contains multispin 
interactions, too, which makes difficult to handle 
it even on mean-field level. Starting from a usual 
Hubbard model in order to remain within the 
two particle representation, we made a 
convenient rearrangement of the interaction 
terms based on the decomposition of the total 
(two-particle) spin space into its symmetric and 
antisymmetric part with respect to the exchange 
of two spin indices of the scattering particles. 
[64] This treatment allows us to collect and treat 
adequately the usual two-particle interaction 
terms to describe the different processes in the 
spin channel within the concept of site- and 
bond spin. The effectiveness of the treatment 
does not depend on the occurrent fermionic or 
bosonic statistic of the interacting particles. 

Applying this method to F=3/2 fermions at 
quarter filling on a two-dimensional square 
lattice we determined the complete ground state 
phase diagram of the system on mean-field level 
(see Fig. 2). In absence of external magnetic field 
the ground state is either antiferromagnetically 
ordered (Neel phase) or bond centered density 
waves appear forming disconnected boxes. The 
U(1) flux passing through the boxes either 0 or π, 
and these two gauge-non-equivalent states have 
the same energy. However, by applying external 
magnetic field, bond centered spin density 
waves also appear in addition to the particle 
density waves, and similarly to them form 
disconnected boxes. The two types of density 
waves coexist with weak ferromagnetic order. 
This SU(2) flux phase is stable in an extended 
region of the parameter space in the 
experimentally reachable regime. 

Similar analysis can be easily made for F=5/2 
fermions for the special values of the coupling 
constants G4~(−7G0+10G2)/3. G4 is the coupling 
of the interaction with 9-fold spin multiplicity 
that appears in the Hamiltonian for spin -5/2 
system in addition to the singlet (G0) and quintet 
(G2) scatterings. The phase diagram (see Fig. 3) 
is clearly richer than that of the F=3/2 system, 
even though that our preliminary analysis for 
the spin −5/2 fermions is restricted to a single 
value of the quintet coupling. We found three 
stable phases: the Neel order, and two different 
types of quasi-plaquette orders. In phase 

http://www.sedoptica.es/�


ÓPTICA PURA Y APLICADA. www.sedoptica.es. 
 

Opt. Pura Apl. 44 (2) 333-345 (2011) - 343 - © Sociedad Española de Óptica 

plaquette I the particle density wave order 
parameter is nonzero on every links, but the 
stronger and weaker links alternate and form 
plaquette configuration. In phase plaquette II 
ferromagnetic order also appears and leads to a 
similar SU(2) phase as in case of the F=3/2 with 
applied magnetic field. The only difference that 
this is also a quasi-plaquette order since the 
particle just as the spin density order 
parameters are nonzero on every links. Note that 
in both plaquette phase the flux passing through 
the plaquettes is zero. 

 

 

 
Fig. 2. The ground state phase diagram of the F=3/2 fermion 
system in the strong coupling limit on 2D square lattice at 
quarter filling. G0 and G2 are the couplings in the singlet and 
quintet channel, respectively. The phase boundary is around 
G0~1.9G2. The lattice was splitted into 4 sublattices denoted 
by different colours on the configuration subfigures: (I) the 
U(1) flux state, (II) the SU(2) flux state. 

 

 

 

Fig. 3. The phase diagram of the spin -5/2 fermion system 
with strong on-site repulsion on 2D square lattice at 1/6 
filling based on preliminary calculations. Also in this case, the 
lattice was splitted into 4 sublattices. On subfigure (I) the 
structure of the plaquette I phase is shown, on subfigure (II) 
the structure of the plaquette II phase. 

 

We see that by the convenient rearranging of 
the two particle interaction terms based on their 
symmetry properties, the low energy effective 
Hamiltonian of high spin systems turns easier to 
handle. Applying this method in case of F=3/2, 
and 5/2 fermion system appearance of novel, 
exotic phases was predicted, like different SU(2) 
plaquette orders. 

 

8. Layered quantum Hall insulators 
with ultra-cold atoms 

Probably the simplest paradigmatic example of 
topological transport is the integer quantum Hall 
(IQH) effect [65], which takes place at low 
enough temperatures. By varying the magnetic 
field perpendicular to a 2-dimensional 
semiconductor layer, which also has an electric 
potential difference between two opposite 
edges, one can notice a transverse current. The 
transverse conductivity can take only quantized 
values and is proportional to the winding 
number of the Berry’s curvature of the many-
body wave function [66]. 

We have considered a generalization of the 
IQH effect by changing the gauge group from the 
Abelian U(1) group of standard electrodynamics 
to the non-Abelian and non-compact Heisenber-
Weyl group (HWG), which is generated by 3 
elements, say ẑ , p̂  and the identity operator, 
with the canonical commutation relation 
[ ẑ , p̂ ]=i 1̂ . As a consequence of non-
compactness this commutator cannot be 
represented in finite dimensions. We have 
shown that in spite of the above difficulty this 
gauge group can be realized relatively simply 
with today’s technology of ultra-cold fermions 
and optical lattices by identifying the role of the 
HWG in layered 3-dimensional lattice systems. 

The 2-dimensional, tight binding lattice 
Hamiltonian of non-interacting fermions in an 
external gauge potential takes the form 

 yyxx i
y

i
y

i
x

i
xd eTeTeTeTH θ−θθ−θ +++= ††

2 . (1) 

where Tx (Ty) is the translation operator in the x 
(y) direction acting on the wave function as 
Txψm,n=ψm-1,n (Txψm,n=ψm,n-1). The energy is 
measured in units of the tunneling strength. The 
external gauge potential modifies the nearest 
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neighbor tunneling by unitary operators, which 
are elements of the HWG and depend also on the 
position m and n. They can be expressed with 
the help the “phase factors” θx and θy, which are 
elements of the Lie algebra of the HWG and are 
Hermitian matrices. We have chosen the 
external gauge potential in a similar manner 
than the Landau gauge used for describing the 
IQH effect. 

 px ˆα=θ , (2a) 

 zmy ˆ22 πγ+πβ=θ . (2b) 

The gauge coordinate ẑ  is mapped to the 
real external z direction and we have assumed, 
that the z direction also supports a sufficiently 
deep optical lattice with lattice spacing b, 
therefore z=b l, with l ∈ Z. Note, that the 
parameter can take only specific values, since 

)()( α+=α zfzfe zi  for any function f(z). On a 
lattice z=b l, therefore  has to be integer times 
the lattice spacing. If we consider only the 
simplest choice, α=1, then †

z
i Te x =θ , which is the 

translation operator in the z direction. Hence the 
2-dimensional problem with infinite internal 
states is mapped to a true 3-dimensional 
problem, where the indices of the wave function 
ψm,n,l refer to lattice positions in the real 3-
dimensional space. 

The tunneling processes in the xz plane are 
special; if the particle tunnels in the x direction 
by one to the left (right), it has to tunnel one 
position in the z direction up (down) too. 
Therefore, it is convenient to introduce new 
coordinates: ξ=(m−l)/2, and η=m+l, and a new 
tunneling operator †

zxTTT =ξ replacing the first 
two terms in the Hamiltonian to give 

 yy i
y

i
y eTeTTTH θ−θ

ξξ +++= ††
H . (3) 

The phase factor acquired by tunneling along the 
y-direction reads in the new coordinates as 

 ( ) ( )ηγ+βπ+ξγ−βπ=θ 2y . (4) 

As there is no tunneling along the η-direction, 
Eq. (3) describe independent 2-dimensional IQH 
systems layered on top of each other in an 
external Abelian gauge potential given by Eq. 
(4). Each layer behaves similarly, except for η 
even ξ takes integer values and for η odd ξ takes 
half integer values, as illustrated in (Fig. 4). 

 
Fig. 4. The new coordinates ξ and η. Due to the special 
structure of the tunneling η is a conserved quantity. 

 

The IQH physics takes places for every plane 
simultaneously. Depending on the Fermi energy 
each independent plane can be in a metallic 
phase with nonzero longitudinal conductivity, or 
each can be in an insulating phase characterized 
by zero longitudinal conductivity but a nonzero 
transverse current. Just as for the IQH effect the 
transverse conductivity depends on the number 
of filled bands, which are the lattice counterparts 
of the Landau levels. The transverse 
conductivities of the separate planes add 
together, and since the behavior of each plane is 
exactly the same, the total transverse 
conductivity is proportional to the number of 
planes. 

The transverse conductivity of each plane has 
been calculated with the Thouless-Kohomoto-
Nightingaleden Nijs formula [63]: 

 ηη ∫π
=σ Fkd2

2
1 , (5) 

with ηη ×∇= AF k  the Berry’s curvature 
calculated for plane η with the help of Berry’s 
connection 

 ( ) ( )∑ =
η ξξ

∇=
N

r

r
kkk

r
kk yy

uuiA
1 ,, , (6) 

in   momentum   space.   The   sum  runs  over the 
occupied  one  particle  states  ( )r

kk y
u ,ξ

  where  kξ 
and ky are the quasimomenta in Bloch 
representation, and r indexes the different 
bands. The transverse conductivity (5) takes 
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only integer values, since it is the first Chern 
class of the U(N) principal bundle over the 
Brillouin-zone torus (kξ,ky). 

By introducing another external potential 
with strength λ that alternates between the 
neighboring η layers one can locally modify the 
positions of the Landau bands and manipulate 
the net transverse conductivity accordingly. (Fig. 
5) shows the phase diagram of the system in the 
β’≡( β−γ)=1/4 flux phase. We have identified 
phases when all of the planes are metallic, and 
phases where some or all of the planes are 
insulating but with a possibly nonzero 
transverse conductivity. 

We have also studied the effects arising from 
the finite depth of the optical lattice resulting in 
nonzero interlayer tunneling. In this case η is not 
a good quantum number any longer and the 
system becomes 3-dimensional. As an effect of 
the inter-layer hopping the eigenstates of the 
different η planes get hybridized and the 
conducting regions get widened. However, while 
the interlayer tunneling is sufficiently small, the 
gaps persist and the net transverse conductivity 
keeps its significance. As the inter-plane 
tunneling amplitude is raised the IQH regions 
shrink and give way to the metallic phase. There 
is a competition between the staggered potential 
strength and the tunneling strength, therefore 
the high transverse conductivity IQH regions 
vanish first since they are located around λ=0. 

In this work [67] we have shown that the 
problem of 2-dimensional lattice fermions in an 
external non-compact Heisenberg gauge group is 
equivalent to an experimentally realizable, 
layered 3-dimensional Abelian quantum Hall 
system. We have considered its advantages in 
engineering different IQH phases by varying the 
gauge potential and another external staggered 
potential. As an example we have calculated the 
phase diagram for the flux of 1/4. Layered 
fermion systems are encountered in many 
corners of condensed matter physics and our 
motivation was to find new insulating phases 
with nontrivial topologies to get a better 
understanding on the possible complicated 
phase diagrams found in such systems. 

 
Fig. 5. The phase diagram of the system in the 1/4 flux phase 
in the presence of a staggered potential. The red hatched 
regions indicate metallic phases, while the solid filled regions 
represent insulating phases with cn=0,±1,±2 transverse 
conductivities. 

 

9. Conclusions 
Quantum physics in general and quantum 
information in particular are tremendously 
fascinating fields of research. In this paper, we 
have reviewed some aspects of these vast 
ongoing research towards quantum simulation, 
quantum computation, as well as the 
foundations of quantum theory. Recent 
theoretical and experimental progress in these 
fields now allows for such interdisciplinary 
studies at the frontiers of quantum optics, 
atomic physics, condensed matter, information 
theory, and even high-energy physics. National 
and international scientific collaboration thus 
allows not only to advance research, but also to 
share the passion for the understanding of deep 
conceptual issues as well as highly complex 
experimental challenges.  
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