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The Tolman-Hawking wormhole a =(R'+r )'~ can be obtained as a solution of the Einstein
equations with a conformally coupled scalar field. However, this procedure gives rise to negative
values of the eff'ective gravitational constant. Working in a pure-gravity minisuperspace isotropic
model, I propose a much simpler method to obtain this instanton based on the introduction of a
cutoff in the scale factor which is equivalent to introducing a three-sphere with minimum constant
radius in the Euclidean metric. The resulting wormhole model no longer has any negative effective
gravitational constant.

Euclidean gravity has now opened up a very promising
way for getting rid of the cosmological constant. ' This
has been made possible by introducing gravitational in-
stantons that lead to changes in topology. Essentially
there are two kinds of Euclidean four-dimensional
wormholes which turn out to be solutions to Einstein
equations for gravity coupled to suitable scalar fields.
The Giddings-Strominger-Myers wormhole ' is the solu-
tion obtained from gravity coupled to an axion field. In
the Robertson-Walker minisuperspace conformal-time
language, this instanton is given by the scale factor

a =Kocosh' (Zrl ),
where K0 is a constant representing the radius of the
throat and we have assumed a vanishing cosmological
constant. Such an instanton has been generalized to the
case in which the gravitational action contains terms
which are quadratic in the scalar curvature.

The other type of gravitational Euclidean wormhole
has a simpler structure. It can be obtained by solving the
Euclidean Einstein equations with or without a cosmo-
logical term A. and a conformally coupled scalar field.
For a Robertson-Walker metric, the case A, =O leads to a
scale factor

a —(R 2+ 2) 1/2
0

which we hereafter denote as a Tolman-Hawking
ormhole 2, 6

For A, )0 the solution has the nonsingular, periodic
form

which was discovered by Halliwell and LaAamme.
These authors have shown that the crucial difference be-
tween the Giddings-Strominger-Myers wormhole and the
Tolman-Hawking wormhole is that the latter can induce
a change of sign in the effective gravitational constant.
This would ultimately lead to negative energies and insta-
bilities for perturbations about solutions (2) and (3).

The ajm of this paper is to present a new simple pro-
cedure for obtaining the four-dimensional Tolman-
Hawking wormhole. This procedure does not use any
conformally coupled scalar field and avoids the above-
mentioned problem aboUt a negative effective gravitation-
al constant. For a Robertson-Walker isotropic metric,
the Euclidean action integral of pure gravity in four di-
mensions with a positive cosmological constant X is

~ 2

fdr%a 1+
2

—a A,
16+6 (4)

is then provided with an additional three-sphere of con-
stant radius m which we interpret as the minimum metric
on the three-sphere compatible with the Euclidean mani-
fold; i.e., we introduce a transformed Euclidean time

1/2

d7 = 1
1?l

with a =da/dw.
We simply introduce a cutoff in the scale factor a

squared, a —+a —I, where rn is an arbitrary constant.
The original Euclidean manifold with metric

ds2=dr +a2dQ2

a =(2A. )
' [1—(1—4IMo)' cos(2A, ' r)]' (3)
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The Euclidean action is now

I(a, m )=— 2

f dr'Na 1+
z

—a A, +m A, , (5)
16mG N

[1—3(a —m Q, —2aa](a —m )=a (a —2m ),
a a —(1+2m A, )a +a A, +m (1+m A, )=0,

(6a)

(6b)

where we have taken the gauge N =1. Expressing Eqs.
(6) in terms of conformal time 7) = J d~/a, we have

where a denotes now da /d r'.
The Euclidean region is defined then for a & m. Varia-

tion with respect to a and % yields thy field equations and
constraint

dt'= m —1
a

dt

so that this region is defined here for a & m. The
Lorentzian field equations take the form

mally coupled scalar field: Our solutions no longer lead
to any problem about the sign of the effective gravitation-
al constant as can be readily checked by inspecting action
(5). Thus, it can be interpreted that the instanton used by
Hawking in his spacetime theory of wormholes is not
just a solution of the Einstein equations, but a consistent
one with a simpler structure than the instanton
discovered by Giddings, Strominger, and Myers.

In the Lorentzian region we would have
' 1/2

—,
'a' + U(a, m)=0,
a"=—dU(a, m)/da,

—
—,
'a' + U(a, m)=0,

a"=dU(a, m)/da .

(13a)

(13b)

where a'=da /dg, and

U(a, m)= —,'[m (1+m A. ) —(1+2m A, )a2+Aa ] .

Equations (7) represent the motion of a particle in a po-
tential U(a, m) with zero total energy. Consider first the
case A. =0. In this case, the solution to (6) is

(m 2 r2)1/2

The unique I.orentzian solution for A. & 0 is

a=i, ' [m A, sinh (A,
' t)]'

(14)

(15)

We obtain now solutions to (13), expressing them in
terms of time t. For A, =G, we get a Tolrnan universe

ol

( m 2+ r2)1/2

a =m cosh'

(9)

(10)

which is defined for 0&a &a
In principle, there is another solution to (13):

a =X-'"[m'~+cos '(X'"t)]'" . (16)

in conformal time g. This is the Euclidean version of the
Tolman universe, i.e., the Tolman-Hawking wormhole.
It represents two asymptotically Hat regions connected by
a tube of minimum radius m. For A, &0, we obtain the
solutions

a=A, ' [m A, +sin (Ar)]'

a =X-'/2[m 'X+ cos'(Xr) ]'"
(1 la)

(1 lb)

1+2m ~A, +1ay— (12)

Solutions (9)—(11) are formally the same as those ob-
tained by Halliwell and LaAamme and admit therefore a
similar interpretation. There is however a crucial
difFerence with the instantons obtained by using a confor-

which are given in terms of Robertson-Walker time ~ and
lie in the region a & a & a+, with

1/2

However, such a de Sitter-type solution is defined for
a & a+ and, therefore, it is not allowed in the Lorentzian
regime a &m.

In summary, we have achieved a method to obtain the
Tolman-Hawking wormhole which does not imply any
unphysical change of sign in the efFective gravitational
constant. Such a method is based in introducing a three-
sphere with minimum constant radius in the usual
Robertson-Walker isotropic manifold. Apart from the
fact that it achieves the desired result, the inclusion of
such a cutofF is motivated by recent work done in quan-
tum gravity which predicts that it is altogether impossi-
ble to measure the position or size of any object with a
precision larger than about the Planck length. Thus,
since the most probable value of the radius of the
wormhole throat is precisely about the Planck length, '

one could well interpret a wormhole as a topological
consequence from the existence of a maximum physical
resolution limit.
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