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Dynamically generated four-dimensional models in Lovelock cosmology
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We consider a class of D-dimensional Lovelock models provided with a positive cosmological
constant whose induced metric is given by the product of the metrics of a three-dimensional (external)
and a (D —4)-dimensional (internal) maximally symmetric space. When all the Lovelock coefficients
are non-negative, we show that these models admit classical solutions with a constant internal scale
factor, and that for these solutions the evolution of the external dimensions can be described by
a four-dimensional Einstein theory with a positive e8'ective Hilbert-Einstein coeKcient and non-

negative effective cosmological constant. In addition, we prove that the perturbative formalism
for the treatment of the Lovelock model is always well defined in the region of the gravitational
configuration space covered by the considered solutions with a constant internal scale factor. We
also examine the dynamically generated four-dimensional theory that is obtained when the internal
scale factor remains constant, and discuss the role played by the no-boundary condition in the
corresponding process of reducing the degrees of freedom of the minisuperspace model.

PACS number(s): 04.50.+h, 04.60.+n, 98.80.Dr

I. INTRODUCTION

Unification field theories assume the existence of more
than four dimensions in our Universe [1,2]. The extra
dimensions are necessary for the consistency of the phys-
ical theory [2). However, these extra dimensions remain
unobservable in our present Universe. A possible rnecha-
nism for explaining this fact can be the compactification
of all of these dimensions to Planck length scales. Of
course, any tentative compactification mechanism that
could be physically acceptable needs to be studied from
the point of view of multidimensional cosmology.

In multidimensional frameworks there exists a most
natural generalization of Einstein gravity which, on the
other hand, seems to be related to the low-energy limit
of stringy gravity [3]. This generalization is provided by
Lovelock theories of gravity [4]. Unlike in Einstein theory,
the Lovelock Lagrangian generally includes quadratic and
higher-order corrections in the Riemann tensor. Actually,
the Lovelock Lagrangian is formed up by a linear combi-
nation of dimensionally continued Euler forms, thus gen-
eralizing the Hilbert-Einstein Lagrangian [5]. The associ-
ated Lovelock gravitational equations can be formulated
by means of the more general symmetric and conserved
tensor constructed from the metric and its first and sec-
ond spacetime derivatives [4]. This generic Lovelock ten-
sor contains the Einstein tensor as a particular case, and
in fact reduces to the latter when the spacetime possesses
four dimensions. In addition, linearized Lovelock grav-
ity (around Minkowski space) is ghost-free [5,6], and the
number of gravitational degrees of freedom in Lovelock
and Einstein gravity turns out to be the same [7].

In this work we will concentrate on D-dimensional
models in Lovelock gravity with the metric

ds = —N (t) dt +a (t)dAs+b (t)dAD 4. (1.1)

N(t) is the lapse function and dA& and dA&~ 4 denote,

respectively, the metrics of a three-dimensional and a
(D —4)-dimensional maximally symmetric space with as-
sociated scale factors a(t) and b(t). We will restrict our-
selves to the cases in which the three-dimensional space
is spherically symmetric or Bat, with the space of dimen-
sion D —4 corresponding to a (D —4)-sphere or to a
(D —4)-torus.

These models can provide classical solutions in which
all the extra dimensions become spontaneously compact-
ified. We will refer to the D —4 dimensions as the internal
dimensions, while the rest of dimensions will be referred
to as external. Of course, the existence of cosmological
solutions with spontaneous compactification of the in-
ternal dimensions depends not only on the gravitational
dynamics, but also on the specific matter content of the
system. In this paper we will consider a simple Lovelock
model with a positive cosmological term and no matter
fields. Our study can be thought of as a preliminary step
before analyzing more realistic cosmological models.

Some Lovelock models with metric of the form (1.1)
have been already considered in the literature [8—10]. In
most of the cases, only corrections in curvature up to
quadratic or cubic order have been taken into account in
the Lovelock Lagrangian, although certain cosmological
models of the form (1.1) have been studied in generic
Lovelock gravity, either with a constant (D —4)-torus
as the internal space [11],with static spaces both in the
external and the internal dimensions [12], or with a con-
stant internal sphere and a external de Sitter space [12].

In spite of the interest devoted to this type of Lovelock
models, there exist serious difBculties in the straightfor-
ward application of Lovelock gravity to multidimensional
cosmology. In generic Lovelock gravity, the relations be-
tween the time derivatives of the induced metric and
the gravitational momenta cannot be global and single-

valuedly inverted in the whole gravitational configura-
tion space [13]. Therefore, the Hamiltonian formalism of
Lovelock gravity cannot be defined in the conventional
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way. The above problem can nevertheless be solved by
means of a perturbative treatment of Lovelock gravity
[14—16]. In fact, this perturbative formalism has been
recently implemented in Ref. [16] in a class of minisu-
perspace models containing those of the form (1.1). We
now brieQy summarize some of the results of that refer-
ence which will be of use in the present work.

Let us first introduce the notation

a b k — ki,x=, y=, g= —,h= —, (1.2)cN' bN' a~ ' b~ '

where a and b denote the time derivatives of the scale
factors, ka = 1 if the external space is spherically sym-
metric, or k, = 0 if it is flat, and ki, = 1 or 0 according
to whether the internal space is a (D —4)-sphere or a
(D —4)-torus, respectively.

In the region of low derivatives x and y and spatial
curvatures g and h, it is possible to single-valuedly in-
vert the derivatives-momenta Lovelock relations in such
a way that the obtained local inversion corresponds to the
perturbed single-valued Einsteinian inversion in the pres-
ence of the higher-order Lovelock corrections. This local
inversion can be analytically continued in the complex
plane of the gravitational momenta and the spatial cur-
vatures, getting a single valued inversion which straight-
forwardly provides us with a single-valued Hamiltonian.
In order to preserve the single valuedness of the consid-
ered inversion in the process of analytic continuation, one
must in general introduce cuts in the complex plane of
its associated variables. These cuts restrict the range of
the constructed inversion, which no longer runs over the
whole configuration space.

In a parallel way, it is possible to invert the Hamil-
tonian constraint and the expression of one of the grav-
itational momenta in terms of the derivatives x and y.
As the corresponding Einsteinian inversion turns out to
be double valued (except when D = 5 and the inverted
momentum is that of the internal scale factor), one first
determines the two local inversion branches which corre-
spond to the perturbed Einsteinian inversion in the re-
gion of low spatial curvatures g and h and derivatives x
and y. These two local inversions can then be extended
in the complex plane of their variables, i.e., of the matter
energy density, the spatial curvatures and the inverted
gravitational momentum. To keep the single-valuedness
in the process of analytic continuation, it is again neces-
sary to introduce cuts that restrict the ranges of the so-
obtained inversions. From the constructed double-valued
inversion and the expression of the gravitational momen-
tum that has not been inverted, one can get a constraint
which quadratically depends on that momentum. Such a
constraint turns out to be at least semiclassically equiv-
alent to the perturbative Hamiltonian constraint which
results from the insertion of the single-valued derivatives-
momenta inversion in the Hamiltonian constraint of the
system, provided the cuts and definition domains of the
different introduced inversions have been properly cho-
sen. The quantization of this perturbative Hamiltonian
constraint leads then to the generalized Wheeler-DeWitt
equation for the Lovelock models under consideration.
When D = 5, the Hamiltonian constraint and the in-

ternal scale factor momentum can be single-valuedly in-
verted in Einstein gravity in terms of x and y. Therefore,
the corresponding perturbative Lovelock inversion must
then be single valued, instead of double valued. The
constraint coming from this perturbative inversion and
from the expression of the external scale factor momen-
tum is thus linear in the momentum which was not in-
verted. It can be seen that such a constraint can be
obtained from the single-valued perturbative inversion of
the derivatives-momenta relations, so that it sufFices to
construct this last inversion.

This paper has the following outline. In Sec. II we
present the explicit expressions of the dynamical equa-
tions and gravitational momenta for the Lovelock model
(1.1). We then investigate in Sec. III the possible exis-
tence of classical solutions with a constant internal scale
factor, concentrating in a model with a positive cosmo-
logical constant. The cosmological behavior of these clas-
sical solutions is also discussed in Sec. III, showing that
the dynamics of the external dimensions can be described
by an effective Einsteinian theory when the internal scale
factor remains constant. In Sec. IV we prove that the
perturbative formalism for the treatment of the studied
Lovelock model is always well defined in the whole region
of the configuration space covered by the constant inter-
nal scale factor solutions considered in Sec. III. Section
V deals with the analysis of the reduced minisuperspace
model obtained by eliminating the degree of fredom cor-
responding to the internal scale factor, which is assumed
to be constant. Solving then for both the reduced and
unreduced minisuperspaces the Wheeler-DeWitt equa-
tion in semiclassical approximation, we examine the role
of the no-boundary condition in the process of freezing
some of the degrees of freedom of the model. Results are
summarized in Sec. VI. Finally, Appendix A contains
some useful calculations needed for the study of the con-
stant internal scale factor solutions.

II. LOVELOCK MODEL AND DYNAMICAL
EQUATIONS

In this section we will get the Lovelock dynamical equa-
tions and the gravitational momenta for models with
metric of the form (1.1). These expressions can be ob-
tained by applying the formulas presented in Ref. [16).

We first assume that the gravitational action for a
generic D-dimensional manifold M, with D-tetrad (ea)
(a = 1, ... , D) and curvature two-form R [17], is given
by the I ovelock action

s= ); 3!(D—4)!(D—2m)
x+axaz Qag qadi &aQ +g ea~ (2 1 ))

where e, ... ~ is the Levi-Civita tensor in D dimen-
sions, the Lovelock coefficients L~ are real constants and
M = int( ').

We suppose that the Hilbert-Einstein coefficient I q is
strictly positive, so that the action (2.1) provides an at-
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tractive theory of gravity in the Einsteinian limit. We
will use dimensionless variables, with numerical values
expressed in Planck units.

Action (2.1) must be corrected with appropriate sur-
face terms when the manifold M presents a boundary

[18]. Assuming that this boundary is composed of a final

(D —1)-dimensional surface of constant time t = tf and
of an initial surface vrith t = to, the boundary corrections
that must be added to action (2.1) for models of the form
(1.1) are [16]

M q1 sp m —1—sp —r I m&n —2r 2m —1—n —2m ~f

m=1 n=p1 r=p to=0
(2.2)

where Vs and V~ 4 are, respectively, the volumes of the maximally symmetric spaces of dimension 3 and D —4, and

Cn+ li
pt = max(0, 2m+ 4 —D —l), q~ = min(2m —l, 3), s~ = int

~ )
(2.3)

(D —2m —1+ l I/ m —l'1 fm —m —l ) /2m —2r —2~ —l l

3 —n y'( tu )I r pq n —2r

Including the boundary corrections (2.2), the Lovelock action (2.1) can be written for our minisuperspace model as
[16)

m=1 n=pp r=p m=p

M qp sp m —s1

dtVsV~ 4Nab ) I ) ) ) ghx y
-r g, to n —2r 2m —n —2m

mnr" 2m —y —2r —2u)
(2.5)

Defining then the matter Lagrangian S~,« ——J dtVsV& 4asb+ 42~,«and, similarly, the gravitational Lagrangian
8 from (2.5), one can introduce the gravitational momenta

M qp sp m-s1

"*=O(
/ )

=
m=1 n=pp r=O m=O

(2.6)

O(b/b) n=pp r=p

m —s1
2m —7l —28) ~p —

rhea

n —2r 2m —n —2m —1

2m —2r —.2& y
Dmnrm9g X g

m=0
(2 7)

by assuming that the matter Lagrangian does not depend on a and b From p an. d p„we have the canonical momenta
conjugate to the scale factors:

pa = VsVi) 4a b pz -ps = VsVv-4a b py
2 D—4 3 D —5

In the variables

(2.8)

k a 2 kb b —
2 2ab

¹

' b2 b ¹

' b¹
the Hamiltonian constraint O(Z + Z~~tt)/ON = 0 can be written [16]

M qp

—&=—) L ).&D (g &f)=e

(2.9)

(2.10)
m=1 n =pp

where p = M~«/ON i—s the energy density of the matter content, 'H = M/ON and—

(D 2 1 ) o ~rhm+r —nf n —2rm[

+
r=tUp

(2.11)

urt = max(0, n —m+ l).

The Lovelock action (2.5) can now be rewritten

(2.12)



DYNAMICALLY GENERATED FOUR-DIMENSIONAL MODELS IN. . . 4343

S = f dt Vt Va ta b —tt, + -Sa —NttsD4 a b

a

As to the Euler-Lagrange equations of the scale factors a and b, they can be expressed as [16]

&B*p* Byp*& &al(aN )ll 3(~. + p) —B
(spy Bypy ) ( b/(bN ) ) ((D —4)(o's + p) C)

(2.13)

(2.14)

with

B(a'&mat~)
3asN Ba

B(b~-'r .„)
(D —4)b+—sN Bb

M qo

B = ) L ) ng~~„(g, h, f),

(2.15)

(2.i6)

III. SOLUTIONS WITH CONSTANT
INTERNAL SCALE FACTOR

We will now discuss the possible existence of classical
solutions of the form (1.1) with constant internal scale
factor, b(t) = bp We .will mainly analyze the simple case
of models in Lovelock gravity provided with a cosmolog-
ical term.

For solutions with constant b(t) = bp, we will have,
from (1.2) and (2.9)

m=1 n=yo

M qp

C = ) L ) (2m —n)g~~„(gt h, f)
m=1 n=pp

(2.17)

The matrix elements in the left-hand side of Eq. (2.14)
are given by [16]

M qp —2

Bp*= ).L ).I, „ I& (g h f)

y=0, f =0, h=h= —=hp. (3.1)
bp

We will only consider compact internal spaces, with
!'qy = 1 if this space corresponds to a (D —4)-sphere or
kq = 0 if it is a (D —4)-torus. For physical solutions, bp

will be real, and hence hp & 0 in all the cases.
For b(t) to be constant in a classical solution, b must

identically vanish during the evolution. Therefore, we
obtain from Eqs. (2.14) the compatibility condition

B p (hp, f = 0)[(D —4)(o'g + p) —C(g, hp, f = 0)]

(2.is) = B,py(g, hp, f = 0) [3(cr, + p) —B(g, hp, f = 0)].

fD —2m —11
Byuy= ) Lm ). I 3 „ I&~~(g h f))

(2.i9)

(D —2m —1&
B.py =Byp* = ):L ). I 2 „ I& (g, h, f),2 —n )

(2.20)

where
sp t.httb+r —tb —lf n 2r~~—

X „(g,h, f) = -2 ) (n —2r)!r!(rn+ r —n —1)!T'=tU1

(2.21)

and one can check that, for the values of index n allowed
in (2.18), the dependence on g of B p actually drops off.

The Euler-Lagrange equations (2.14) and the Hamil-
tonian constraint (2.10) contain all the relevant informa-
tion of the Lovelock equations of the model. On the other
hand, 0 and crt, play the role of pressures in the respec-
tive external and internal maximally symmetric spaces
[9,10,16].

S a = —fdtVsVa 4Na b A—
Then

(3.4)

p=A, o, = —A, op= —A. (3.5)

Inserting Eqs. (3.3) and (3.5) in (3.2), we get the com-
patibility condition

(3.2)

In (3.2), B,p„(g, hp, f = 0) denotes the evaluation of B,py
at g, h = hg and f = 0. We have used similar notation
for B and C, and also for B~p~, which does not depend
on g.

On the other hand, from Eqs. (2.16)—(2.19) it follows
that

B(g, hp, f = 0) = gB,p (hp, f =—0),
(3.3)

C(g, hp, f = 0) = hpBypy(g, hp, f —=0).

Let us restrict our discussion to Lovelock models of the
type (1.1) with a cosmological term
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r1*p*(ho~ f = 0) [ho~qpil(g~ ho» f = o)

g-~*p&(g, ho, f = o)] = o (36)

In addition to this relation, the solutions with a con-
stant internal scale factor must verify the Hamiltonian
constraint (2.10), which, for f = 0 and h = ho, can be
rewritten as

(3.12) can be rewritten

X—:g c(hp) + g d(ho) —e(hp) = 0, (3.13)

c(hp) = ) L~m(m —1)hp
m=2

(3.14)

where the coefficients c(hp), d(ho) and e(hp) are polyno-
mials of the internal scalar curvature ho.

gL(hp) + A(hii) = A,

where we have introduced the definitions

L(hp) = ) L~(D —2m —l)rnho
m=1

Ms

m=1

(3.7)

(3.8)

M1

d(ho) = —) L m(D —2m —1)(D —4m) ho
m=1

M3

)

(3.15)

(s.i6)

Mi and Ms being given by the generic expression

/'D —1 —t l
Mi = int/ (3.9)

L(h.) = a.p. (h. ,—f = 0),
2

(3.10)

we will demand that, in the studied classical solution,

B,p (hp, f = 0) g 0. (3.11)

Using (3.11) and (3.6), we finally attain the condition
for the existence of an admissible solution with constant
internal scale factor:

g 8 py(g, hp, f = 0) = hpOyp„(g, hp, f = 0), (3.12)

with hp and g satisfying relation (3.7) and inequality
(s.ii).

On the other hand, it can be checked that, when (3.11)
is verified, equations of motion (2.14) are equivalent to
the time derivative of the Hamiltonian constraint (3.7)
and condition (3.12). Thus, when Eqs. (3.11) and (3.12)
are satisfied, all the dynamics of the external dimensions
are contained in the Hamiltonian constraint (3.7), as it
would be for a four-dimensional Robertson-Walker model
in Einstein theory with a cosmological constant.

Employing expressions (2.19) and (2.20), condition

Constraint (3.7) is formally the same as a Hamilto-
nian constraint in Einstein gravity for an isotropic and
homogeneous model in four dimensions [9]. L(hp) plays
then the role of an efFective Hilbert-Einstein constant;
i.e. , L(hp) is proportional to the inverse of the effective
Newton constant corresponding to the dynamically gen-
erated four-dimensional model [9]. Likewise, A —A(ho)
can be regarded as the effective cosmological constant of
such a four-dimensional model.

In order to get a well-defined effective dynamics for
the external dimensions, we must require that L(hp) does
not vanish in the considered solution of constant internal
scale factor. Since, from (2.18) and the first definition in

(3.8),

I. &0 Vm) 1, Li &0, (3.17)

the effective constant L(ho) is always positive for any
hp & 0. It follows then from (3.10) that in these cases

8 p (hp, f =0)(0 Vhp&0, VD&5. (s.i8)

We notice that, when (3.17) is satisfied, the associated
Lovelock polynomial

M

(s.19)

is strictly increasing in the whole positive real axis z & 0.
It was shown [14) that Lovelock theories which verify this

with Mi and Ms given by (3.9). Expressions as (3.7)
and (3.13), restricted to the case k = 0 and A = 0, were
found by Deruelle and Farina-Busto [12).

We notice that relation (3.13) is in general quadratic
in g, except for Einsteinian gravity, where c(hp) iden-
tically vanishes. Taking into account that, from (3.7),
g = [A —A(hp)]/L(hp) [with L(hp) g 0], Eq. (3.13) can
be considered as a constraint, for the admissible classi-
cal solutions of the system, between the D-dimensional
cosmological constant and the constant internal scalar
curvature.

We are especially interested in Lovelock theories such
that the corresponding effective Hilbert-Einstein con-
stant L(hp) turns out to be strictly positive whichever
the allowed value of the constant internal scalar curva-
ture, ho & 0, can be in the classical evolution. More-
over, we want the value of g in the considered solutions
with a constant internal scale factor always to be positive;
otherwise the efFective dynamics of the external dimen-
sions would correspond to a four-dimensional model with
a negative cosmological constant, leading then to all the
problems that this type of model poses both in classical
and quantum Einstein cosmology [19,20].

As to the former requirement, it is easy to check from
the first expression in (3.8) that, at least in Lovelock
theories with non-negative coefficients,
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2e(hp)

d(hp) + gd (hp) + 4c(hp)e(hp)
(3.20)

condition on their associated polynomials lead to appeal-
ing physical behavior. This is still another reason for em-
phasizing the interest of theories satisfying (3.17). From
now on, we assume condition (3.17) holds.

Using expressions (3.14)—(3.16), we then check that the
solution to (3.13)

verifies that, for D & 6,

g+(hp = 0) = 0 and g+(hp) & 0 Vhp & 0, (3.21)

so that g+(hp) & 0 Vhp & 0, as we wanted. The posi-
tiveness of g+(hp) is marked by the subscript plus. It is
worth noting that, for fixed hp, g+(hp) is constant. Later
on, we will comment on the case D = 5.

Inserting solution (3.20) in (3.7) we obtain the relation
that must satisfy the internal scalar curvature hp and the
D-dimensional cosmological constant A of the model:

A = A (h ) = + A(hp)
d(hp) + gd (hp) + 4c(hp) e(hp)

2[e(hp)L (hp) +d(hp)L(hp)A(hp) —c(hp)A (hp)]

d(hp)L(hp) —2c(hp)A(hp) + L(hp) gd (hp) + 4c(hp)e(hp)
(3.22)

Hence, the D-dimensional cosmological constant must be
non-negative if we want any of the considered solutions
with constant internal scale factor to exist.

Finally, using (2.19), (3.17) and (3.21) it is easily
shown that, in the studied solutions with b(t) = bp,

Bvp&(g+(hp), hp, f = 0) ( 0 Vhp & 0, VD & 6.

(3.24)

The case D = 5 compulsorily requires kb = 0. So,
hp = 0 for any constant value bp of b(t). The D-
dimensional cosmological constant must vanish if there
exist solutions with a constant internal scale factor, since
A+(hp = 0) = 0, and the effective cosmological constant
of the dynamically generated four-dimensional model
turns out to be also equal to zero, g+(hp = 0) = 0.

On the other hand, in the limit L~ -+ 0 Vrn & 1, c(hp)
[given by (3.14)] vanishes, and d(hp), e(hp), L(hp), and
A(hp) [as given by (3.15), (3.16), and (3.8)] tend to the
corresponding Einsteinian values

1
d(hp) = Ly(D —3)(D ——4), L(hp) = Ly(D —3),

(3.25)

e(hp) = A(hp) = Lq(D —3)(D —4)(D —5)—.
6

(3.26)

From Eqs. (3.20) and (3.22), g~(hp) and A+(hp) tend
then to

D —5
g+(hp) = hp,

(3.27)

A+ (hp ) = Ly (D —2) (D —3)(D —5)—.
6

From Eqs. (3.14)—(3.17) and (3.8), it follows that, for
D&6,

A+(hp = 0) = 0 and A~(hp) & 0, Vhp & 0. (3.23)

Actually, (3.27) coincides with the only existing solution
to relations (3.7) and (3.13) in Einstein gravity. There-
fore, the solutions with a constant internal scale factor
and g = g+(hp) which satisfy (3.22) can be interpreted
as perturbed Einsteinian solutions of constant internal
scale factor in the presence of the higher-order Lovelock
corrections. Nevertheless, if the D-dimensional cosmo-
logical constant is assumed to remain fixed, the constant
internal scale factor of the analyzed Lovelock solutions
does not exactly coincide with that of the correspond-
ing Einsteinian solutions, for the value of A+(hp) [given
by (3.22)] differs in Lovelock gravity from its Einsteinian
counterpart.

In this sense, we notice that relation (3.22) determines
the value of the D-dimensional cosmological constant for
which a solution with a given constant internal scalar cur-
vature hp exists. In practice, we would prefer a relation
that could provide the value of hp once the D-dimensional
cosmological constant of the model is known. The case
D = 5 is trivial, since A must identically vanish and any
constant value of the internal scale factor is then admissi-
ble. Moreover, assuming that condition (3.17) holds, we
show in Appendix A that relation (3.22) can be inverted
in the whole positive axis hp & 0, at least if the total
dimension of the spacetime is not too high (6 & D & 14).
Although we have not been able to prove that relation
(3.22) is invertible Vhp & 0 and VD & 6, we think that
such an inversion can always be carried out. Restrict-
ing to the cases considered in Appendix A, 6 & D & 14,
the discussed inversion of (3.22) Vhp & 0 leads then to a
single-valued relation hp

——hp(A) for A & 0, which essen-
tially determines the admissible solutions with constant
internal scale factor for the models with a fixed positive
D-dimensional cosmological constant.

For solutions in which the internal dimensions can
accept a physical compactification in a (D —4)-sphere
(kb = 1), we expect the constant internal scalar curva-
ture hp to be of the order unity in Planck units. g+(hp)
will be then also of this order, as can be checked from
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expressions (3.20) and (3.14)—(3.16), except for special
fine-tunings of the Lovelock coefBcients. One of these
possible fine-tunings is that for which the highest order
Lovelock coeKcient LM is considerably large, and the
remaining Lovelock coefficients are close to unity [12].
Although the cosmological behavior of the analyzed so-
lutions with a constant internal scale factor seems to be
unsatisfactory, it can be regarded as a standpoint to dis-
cuss more realistic physical models in which a dynamical
compactification with the desired characteristics can be
acheived.

If the internal space is a (D —4)-torus, we will have
hp = 0 for any constant internal scale factor. These solu-
tions are possible only if the D-dimensional cosmological
constant of the model vanishes. Since g~(hs ——0) = 0,
the external dimensions evolve as in a four-dimensional
model with a zero cosmological constant. An admis-
sible classical solution would be the four-dimensional
Minkowski space. Of course, one should still explain the
splitting of D dimensions in two distinct flat spaces; one
physically observable and the other not [21,22].

IV. PERTURBATIVE FORMALISM OF
LOVELOCK GRAVITY FOR SOLUTIONS WITH

CONSTANT INTERNAL SCALE FACTOR

In Refs. [14,16] we introduced a perturbative formal-
ism of Lovelock gravity which solved the problems asso-
ciated with the almost nondegenerate character of this
kind of gravity theory. The implementation of such a
formalism in models with metric of the form (1.1) is con-
tained in Ref. [16]. In this section we will prove that this
perturbative formalism is well defined in the whole re-

gion of the gravitational configuration space covered by
the constant internal scale factor solutions analyzed in

Sec. III.
The perturbative single-valued inversion of the

derivatives-momenta relations is always well defined (in
an analytic way) in any simply connected region around
the origin of the configuration space (x, y, g, ti) in which

the associated Jacobian

I Jl = &*p*&gpss —(&*py)' (4.1)

is everywhere diferent from zero, and such that the image
of this region under (p, p&, g, h) turns out to be simply
connected [with p~ and p& given by (2.6) and (2,7) and g
and h the identity transformations) [16]. Also, the per-
turbative inversion of the Hamiltonian constraint and one
of the gravitational momenta can always be well defined
in such a way that its range contains any simply con-
nected region around the origin of the space (x, y, g, h)
in which the Jacobian (4.1) never vanishes and which

satisfies the following in addition.
(a) If the inverted momentum is p~, i) the image of

that region under (p, p, g, h) [considering (2.10) as the
definition of a function p(x, y, g, h)] turns out to be sim-

ply connected, and (ii) within the studied region, all the
points with x = 0 can be connected with the origin by a
path along which x = 0 and B„p& g 0.

(b) If the inverted momentum is p„, (i) the image of the

[0, oo) if D & 6,
(0) if D=5, (4 3)

in which g+(h) is defined by means of (3.20). This region
is simply connected and contains the origin x = y = g =
ti = 0. Moreover, assuming that (3.17) holds, we show in

Appendix A that

l J(g+(ho), ho, f = 0)l ( 0 vho & o, (4.4)

and therefore the Jacobian (4.1) is strictly negative in
the whole region A.

On the other hand, the images of 0 under (p„p„,g, ti),
(p„p, g, ti) and (p„,p, g, h) are simply connected. 0 be-
ing simply connected, we only have to prove that two
points in the image of 0 never happen to coincide. Sup-
pose the opposite, i.e. , that the images corresponding to
two difFerent points in A, zi =— (xi, y = O, gi, hi) and

z2 = (xz, y = 0, g2, hz) are identical. We will then have
that gi ——gz and hi ——hz, and from the definition of
0 it follows that xi ——g~(hi) —gi = g+(hz) —gz = x2.
Thus, either zq ——2:q, and the two considered points
are indeed the same, or xi = —xz P 0. In the latter
case, however, it can be checked from expressions (2.6),
(2.7) and condition (3.17) that p (xi, y = O, gi, hi) =

p(x2, y = 0, $2,—hq) y 0 and piI(xi, y = O, gi, hi)
—p„(xq, y = O, g2, h2) g 0. This clearly implies that
none of the images of the two points zq and z2, either
under (p~, p„,g, h), (p, p, g, h) or (p„,p, g, h), can ever
coincide. Therefore, all the considered images of 0 are
simply connected.

As a consequence, it can be now asserted that the per-
turbative inversion of the derivatives-momenta relations

(2.6) and (2.7) can be analytically defined in the image of
0 under (p, p„,g, h), its range in that region being equal

mentioned region under (p„,p, g, h) is simply connected,
and (ii) within the considered region, all the points with

y = 0 are connectable with the origin by a path along
which y = 0 and O~p~ g 0.

The analyzed inversion of the Hamiltonian constraint
and one of the gravitational momenta can then be ana-
lytically defined except at those points for which x = 0,
if we are inverting the momentum p~, or for which y = 0,
if the inverted momentum corresponds to p&. At such
points, however, the inversion is always well defined as
an algebraic function [16].

The case D = 5 is somewhat special, for the pertur-
bative inversion of the Hamiltonian constraint and mo-
mentum p~ is then single-valued. Nevertheless, the con-
straint associated with that single-valued inversion can
indeed be obtained from the perturbative inversion of
the derivatives-momenta relations [16]. Therefore, it suf-

fices in this case to show that the latter inversion is well
defined.

Let us consider then the region of the gravitational con-
figuration space covered by the analyzed solutions with
constant internal scale factor, which is given by

0 = ((x, y, g, h)/xz+g = gp(h), y = O, g & 0, ti c 6),
(4.2)
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to A. When D = 5, in addition, the constraint associ-
ated with the single-valued perturbative inversion of the
Hamiltonian constraint and momentum p~ will therefore
be well defined in the image of 0 under (p~, p, g, h).

In order to prove that the perturbative double-valued
inversions of the Hamiltonian constraint and one of the
momenta can be defined in such a way that their ranges
contain the region 0, we finally have to demonstrate that
all the points in 0 with x = 0 (for D & 6) or with

y = 0 (for D & 5) can, respectively, be connected with
the origin by a path contained in 0 along which x = 0 and

B&p& g 0, or by a path along which y =0 and B p P 0.
For, let us assume that (for D & 6) zi is a certain

point in 0 for which x = 0, i.e. , zi —= (x = 0, y = 0, g =
g+(hi), h = hi) with hi & 0. We can always construct
in 0 the path ((x = 0, y = O, g = g+(h), h)/h c [0, hi]},
which connects zi with the origin x = y = g = h = 0.
Along such a path, x = 0 and B„p„is different from zero,
because B„p„(g+(h),h, f = 0) ( 0 Vh & 0 and D & 6,
according to (3.24). In a similar way, all the points with

y = 0 in 0 (for any D & 5) can be connected with the
origin by a path contained in 0 along which y = 0 and
B~p~ does not vanish, for 0 is simply connected, y = 0 in
0 and, from (3.18), B~p~ is always negative in this region.
We thus conclude that the ranges of all the introduced
perturbative inversions can always contain the region 0
of the gravitational configuration space.

We have seen that the derivatives-momenta relations
(2.6) and (2.7) can always be analytically and single-
valuedly inverted in the whole region of the configuration
space covered by the constant scale factor solutions con-
sidered in Sec. III. Substituting this perturbative inver-
sion of the derivatives-momenta relations in Eq. (2.10),
we can, in particular, obtain a perturbative Hamiltonian
constraint which is a function of p„p„p, g, and h. The
quantization of this constraint leads then to a pertur-
bative Wheeler-DeWitt equation for the minisuperspace
model with gravitational degrees of freedom the scale fac-
tors a and b. The remaining perturbative constraints of
the model must be at least semiclassically equivalent to
the perturbative Hamiltonian constraint, once the cuts
and definition domains of the difFerent perturbative in-
versions have been properly chosen [16].

V. DYNAMICALLY GENERATED
FOUR-DIMENSIONAL MODEL AND

NO-BOUNDARY CONDITION

In this section we will discuss the dynamically gener-
ated four-dimensional theory obtained when the internal
scale factor remains constant in the evolution. We will
still assume that condition (3.17) is satisfied.

In the model with positive D-dimensional cosmologi-
cal constant considered in Sec. III, one can freeze the
internal scale factor by simply imposing that b(t) = bp

holds identically, provided that bp and the D-dimensional
cosmological constant A are related by Eq. (3.22), i.e. ,
A = A~(hp), with hp = kgbp Thi.s relation guarantees
the consistency of freezing the degree of freedom b, for it
allows us to impose the restrictions b = bp and b = 0. We
get in this way a reduced minisuperspace model whose
only gravitational degree of freedom is the external scale
factor a.

The Hamiltonian constraint and the gravitational mo-
mentum p for this reduced minisuperspace are given,
respectively, by Eqs. (3.7) and (2.6), the latter evaluated
at y =0 and h = kgbp ..

g L(hp) + A(hp) = A, (5.1)

p = —2x L(hp). (5 2)

L(hp) and A(hp) play the role of effective constants, de-

pending on the internal scalar curvature, with L(hp) & 0
and A(hp) & 0 Vhp & 0. The momentum p is re-
lated to the canonical momentum conjugate to a by

2 D—4
p~ = Vs V~ 4a bp p .

We will restrict our analysis to cosmological models
with compact spherically symmetric spaces, i.e., k~ =
kb = 1. In this case hp, A(hp) and g are always strictly
positive.

From (2.9), (5.1), and (5.2), it follows that the wave
functions of the reduced minisuperspace corresponding to
the effective four-dimensional theory, 4(a), must satisfy
the Wheeler-DeWitt equation

2

4L(hp) o' '
&

a'z +(Vs' 4a bp ) I A(hp) —A+ —zL(hp) I 4'(a) = 0, (5.3)

In semiclassical approximation @ e, we will have

- 1/2

I(a) = p2VsV~ 4bp L(hp) dao,~ 4- z 1 A —A(hp)

L(hp)
(5.4)

ao being a certain constant. Supposing that the time
coordinate varies in the interval [tp, tf], ap can be inter-
preted as the fixed initial value of the scale factor a(t),
ap = a(tp), and a can be thought of as the value of a(t)
in the final surface of constant time t = tf.

A —A(hp)

L(hp)
(5 5)

In addition, it is obvious from (3.20) and (3.22) that
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In what follows we will see that the semiclassical action
(5.4) coincides with the Lovelock action of the classical
solution with b(t) = bp, b = 0 (i.e, y = 0) and g = g+ (hp)
integrated over t 6 [tp, ty]. Adding the cosmological term
(3.4) to the expression (2.13) of the gravitational Love-
lock action, we obtain the following action for the unre-
duced minisuperspace with degrees of freedom a and 6:

S=V3VD 4 dt Nash~ [p z + p„y —'8 —A],

(5.6)

with 'H given by (2.10). In the considered classical so-
lution, '8 = —A and y = 0, so that action (5.6) can be
rewritten

with (a, b) and (ap, bp), respectively, the final and initial
values of the scale factors (a(t), b(t)) on the two assumed
existing boundaries of the manifold. Equation (5.9) re-
jects the fact that the wave function solely depends on
the values of the induced metric on the boundaries of
the manifold. Moreover, owing to the invariance of Love-
lock theories of gravity under D-dimensional diffeomor-
phisms, the wave function (5.9) should satisfy the per-
turbative Wheeler-DeWitt equation associated with the
Hamiltonian constraint (2.10) both on the final and ini-
tial boundaries of the manifold [23].

If @ = e I("~'l must coincide with the value of a semi-
classical approximation to any wave function 4 of the
form (5.9), for b identically equal to bp, we would obvi-
ously have

S,t = Vs') 4bp da a p~) (5.7) 4 = e (" 'i = 4(a, b~ap, bp)
b

, (5.10)
p = p

where we have used a(tp) = ap and a(ty) = a. Moreover,
in the solution with a constant internal scale factor, p~
adopts the expression (5.2), with xz = g+(hp) —a . We
thus get

S,( = p2VsV~ 4bp L(hp)

- 1/2

da a g+(hp) ——
2

- -2 1

4 = 4(a, b~ap, bp), (5 9)

(5.8)

Inserting now relation (5.5), and defining the Euclidean
action of the classical solution as I,l = —iS,~, we finally
conclude that I,~ and the semiclassical action (5.4) coin-
cide.

Since action (5.4) implicitly depends on the internal
scale factor b0, we can investigate whether the associ-
ated semiclassical approximation @ e I can be some-
how considered as a solution of the perturbative Wheeler-
DeWitt equation obtained by quantizing the Hamiltonian
constraint (2.10) in the unreduced minisuperspace with
gravitational degrees of freedom a and b This pert. ur-
bative Wheeler-DeWitt equation will be well defined at
least in the whole region of the gravitational configura-
tion space covered by the discussed solutions with con-
stant internal scale factor.

As (5.4) corresponds to the action of a classical solution
[with b(t) = bp] of the unreduced minisuperspace model,
we could expect that the wave function 4 = e
with I(a, bp) given by (5.4), should coincide with the
value, evaluated at b = b0, of a semiclassical approxi-
mation to the mentioned perturbative Wheeler-DeWitt
equation.

Note now that the wave functions of the minisuper-
space with degrees of freedom a and 6 adopt the generic
dependence

M

3 3 D40 ~- D 2m 0
Q 4 i fA fA 1

m=2
(5.11)

where we have used k = 1, h = h0 and that
the Euclidean action corresponds to the Wick-rotated
Lorentzian action iS(—iN) = I [20]. —

If we preserve the above terms in the action of the
reduced minisuperspace, we obtain from Eq. (5.4) the
modified semiclassical action

and the dependence of 4 on bp would then simultaneously
come from the dependence of 4 on b and bp, thus pre-
venting us from studying in detail whether the expected
coincidence of the values of the different semiclassical ap-
proximations at b = bp actually holds.

We can nevertheless eliminate the dependence on bp

coming from the initial boundary of the D-dimensional
manifold by adopting a no-boundary condition for the
wave function (5.9) [20,24]. We will demand the van-
ishing of both the initial value of a(t) and then of the
corresponding initial boundary. This no-boundary con-
dition can always be implemented in the analyzed D-
dimensional minisuperspace model, as any spatial section
of our manifold is the product of a three-dimensional and
a (D —4)-dimensional spheres and hence is cobordant to
zero [21,25].

The Lovelock action (5.6) had been obtained by adding
surface terms corrections which are due to the existence
of boundaries. Our no-boundary condition implies that
the surface terms corresponding to the initial boundary
should be substracted from action (5.6). For the classical
solution with b(r) = bp and ap = a(rp) = 0 (in Euclidean
time), a(rp) must be equal to kl, and the contributions
that must be reinserted in the Euclidean Lovelock action
in the absence of the initial boundary are, from (2.2),

daa
a

- Z/2
A —A(hp)

L(hp)

2 ). m(m —1)„+3; D —2m
(5.12)
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where we have also employed that ao = 0.
The introduced correction (5.11) is actually a constant in the reduced minisuperspace, and must be included in

(5.4) if we want the value of the semiclassical action for the reduced minisuperspace to coincide with that of the
no-boundary D-dimensional Lovelock action for the classical solution with b(t) = bp

The no-boundary terms (5.11) identically vanish in Einstein gravity, so, once we have fixed ap = 0, there is no
difference between actions (5.4) and (5.12).

Performing the integration in Eq. (5.12), we arrive at

& 4 ( L(hp) L(hp) A —A(hp)

A —A(hp) L(hp

- 3/2

L(hp) I (hp) 2 ) . rn(m —1)
3 A —A(hp) 3

2
D —2m

(5.13)

Beyond what we expected, the wave function associated with the semiclassical action (5.13), @ = e 1&N~)(~ ~'), has
such an implicit dependence on bp that it corresponds to a solution of the perturbative Wheeler-DeWitt equation,
evaluated at b = bp, of the unreduced minisuperspace. We shall show now that, in order to prove this assertion, it is
enough to verify that the following equalities hold

2
(NB)( ) p) 2 D 4-= Vs V+ 4a bp p, (x = +gg+(hp) —a—,y = 0, g = a, h = hp)

—2

a
= p2VsVLi 4a bp L(hp)gg+(hp) —a 2, (5.14)

i = VsVD 4a bp p„(x = +@g+(hp) —a, y = O, g = a, h = hp)
(»)( p) s as -2

Bbp
M

= p2VsVg7 4a bp gg+(hp) —a-s (g+(hp) + 2a )—) L rn(m —1)hp
m=2

Mg (D m —11
) (5.15)

where we have used the explicit expressions of p„p„, and L(hp), given by (2.6) and (2.7) and (3.8), and introduced
the symbolic notation BI(Np) (a, bp)/Bbp = (BI(Nn) (a, b)/Bb) ~g g„with I(NB)(a, b) given by (5.13) and evaluated at b,
instead of bp. We adopt from now on this type of compact notation.

We proved in Sec. IV that the perturbative inversion of the derivatives-momenta relations (2.6) and (2.7) is well
defined all over the region

((pox, y, g, h), pox, y, g, h), g, h)/x = +Qg~ (hp) —a 2, y =0, g =a )0, h = hp )0). (5.16)

At any point of the region (5.16), the perturbative inversion of (2.6) and (2.7) provides us precisely with the corre-
sponding values x = king+(hp) —a 2 and y = 0. Since the Hamiltonian constraint (2.10), with p = A, is satisfied
at g = a s, h = hp, x = +gg+(hp) —a 2, and y = 0 [assumed, as we do, that condition (5.5) is satisfied], it follows

that, when relations (5.14) and (5.15) are verified, the wave function 9 = e 1~»)("~), associated with (5.13), is a
semiclassical solution to the quantum version of constraint (2.10) at b = bp

Let us then prove (5.14) and (5.15). Relation (5.14) can be straightforwardly obtained from Eq. (5.12) and condition
(5.5). The demonstration of (5.15) is not so immediate. Taking into account that hp = bp, we check from (3.8) that

My M3

(5.17)

Employing now condition (5.5) and Eqs. (3.13)—(3.16) [with g = g+(hp)], we have that
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at b = bo .By using Eq. (5.18), condition (5.5) and the relations

Mg

(bo L(ho))=2bo ) L m~ 2 )ho0 0 0 m)vi (5.19)

M M

(5.20)

one can show that (5.15) is satisifed at b = bo

In conclusion, 4 = e &»)~" &, given by (5.13), is
a semiclassical solution, at b = bo, of the pertur-
bative Wheeler-DeWitt equation associated with the
Hamiltonian constraint (2.10), provided bo and the D
dimensional cosmological constant A are related by (5.5).

We will have then that, around b = bo, the action

BI(NB) (a bo)
I~NBl(a, b) = I~Niil(a, bo) + '

(b —bo),

(5.21)

obtained from (5.13), is a valid approximation to the no-
boundary semiclassical action of the minisuperspace with
degrees of freedom a and b up to terms of order (b bo)z-
This is equivalent to asserting that, if the D-dimensional
model with a positive cosmological constant A admits
a classical solution with a constant internal scale fac-
tor b = bo [such that A = A+(ho)], the semiclassical
action of the reduced minisuperspace modified with the
no-boundary terms (5.11) contains implicit information
about the values at b = bo of both the semiclassical action
of the unreduced minisuperspace and its first derivative
with respect to the internal scale factor.

It seems, therefore, that the no-boundary condition
might play an important role in the proccess of dimen-
sional reduction of the theory.

VI. CONCLUSIONS

In this paper we have considered a class of D-
dimensional Lovelock models with an induced metric
given by the product of the metrics of a three-dimensional
external and a (D —4)-dimensional internal maximally
symmetric space, both of them spherically symmetric or
flat. We have first presented the Lovelock action and dy-
namical equations of motion for these models, discussing
then the possible existence of classical solutions with a
constant internal scale factor.

We have concentrated on Lovelock theories with non-
negative coefBcients provided with a positive cosmolog-
ical constant. By tuning the D-dimensional cosmologi-
cal constant, these theories admit classical solutions with
any constant and real value of the internal scale fac-
tor. At least when the total dimension of the spacetime
is not too high, we have seen that the D-dimensional
cosmological constant of the model determines the con-
stant value of the internal scalar curvature, which gives

the internal scale factor in the mentioned classical so-
lutions. For such solutions, the dynamical evolution of
the external dimensions turns out to be described by an
efFective four-dimensional Einstein theory. The associ-
ated efFective Hilbert-Einstein coefficient is strictly posi-
tive for all the considered solutions with constant internal
scale factor, and the effective four-dimensional cosmolog-
ical constant is always non-negative. These two effective
constants of the dynamically generated four-dimensional
model depend only on the constant value taken by the
internal scalar curvature, and this dependence has been
shown to be polynomial.

On the other hand, we have proved that the perturba-
tive formalism of Lovelock gravity [14,16] can be imple-
mented in the studied models at least in the whole region
of the gravitational configuration space which is covered
by the considered solutions with constant internal scale
factor.

For the case of spherically symmetric spaces, we have
analyzed the dynamically generated four-dimensional
theory which is obtained by eliminating the degree of
freedom of the internal scale factor, assumed to remain
constant in the evolution. The minisuperspace corre-
sponding to this four-dimensional theory has the exter-
nal scale factor as the only gravitational degree of free-
dom. We have solved the Wheeler-DeWitt equation of
this reduced minisuperspace in the semiclassical approx-
imation, and checked that the value of the obtained semi-
classical action coincides with that of the D-dimensional
Lovelock action of the associated classical solution with
a constant internal scale factor. Moreover, the semi-
classical action of this reduced minisuperspace, modi-
fied with corrections coming from a D-dimensional no-

boundary condition, turns out to contain implicit infor-
mation about the no-boundary semiclassical action of the
unreduced minisuperspace and its first derivative with re-
spect to the internal scale factor, both evaluated at the
constant value of the internal scale factor allowed by the
classical evolution.

It is therefore possible that the no-boundary condi-
tion could play a relevant role in the process of freezing
some of the degrees of freedom of the theory. In the
models with a positive cosmological constant examined,
we have seen that the surface corrections coming from
the D-dimensional no-boundary condition do not van-
ish only for Lovelock theories other than Einstein grav-
ity. Lovelock gravity can thus provide a specially fruit-
ful framework for discussing a tentative connection be-
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tween the mechanism of dimensional reduction and the
no-boundary condition.
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APPENDIX A: SOLUTIONS WITH CONSTANT
SCALE FACTOR. FURTHER REMARKS

In this Appendix we will analyze the constant inter-
nal scale factor solutions considerd in Sec. III for Love-
lock models provided with a cosmological constant. We
assume that condition (3.17) is satisfied. We will first

prove that the Jacobian (4.1) is strictly negative in all
the mentioned solutions with a constant internal scale
factor, and show then that relation (3.22) between the
D-dimensional cosmological constant A and the constant
internal scalar curvature hp can be inverted in the whole
semiaxis hp & 0, at least when the dimension of the
spacetime is not too high (6 & D & 14). For the spe-
cial case D = 5, the internal space has dimension one
and must therefore be fiat (It,'b = 0). So, hp vanishes
for any constant value bp of the internal scale factor.
Moreover, from (3.22), the cosmological constant must
be equal to zero if the model admits a solution with con-
stant b(t) = bp

For the constant scale factor solutions investigated in
Sec III., we have y = f = 0, h = hp and g = g+(hp), with

g+(hp) & 0 Vhp & 0 and g+(hp = 0) = 0. In addition, hp

and g~(hp) verify relation (3.12):

g+(hp)B p„(g+(hp), hp, f = 0) = hpB„p„(g~(hp), hp, f = 0). (A1)

We want then to demonstrate that the Jacobian (4.1) is strictly negative at all points (g+(hp), hp, f = 0) Vhp & 0.
From expressions (2.18)—(2.20), one can check that ~J(g+(hp = 0), hp ——0, f = 0)~ is negative. For D = 5, hp

is identically zero, and in this case we can already assure that the Jacobian (4.1) is negative for all the analyzed
solutions with a constant internal scale factor. For D & 6, we still have to prove that

~
J(g+(hp), hp, f = 0)

~

& 0
Vhp & 0. Multiplying (4.1) by g+(hp), which is strictly positive if hp & 0, and using (Al), we conclude that, at
(g (ho), ho, f =0),

g+(hp)I~I = Buss(~+(hp)B*p. —hpB*pu].

Taking into account inequality (3.24), our task reduces to show that, for D & 6 and hp & 0,

G —= hpB, p„(g+(hp), hp, f =0) —g+(hp)B p (g~(hp), hp, f =0) & 0.

For D=6,
3

G = -Lg(g~(hp) —hp);

(A2)

( 3)

(A4)

if hp & 0, it follows from (3.20) and (3.14)—(3.16) that

2hpLg hp
g+(ho) =

3Ly —2Lzhp + Q(3Ly —2L2hp) + 8LyLzhp

Therefore, G & 0 if hp & 0.
For D & 6, let us suppose

D —5
g+(hp) & hp Vhp & 0.

3

Then, one can prove that

M

G&) L mhpA
m=1

(A7)

1
A = —[(D —2m —1)(—D + 6m —4) —2(D —5) (m —1)]. (A8)

It is not difficult to see that the coefficients A~ have a maximum at m = +4+ (considering m as a real number), and
that A~ is negative at that maximum if D & 6. Thus, A~ & 0 Vm c (1, ..., M), and since hp & 0, we conclude that
G ( 0, as we wanted to prove.

We show now that inequality (A6) holds for D & 6, except when D =7, 9, or 10. Evaluating expressions (2.19) and
(2.20) at f = 0,
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1 D —5 ( 1 1 2——8 p (g+(hp), hp, f = 0) =
~

——8 p (g+(hp), hp, f = 0)
~

——X(hp) + —g+(hp)Y(hp),2"" ' ' 3 I, 2*" ' ' ) 3 3

with the definitions

(A9)

Mg

2 ) (A10)

Y(ho) = 2 ) L
~ 2 ] (D —3m+1)ho&2) (A11)

From (2.19) and (A10), recalling that g+(hp) & 0 Vhp & 0, we have that, for D & 6,

1 1——8*p~(g+(ho), ho, f = 0) — X(ho) ) 0 Vho & 0

Equations (Al) and (A9) lead to the equality

D —5 1 1 1 2
g (ho) = ho — 8p„(-gp(ho), h, f = 0) — X(ho) 8—p-„(g (hp), hp, f = 0) —-hpY(ho)

Taking into account (A12), Eq. (A13) implies the inequality (A6) if and only if

1 2
X(ho) & ——ho Y(ho).D —5 3

Relation (A14) can be equivalently written as

M

0& ) Lml Iho Bm

(A13)

( 14)

(A15)

B~ = 3
~ ~

—(D 5)(D —S—m+ 1). (A16)

Being hp & 0, what remains to be seen is that the coefficients B are positive. These coefficients have a minimum at
4+ (taken as real functions of m) and, at that point, B~ ) 0 if D & 12. Moreover, for D = 8 or ll, we have that

the coefficients B are also positive Vm e (1, ..., M).
Let us consider now the remaining D = 7, 9, or 10. We will study first the cases D = 9 or 10. Suppose then that,

for some hp ) 0,

D —5
gp(hp) ) hp. ( 17)

If (A17) is not satisfied for any hp & 0, inequality (A6) must hold [recall that g+(hp = 0) = 0], and therefore
G ( 0 Vhp & 0. On the other hand, if (A17) is verified for some hp & 0, we get from expression (2.20) that, at
(gp(hp), hp, f = 0),

1
8p„(g~(hp—), hp, f=0)&) L mhp

~ 2 I+ (m —1)
(D —2m —1) D —5

)
We show now that, for D = 9 or 10 and Vho & 0,

D —5
g+(hp) & hp.

2

(A18)

(A19)

For all those hp & 0 satisfying g+(hp) & s hp, (A19) is trivial. From (Als), inequality (A19) will also be satisfied
at all those points hp ) 0 satisfying (A17) provided that, at these points,

2 1
X(hp) & 8p&(gy(hp), hp—, f—= 0) —2hp Y(hp). (A20)

Since (A18) is valid whenever g+(hp) & s hp, (A20) is verified if, for hp ) 0 and D = 9 or 10,
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M

) L~mhp C~ & 0, (A21)

l (3D + 12m —27) —(D —5) (rn —1)(5D —18m + ].].).
r'D -2m -» (A22)

For D =9 or 10 we have M = 4, and we can check that
in these cases the coefficients C are positive for any
m c {1,..., 4j. Then, since hp & 0, (A21) is satisfied,
and hence inequality (A19) is valid Vhp & 0.

Employing now (A19), we conclude that G satisfies

M
G& ) L rnhoE

m=1
(A23)

E~ = -[(D —2m —1)(2m —3) —(D —5)(rn —1)].
1
4

The coefficients E~ turn out to be nonpositive for D =
9 or 10 and Vm e {1,..., 4), and in particular Ei ( 0.
Then, G ( 0 Vhp & 0, and thus

l J(g+(hp), hp, f = 0) l( 0 Vhp & 0 for D = 9 or 10.
Let us finally discuss the case D = 7. Assume that

g+(hp) ) hp for some hp & 0. It follows from (2.20) and
(A10) and (All) that, if D = 7,

1
0 & —-8 p&(g+(hp), hp, f = 0) + X(hp) —2Y(hp)

(A25)

at those hp for which g+(hp) & hp. However, using (A13)
and (A25), we conclude

E(g+(ho), ho) = g~(hp)c(hp) + g+(hp)d(hp) —e(hp) = 0.

(A29)

Using the implicit function theorem we get then

+
(hp) = — '

(g+(ho), ho), (A30)
Q s

8&E(g+(hp), hp) = 2g~(hp)c(hp) + d(hp). (A31)

At hp = 0, g+(hp = 0) = 0 and, from Eq. (3.15),
d(hp = 0) & 0, so that 8sP(g+(ho =0), hp =0))0. On
the other hand, if hp & 0 and L =0 Vm) 1 (Einstein
gravity), we have, from (3.14) and (3.15), d(hp) ) 0 and
c(hp) = 0. So, again 8sE(g+(hp), hp) & 0. In any other
case (L & 0 Vm ) 1, not all of them vanishing, Li & 0
and hp ) 0), it is easy to see from (3.14) and (3.16) that
c(hp) ) 0 and e(hp) ) 0 for D & 6. Rewritting then
(3.20) as

—d(hp) + y ds(hp) + 4c(hp)e(hp)
2c(hp)

it follows that, in these cases, g+(hp) & —d(hp)/[2c(hp)],
so that 8~X(g+(hp), hp) ) 0. Therefore, we conclude
that, for D & 6,

g~(hp) & hp, (A26) 8sE(g+(hp), hp) & 0 Vhp & 0.

which contradicts our initial assumption. Therefore,
(A26) must be satisfied Vhp & 0 if D = 7. From this
inequality, one can check that G ( 0 Vhp ) 0 when
D=7.

We have thus demonstrated that, for Lovelock theories
verifying (3.17),

IJ(g+(ho) ho f =0)l & 0 V"o & 0, V» 5 (A27)

This implies that the Jacobian (4.1) is strictly negative in
all the constant internal scale factor solutions considered
in Sec. III.

We now proceed to prove that relation (3.22) between
the constant internal scalar curvature, hp & 0, and the
D-dimensional cosmological constant, A & 0, can be
inverted at least in spacetimes with not too high D
(D g 5). Relation (3.22) can be rewritten

A = A+(hp) = g+(hp)L(hp) + A(hp),

with g+(hp) satisfying (Al), which can be reexpressed as
[see (3.13)]

DifFerentiating (A28) with respect to ho and using
(A30), we obtain

dA+ dL dA+
(hp) = g+(hp) (hp) + (hp)

0 0 0

8ao&—L(hp) '
(g+(hp), hp). (A34)

L(hp) = —-8 p, (hp, f = 0) & 0 Vhp & 0, (A36)
2

where we have also employed inequalities (3.18) and
(3.24), valid for D & 6. Moreover, making use of (A29)
and (3.16), at hp = 0,

In addition, from (3.8), (2.18), and (2.19),

dI dA'+'"')
dh

'"')+
dh

("')
p dhp

I
8p„(g+(h—o—) ho, f =0) ) 0 Vho & 0, (A35)9
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Bb P(g+(hp = 0) = 0, h = 0) = L—
[

& 0
D

3 )

%e conclude finally

dA+
(hp = 0) & 0 for D & 6.

0

for D & 6. (A37)

(A38)

Bp„&(g+(hp), hp) & 0 Vhp & 0. (A40)

Multiplying (A39) by h2p and using relation (Al) and the
already proved inequalities (A3), (A33), and (3.18), we
obtain another sufficient condition for W(hp) & 0 Vhp & 0:

Z(hp) = hoBh, E(g+(hp), hp)
—g+(hp)BsE(g+(hp), hp) & 0 Vhp & 0. (A41)

We can now assert that relation (3.22) can be in-
verted in the whole semiaxis hp & 0, for D & 6, if
(dA~/dhp)(hp) & 0 Vhp & 0. (A38) states that this is
at least verified at hp ——0. For D & 6 and hp & 0,
proving that

1
W(ho) =— ——cpu(g+(ho), ho, f = 0)BsE(gy(ho), ho)

1+ B,p —(hp, f = 0)Bh, P(gp(hp), hp) & 0

(A39)

guarantees, taking into account (A33)—(A36), that
(dA+/dhp)(hp) & 0. Using again (A33), (A35), and
(A36), it follows that a sufficienct though not necessary
condition for W(hp) to be strictly positive in the whole
semiaxis hp & 0 is

In conclusion, (A39) holds if (A40) or (A41) is satisfied.
We have checked by explicit calculation that (A39) is

verified Vhp & 0 at least when 6 & D & 14.
For D = 6, we have from (A5) that g+(hp) & 2hp.

It is then straightforward to see that (A40) is satisfied.
For D =7 or 8, we have that hpOhpsF T is strictly
negative at (g+(hp), hp) Vhp & 0, and hence (A40) holds,
because P vanishes at (g+(hp), hp). Taking into account
that, from (A19), g+(hp) & 2hp for D = 9, W(hp)—
3LshoE(g+ (hp), hp) turns out then to be strictly positive
Vhp & 0. Since F(g+(hp), hp) = 0, we conclude then that
(A39) holds if D = 9.

For D = 10 or 12, it can be shown that Z(hp)—
ho&(g+(ho), hp) is smaller than zero Vhp & 0, pro-
vided that, from (A19) and (A6), we respectively have

g+(hp) & 2hp if D = 10 and g+(hp) & sho if D = 12.
(A41) is then satisfied if D = 10 or 12.

Finally, for D = 11, 13 or 14 we will use the feature
that g+(hp) & s hp Vhp & 0 is valid for these di-

mensions. For D = ll, W(hp) —12L4hP(g+(hp), hp)
is greater than zero for positive hp, and from (A29)
it follows that (A39) is then satisfied. In a sim-
ilar way, for D = 13 and D = 14, respectively,
W(hp) —25LshP'(g+(hp), hp) and W(hp) —[24Lshp4 +
s Lshp]E(g+(hp), hp) turn out to be strictly positive.

Therefore, inequality (A39) holds also Vhp & 0 in these
cases.

Owing to complication of the expression in (A39) for
W(hp), we have not been able to find a general demon-
stration which allows us to assert that (A39) holds Vhp

& 0 for any Lovelock theory satisfying (3.17) whichever
D & 6. Nevertheless, as (A39) is verified Vhp & 0 for
6 & D & 14, we think that it does so probably for any
D&6.
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