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Abstract 

Background. The EVI1 gene (3q26) codes for a zinc finger transcription factor with 

important roles in both mammalian development and leukemogenesis. Overexpression of 

EVI1 through either 3q26 rearrangements, MLL fusions, or other unknown mechanisms 

confers poor prognosis in acute myeloid leukemia.  

Design and methods. We analyzed the prevalence and prognostic impact of EVI1 

overexpression in a series of 476 acute myeloid leukemia patients, and investigated the 

epigenetic modifications of the EVI1 locus that could be involved in the transcriptional 

regulation of this gene.  

Results. Our data provide further evidence that EVI1 overexpression is a poor prognostic 

marker in acute myeloid leukemia patients <65 years. Moreover, we found that patients 

with no basal expression of EVI1 had better prognosis than patients with 

expression/overexpression (p=0.036). We also show that cell lines with overexpression of 

EVI1 have no DNA methylation in the promoter region of the EVI1 locus, and have marks 

of active histone modifications: H3 and H4 acetylation, and trimethylation of histone H3 

lysine 4. Conversely, cell lines with no expression of EVI1 have DNA hypermethylation and 

are exclusively marked by repressive trimethylation of histone H3 lysine 27 at the EVI1 

promoter.  

Conclusions. Our results identify EVI1 overexpression as a poor prognostic marker in 

patients <65 years in an independent large cohort, and show that the total absence of 

EVI1 expression has a prognostic impact in the outcome of acute myeloid leukemia 

patients. Furthermore, we demonstrated for the first time that an aberrant epigenetic 

pattern involving DNA methylation, H3 and H4 acetylation, and trimethylation of histone H3 

lysine 4 and histone H3 lysine 27 might play a role in the transcriptional regulation of EVI1 

in acute myeloid leukemia. This study opens new routes to further understand the 

regulation of EVI1 expression at transcriptional level. 
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Introduction 

The EVI1 gene (3q26) codes for a zinc finger transcription factor with important roles in 

both mammalian development and leukemogenesis. Since the identification of EVI1 as a 

murine common locus of retroviral integration in myeloid tumors1 this evolutionarily 

conserved gene has been implicated in human myeloid disorders, and in the development 

and progression of high-risk acute myeloid leukemia (AML).2,3 Recurrent 3q26 

rearrangements are the only known mechanisms that lead to EVI1 overexpression4,5,6,7 

however, overexpression of this gene has been reported in 9-20% AML with no 3q 

aberrations, where it is also associated with an unfavorable outcome.8,9,10,11,12,13 Moreover, 

a recent report showed that MLL-ENL activates the transcription of Evi1.7 Therefore, 

transcriptional activation of EVI1 through chromosome rearrangements or other yet to be 

identified mechanisms lead to particularly aggressive forms of human myeloid leukemia.2,3 

The EVI1 locus gives rise to several alternatively spliced variants,2,3,14,15 including the 

intergenic splicing MDS1EVI1 which codes for a larger protein with a PR-domain.3,16 

Besides, EVI1 is transcribed into several 5’-end mRNA transcripts that have the same 

translation start site (Figure S1).  

To date, only three studies in large series of AML patients have analyzed the prevalence 

and prognostic value of EVI1 overexpression, discriminating EVI1 from MDS1EVI1 (Table 

S1).8,9,10,17 The first study found that EVI1-1D was overexpressed in 13.7% cases, and was 

significantly associated with a shorter overall and event-free survival.8 Two recent studies, 

one by the same group, included the analyses of other EVI1 5’-end transcripts and 

confirmed the prevalence and the poor impact that EVI1 overexpression has in AML.9,10 

Lately, this group has proposed a diagnostic assay that quantifies all EVI1 5’-end 

transcripts, including MDS1EVI1. In this study, high expression of EVI1/MDS1EVI1 was 

found in 10.7% cases, and predicted an adverse disease-free and event-free survival.17 

Our aim was to study the prevalence of EVI1 overexpression and its impact on survival in 

a large series of AML patients, and to investigate the mechanisms of regulation of EVI1. 

We performed extensive analyses in both cell lines and patient samples to investigate the 
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genetic and epigenetic mechanisms that could control the expression of EVI1 in AML. Our 

results open new routes to better understanding the prognostic impact of EVI1 in AML, and 

the regulation of its expression at transcriptional level. 

Design and Methods 

Material 

Samples obtained at diagnosis from 476 AML patients, other than acute promyelocytic 

leukemia, were provided by the Hospital La Fe (Valencia), Hospital Santa Creu i Sant Pau 

(Barcelona), Hospital Universitario de Salamanca (Salamanca), Hospital Dr. Negrin (Las 

Palmas), and Department of Genetics of the University of Navarra (Pamplona), which 

belong to the Myeloid Malignancies Group of the Spanish Network of Cancer Research. Of 

these patients, 194 were categorized as elderly (≥ 65 years old), and 249 constituted the 

group of younger AML individuals. The study has been approved by the Ethics Committee 

for Research with Human Subjects, (037/2008). Survival analysis was performed in the 

213 AML patients that were eligible for treatment and were uniformly treated according to 

the Spanish Pethema Co-operative Group protocol LAM99.18 Samples were taken 

anonymously. Normal bone marrow (BM), peripheral blood (PB), and 19 normal tissues 

from the human total RNA Master Panel II (Clontech, Takara-BIO, CA, USA) were used. 

Characteristics of the 16 myeloid cell lines used (DSMZ, Braunschweig, Germany) are 

summarized in Table 1. Cell lines were cultured following manufacturers advice. 

Cytogenetic and mutation analysis 

Cytogenetic and FISH analysis were performed as previously described5 using 6 BAC 

clones: RP11-390G14 (3q21), RP11-475N22 (GATA2), RP11-689D3 (RPN1), RP11-82C9 

(EVI1), RP11-115B16 (MDS1), RP11-196F13 (TNFSF10), and a probe for chromosome 3 

centromere. The PR domain of MDS1EVI1 was amplified by RT-PCR, followed by a semi-

nested with specific primers (Table S2). Gene mutation analysis of FLT3 and NPM1 was 

performed as previously described.19,20,21 PCR products were purified and sequenced. 

DOI: 10.3324/haematol.2011.040535
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Quantitative real-time RT-PCR 

Two micrograms of total RNA isolated from cell pellets using the RNeasy Mini Kit (Qiagen, 

Germany) were used for cDNA synthesis (SuperScript™II RNase HRT; Invitrogen, CA, 

USA). Gene expression quantification was carried out with an ABI Prism 7,500 (Applied 

Biosystems, CA, USA) with 20ng of cDNA. Quantitative real-time RT-PCR (qRT-PCR) was 

performed with predesigned TaqMan gene expression assays for EVI1-1A 

(Hs01118676_m1), EVI1-1B (Hs01118674_m1), EVI1-1C (Hs01118675_m1) and EVI1 11-

12 (Hs01115406_m1), that includes all the EVI1 transcripts; and GATA2 

(Hs00231119_m1). Specific assay-by-design were designed for EVI1-1D, EVI1-3L, and 

MDS1EVI1. Triplicate cycle threshold values were averaged; concentrations of the target 

gene were interpolated from the standard curves and normalized to the GAPDH 

expression for each sample. Samples from the University Hospital La Fe were quantified 

for EVI1-1D expression using the P2 and P3 primers, as previously described. 8 

Overexpression of EVI1 was defined when at least the level of one EVI1 transcript was 

higher than the average and 3 times the standard deviation of 7 BM samples from healthy 

volunteers. 

Analysis of the methylation status of the EVI1 and MDS1EVI1 promoter regions 

DNA methylation profiling of healthy donor peripheral blood (n=4), bone marrow (n=4) and 

CD34+ cells of bone marrow (n=4) samples was performed using the 

HumanMethylation27 Beadchip (Illumina, Inc., San Diego, CA, USA), according to the 

instructions of the manufacturer.22 The panel is developed to quantify the DNA methylation 

status of 27,578 CpG sites located within the proximal promoter regions (1 kb upstream 

and 500bp downstream of transcription start sites) of 14,475 well-annotated genes. Briefly, 

genomic DNA is converted by sodium bisulfite treatment and whole-genome amplified 

using the manufacturer’s instructions. Each CpG locus is represented by two bead types: 

one for the unmethylated (U) site and another for the methylated (M) site. After 

hybridization and single-base extension using labeled nucleotides, the intensity of the U 

and M beads is measured with a microarray reader. The methylation status of a CpG is 
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determined by the beta-value calculation, which is based on the ratio of the fluorescent 

signals between the M bead to the total locus fluorescence intensity. The beta value is a 

quantitative measure of DNA methylation levels of specific CpGs, and ranges from 0 

(completely unmethylated) to 1 (completely methylated). Methylation status of the CpG 

islands of EVI1 (island 1 and 2) and MDS1EVI1 (island 1 and 2) were analyzed by bisulfite 

sequencing PCR (Table S2). DNA modification was performed with the CpGenomeTM DNA 

Modification Kit (CHEMICON, Millipore Corporation, MA, USA). For the treatment of the 

cell lines, several concentrations and time points were tested, and optimal results were 

obtained in 10x106 cells in 10ml of media, and cultured with 4µM of 5-aza-2’-deoxycytidine 

(5-Aza), and 50nM of Trichostatin A (TSA) at 4 days of culture; controls were cultured with 

DMSO and glacial acetic acid.  

Chromatin immunoprecipitation (ChIP) 

HEL, TF1, OCI-AML2, NOMO-1 and MV4-11 cell lines were subjected to ChIP in order to 

assess the acetylation of H3 and H4, and the trimethylation of histone H3 lysine 4 and 

lysine 27 as previously described.23 Ten million cells were crosslinked with 1% 

formaldehyde for 10 minutes, and then 0.125M glycine was used to stop the reaction. 

Subsequently, chromatin was fragmented by sonication to obtain an average fragment 

length of 200-900bp (Bioruptor Diagenode, Belgium). Antibodies used were Anti-acetyl-

Histone H4 and Anti-acetyl-Histone H3 (Millipore Corporation, MA, USA) and anti-trimethyl 

K4 and K27 of H3 (Abcam, Cambridge, UK). The relative amount of specifically 

immunoprecipitated DNA was quantified by SYBR-Green fluorescent dye qRT-PCR, using 

specific primers for EVI1 and MDS1EVI1 promoter regions (Table S2). PCR results were 

calculated using the ΔΔCt method. They were presented as the fold enrichment of 

chromatin DNA precipitated by the specific antibody versus chromatin DNA precipitated by 

no antibody, as control, from at least two independent experiments. 

Western blot analysis 

Cells were lysed in lysis buffer (Cell Signaling, MA, USA) with complete protease inhibitor 

(Roche, IN, USA) and 1mM NaVO4 (SIGMA, MO, USA), and concentration was 
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determined using Bradford method prior to each use (Bio-Rad Laboratories, Inc., CA, 

USA). Western blot analysis were carried out with 50µg of total proteins electrophoresed 

on 10% Tris/Glycine SDS-polyacrilamide solution gel, and transferred to a nitrocellulose 

membrane. Anti-Evi1 antibody was used (Cell Signaling, MA, USA) and anti-lamin A/C 

antibody (Cell Signaling, 2032). Detection was performed with phosphatase alkaline-

conjugated anti-rabbit Ig (SIGMA, MO, USA), and detected with an enhanced 

chemiluminescence (Amersham Pharmacia Biotech, GE Healthcare, Sweden). 

Definitions and Statistical analysis 

Overall survival (OS) was defined as the time from diagnosis to death due to any cause or 

end of follow-up; disease-free survival (DFS) as the time from complete remission until 

relapse or death, whichever occurred first; and event-free survival (EFS) as the time from 

diagnosis until first event, in which failure to achieve complete remission, relapse or death 

were considered events. OS, DFS and EFS were determined according to the Kaplan-

Meier method and survival comparisons were done with log-rank test. Proportional 

hazards models were constructed to determine whether the groups of EVI1 expression 

were associated with outcome when adjusting for other prognostic variables. P values for 

the significance among the cytogenetic subgroups were calculated using the 2-tailed chi-

square test. Sperman’s Rho correlation coefficient was used to calculate the correlations 

between the overexpression of the EVI1 5´-end variants. Statistical analyses were 

performed using SPSS version 15.0 (SPSS Inc., IL, USA). 

Results 

Expression pattern of the alternative forms of EVI1 

High expression of different splice-forms of EVI1 has been implicated in the development 

of high-risk AML.9,10 In order to fully understand the mechanisms leading to EVI1 

overexpression, we first analyzed the EVI1 5′-end variants, including MDS1EVI1, in a 

panel of human tissues, in AML cases, and in 16 myeloid cell lines. In each tissue, 

expression levels of the EVI1 transcripts were similar, and all transcripts could be detected 

in normal BM, although at low levels (Figure S2). Next, we quantified the EVI1 5′-end 
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variants in a series of AML patients selected as a representation of the heterogeneity of 

AML cases (Table S3) and in the myeloid cell lines (Table 1 and Figure S3), and 

completed the analysis of the cell lines with the expression of the EVI1 protein. Expression 

levels of EVI1 transcripts in both patient samples and cell lines correlate with each other in 

a statistically significant manner (Table S4). Among the cell lines overexpressing EVI1 we 

found two groups: AML cell lines overexpressed transcripts -1A, -1B, -1C, and -1D, 

whereas cell lines with CML-BP had only EVI1-1B overexpression as a common feature. 

Western blot analysis detected the EVI1-FL isoform (145kDa) in cell lines with 

overexpression of at least one EVI1 transcript (Table 1 and Figure S3). As an exception, 

MEG-01 (CML-BC) had overexpression of EVI1-1B and no EVI1-FL protein. Moreover, we 

found no association between the expression of any EVI1 transcript and the amount of 

protein (Table 1 and Figure S3). Seven cell lines had no basal expression either of EVI1 or 

MDS1EVI1 (Table 1). 

The fragility of the PR domain, which is a hotspot in both retroviral insertions and 3q 

rearrangements,24 prompted us to perform a mutation analysis of the PR domain in the cell 

lines. We found no mutations in this region; however, we detected a novel MDS1EVI1 

alternative splice form in four cell lines. The analysis of the normal human tissues panel 

demonstrated that this novel alternative splice form is not expressed in peripheral blood, 

but is present in most of tested tissues (Figure S4). This form would codify for a truncated 

protein of 38 amino acids; however, a second ORF is possible from the EVI1 ATG start 

codon in exon 3, which would codify for the Evi1-FL protein (NCBI Accession GQ352634) 

(Figure S4). 

Prevalence of EVI1 overexpression in AML patients 

Since EVI1 alternative transcript forms correlated significantly, we investigated the 

expression of EVI1-1D, EVI1-1C, and MDS1EVI1 in a series of 476 AML patients (Table 

2). EVI1 (-1C and/or -1D) was overexpressed in 92 out of the 476 patients (19.3%). Table 

2 shows the prevalence of EVI1 overexpression, and its association with relevant clinical 

and molecular parameters. Statistical correlations for -1C and -1D were also calculated 
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separately and showed similar results (data not shown). The prevalence of EVI1 

overexpression was significantly different among the cytogenetic prognostic groups 

(p<0.001). EVI1 overexpression was found in 72% cases with 3q rearrangements, 

including all 25 cases with 3q26 (p<0.001). Other cytogenetic abnormalities associated 

with EVI1 overexpression were MLL translocations (p<0.001), and monosomy 7 (p=0.003), 

but not del(7q) (p=0.562). Prevalence of EVI1 overexpression in patients with normal 

karyotype was 7.7%, and an inverse correlation was found between EVI1 overexpression 

and both trisomy 8 and NPM1 mutations; in fact, none of the patients with either trisomy 8 

(16 cases) or NPM1 mutations (79 cases) had EVI1 overexpression.  

Prognostic impact of EVI1 expression in AML patients 

Clinical follow-up data of patients who received induction therapy and were uniformly 

treated were available in 213 patients (110 males and 103 females), with a median age at 

diagnosis of 58 years (range: 16-83). Median follow-up was 159 weeks, with a minimum of 

24 weeks. Median OS of this cohort was 45.7 weeks (95% CI 36.5-54.8). Kaplan-Meier 

analysis showed significant differences in well-recognized risk factors such as age and 

cytogenetic group (p<0.001). In a stratified analysis by age group, patients under 65 years 

old with EVI1-1C overexpression had a significantly lower OS (p=0.005) and EFS 

(p=0.008) (Figure 1 and Figure S5), while no significant differences were found in DFS. 

However, we could not confirm the independent prognosis significance of EVI1-1C 

overexpression in a multivariate model (Table S5). EVI1-1D overexpression had no 

significant impact either on OS, DFS or EFS. In the global cohort, the group of patients 

with EVI1 overexpression and no MDS1EVI1 expression had the worst outcome 

(p=0.017). When comparing patients with no basal expression, expression and 

overexpression of EVI1 in the group of patients under 65 years old, patients with no basal 

expression have a better OS (p=0.020) (Figure 1). Furthermore, patients with no basal 

expression of EVI1 have better OS than patients with expression/overexpression in both 

the global cohort (p=0.036) and in the group of patients <65 years (p=0.005) (Figure 1). 
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EVI1 overexpression and 3q26 rearrangements 

For a better understanding of the role of 3q rearrangements in the expression of EVI1, we 

characterized the 3q21q26 region by FISH, and quantified EVI1 expression in 16 myeloid 

cell lines and in 25 cases with myeloid neoplasias. The HEL and TF-1 cell lines had 

overexpression of EVI1 and several copies of probes located on 3q26; however, a similar 

pattern was found in NOMO-1 and OCI-AML2, with no EVI1 expression; moreover, OCI-

AML2 has an inv(3)(q21q26) (Table 1 and Figure S6). In the patient samples, FISH 

analyses show wide heterogeneity and complex 3q rearrangements. Cases were classified 

in four distinct groups: 3q21q26, 3q26, 3q21, and other 3q aberrations. Cases with either 

3q21q26 (8 cases) or 3q26 (7 cases) breakpoints had EVI1 overexpression, except case 

21872s, the only one with breakpoints located between the 689D3 (3q21; 128.4Mb) and 

82C9 (3q26; 168.8Mb) probes. Cases with other 3q rearrangements and breakpoints 

located between these probes had no EVI1 overexpression either (Table S7). Three cases 

with a single breakpoint on 3q21 had EVI1 overexpression (25704, 24316 and 14066s). 

The 3q26 breakpoints associated with EVI1 overexpression were mainly located 

centromeric to EVI1 in cases with inv(3), and telomeric to MDS1EVI1 in t(3;3) and other 

3q26 rearrangements. Besides, 3q21 breakpoints associated with EVI1 overexpression 

were located centromeric to probe 390G14 (3/4 cases) (Table S7). 

Aberrant epigenetic pattern of EVI1 in AML 

Results showing that EVI1 overexpression sometimes occurs irrespective of 3q21q26 

rearrangements, and the finding that normal basal expression of EVI1 and MDS1EVI1 was 

not detected in several patient samples and cell lines (including OCI-AML2, with 3q21q26) 

(Table 1 and Figure S3) prompted us to study whether EVI1 transcription could be 

regulated by epigenetic mechanisms. For the analysis, we selected 5 cell lines that 

represented the heterogeneity detected in patient samples: HEL and TF-1 had 3q 

aberrations and EVI1 overexpression; OCI-AML2 and NOMO-1 had 3q and no EVI1 

expression; and MV4-11 had neither 3q nor EVI1 expression (Figure 2A). Treatment of 

EVI1-/MDS1EVI1- cell lines with TSA in combination with the demethylating agent 5-Aza 
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induced EVI1 expression (Figure 2B), confirming our hypothesis. The expression does not 

exceed the expression levels of PB or BM. To assess whether the aberrant methylation 

status of the promoter region of the EVI1 locus was the epigenetic mechanism involved, 

we first analyzed the methylation status of the CpG islands predicted in the proximal 

promoter region of EVI1 and MDS1EVI1 in normal samples. High-resolution genome-wide 

methylation arrays from Illumina (Infinium HumanMethylation27 BeadChip, Illumina, CA, 

USA) showed the total absence of methylation in two probes of EVI1 and two of 

MDS1EVI1 in CD34+ progenitor cells (high EVI1 expression) and normal BM and PB (very 

low EVI1 expression) (data not shown). These results would indicate that an aberrant 

hypomethylation of the promoter of EVI1 is not the mechanism of EVI1 overexpression; 

nevertheless, this could be the mechanism involved in the EVI1 gene silencing. The 

methylation status of EVI1-Island 1 and MDS1EVI1-Island 2 showed concordance 

between EVI1 and MDS1EVI1 expression: the EVI1-/MDS1EVI1- cell lines had these 

regions hypermethylated (Figure 2C). However, we observed no significant changes in the 

methylation status of the EVI1-Island 1 before and after the treatment with TSA in 

combination with 5-Aza (Figure 2D). This result prompted us to analyze the trimethylation 

status of histone H3 lysine 4 (H3K4me3) and histone H3 lysine 27 (H3K27me3), and the 

acetylation of histone H3 and H4. Quantification of the amount of chromatin 

immunoprecipitated with anti-trimethyl Lys4 and Lys27 showed that HEL and TF-1 have 

enrichment of the active H3K4me3 pattern, while NOMO-1, MV4-11 and OCI-AML2 had 

the opposite signature, a mark of repressive pattern H3K27me3 (Figure 3A). However, 

there was no difference in the histone methylation status of the cell lines with no 

expression of EVI1 after the treatment with TSA and 5-Aza (Figure S7). We also observed 

an enrichment of the acetylation of histone H3 and H4, especially H3, in HEL and TF-1 

(Figure 3B), and ChIP analysis of the EVI1 promoter showed an enrichment of acetylated 

histone H3 and H4 in treated cell lines (Figure 3C). The enrichment of the active marks 

both in cell lines with EVI1 overexpression and treated cell lines, strongly suggests that 

histone acetylation might play a role in EVI1 expression regulation. Regarding to the 

MDS1EVI1 locus, we observed slight changes in the methylation status of the MDS1EVI1 
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promoter in MV4-11 after treatment with TSA and 5-Aza (Figure 2D); however, MDS1EVI1 

gene expression was not induced after treatment, and we found no difference either in the 

histone methylation or acetylation pattern. Taken together, these results indicate that 

expression of EVI1 in AML is regulated at least in part by epigenetic mechanisms. 

Discussion 

EVI1 has been recognized as one of the most aggressive oncogenes associated with 

AML.2,3 Our results confirm that EVI1 overexpression is an adverse prognostic factor in 

AML patients, not always restricted to 3q26 aberrations. Notably, we show that the total 

absence of EVI1 expression might have a prognostic impact on the outcome of AML 

patients, and that this atypical pattern may be regulated by epigenetic mechanisms. 

Our results confirm in an independent large cohort the prevalence of EVI1 overexpression 

and its adverse prognostic outcome in AML.8,10,17 For the first time, we have included the 

quantification and survival analysis of the EVI1-1C 5’-end variant, and identified the 

overexpression of this transcript as a poor prognostic marker in younger AML patients in 

both OS (p=0.005) and EFS (p=0.008) (Figure 1 and S5), suggesting that this variant could 

be a genetic marker in this subgroup. However, this correlation could not be confirmed in 

multivariate analysis. The significant impact of EVI1 overexpression in OS in a multivariate 

analysis has only been confirmed in the two largest studies: Lugthart et al. for EVI1-1A and 

EVI1-1B; 10 and Groschel et al. for EVI1/MDS1EVI1, that did not discriminate EVI1 from 

MDS1EVI1 (Table S1);17
 thus, it is possible that our sample size is not large enough for 

being statistically significant. Of note, we found that younger AML patients with no EVI1 

expression have a significantly better outcome than patients with either EVI1 expression or 

overexpression (Figure 1), although this event could not be confirmed in multivariate 

analysis. To our knowledge, this is the first time this finding is reported. Further studies in 

independent cohorts are needed to confirm the importance of this result. 

We and others have shown the association between EVI1 overexpression and other 

specific cytogenetic aberrations such as MLL rearrangements and monosomy 7 (Table 

2).8,10,17 Interestingly, it has been recently shown that the specific MLL-ENL fusion 
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activates the transcription of Evi1 in undifferentiated hematopoietic cells.7 In addition, in 

mouse models, EVI1 overexpression induces a myelodysplastic syndrome (MDS) that 

does not progress to AML,25 suggesting the necessity of cooperating mutations in the 

progression to AML. As demonstrated in gene therapy studies, in which enforced 

expression of EVI1 in human cells leads to genomic instability, monosomy 7, and clonal 

progression,24,26 our results support the putative role of monosomy 7 as a cooperating 

mutation in EVI1-positive AML. A similar cooperation has been reported in a murine model 

between RUNX1 mutation D171N and EVI1 in the AML transformation of MDS;27 however, 

we found no mutations of RUNX1 in a series of 46 cases with EVI1 overexpression 

analyzed (data not shown), suggesting that this mechanism is not frequent in human AML. 

Finally, we also found an inverse correlation between EVI1 overexpression and NPM1 

mutations,8,10,12 in agreement with the better outcome of patients with NPM1 mutations.28  

To date, 3q rearrangements and MLL fusions are the only known mechanisms of EVI1 

overexpression. The characterization by qRT-PCR and FISH of 16 cell lines and a series 

of patient samples with myeloid malignancies confirmed that EVI1 overexpression is 

associated with 3q26, although sometimes occurs irrespective of 3q rearrangements 

(Table S5 and Figure S6).9,10 Moreover, the prevalence of EVI1 overexpression among the 

different categories of 3q abnormalities is similar to other recent study.29 Interestingly, we 

showed that FISH breakpoints in cases with 3q26 and EVI1 overexpression were located 

telomeric to MDS1EVI1 (Table S5), a hotspot locus of retroviral insertions,26 which 

suggests that disruption of this region is of the foremost importance in the regulation of 

EVI1 transcription. We have also demonstrated that the EVI1 protein is present even if 

only one EVI1 transcript is overexpressed. As an exception, MEG-01 had overexpression 

of EVI1-1B and no EVI1-FL protein. In this cell line the protein levels might be low and 

therefore difficult to detect by western blot, although in the KU-812 cell line, with low 

expression levels of EVI1 too, the protein could be detected. Another explanation might be 

that the accumulation and degradation of the protein in these cell lines would be different. 

Furthermore, in our study we have also identified a novel alternative spliced MDS1EVI1 
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that together with the previously described EVI1 transcripts would codify to the same sized 

protein EVI1-FL. However, whether all these transcripts are used or not is difficult to know 

because all cell lines with EVI1-FL protein expresses more than one transcript, and we did 

not find any association between any specific transcript and the protein. This would point 

out that the mechanism of EVI1 protein regulation is complex and is still to be elucidated. 

Nevertheless, the fact that the EVI1 protein is present even if only one EVI1 transcript is 

overexpressed supports the importance of the detection of EVI1 expression status at 

diagnosis in AML patients, as indicated by the new WHO classification.30 Moreover, AML 

cell lines overexpressed transcripts -1A, -1B, -1C, and -1D, whereas cell lines with CML-

BP had only EVI1-1B overexpression as a common feature. This might indicate that the 

mechanisms of EVI1 overexpression may depend on the action of different transcription 

factors in the promoter of this gene, opening directions to future studies. 

In order to investigate other mechanisms of EVI1 overexpression, we analyzed the role 

that epigenetic modifications could have in the regulation of the EVI1 gene. The analysis of 

the promoter regions of EVI1 and MDS1EVI1 loci showed no methylation neither in CD34+ 

progenitor cells (high EVI1 expression) nor in normal BM and PB samples (very low EVI1 

expression). These results strongly suggest that DNA methylation modifications do not 

have a role in the normal regulation of EVI1 expression during the differentiation process 

of hematopoietic cells, and that EVI1 promoter hypomethylation can not be the mechanism 

of EVI1 overexpression. However, we had detected absence of normal basal expression of 

EVI1 and MDS1EVI1 in patient samples and cell lines, and several cell lines had 3q 

rearrangements and no EVI1 overexpression; therefore, we hypothesized that epigenetic 

aberrations could have a role in the regulation of the expression of EVI1 in AML. We found 

an aberrant hypermethylation pattern in cell lines with no EVI1/MDS1EVI1 expression 

(Figure 2C), and treatment of these cell lines with TSA in combination with 5-Aza induced 

EVI1 expression (Figure 2B). However, there were no significant changes in the 

methylation status after the treatment, suggesting that other epigenetic mechanisms could 

be involved (Figure 2D). Our results showed that histone modifications could be a 
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mechanism that contributes to silencing the normal basal expression of the EVI1 locus in 

the leukemic cells (Figure 3 A-B). An important observation in this study is the active 

pattern of H4 and specially H3 in the HEL and TF-1 cell lines that have EVI1 

overexpression. Of note, treatment of the cell lines with no EVI1 expression induced 

expression of this gene and showed an increased acetylation of both histone H3 and H4 

on the EVI1 promoter (Figure 3C). We also found that the AML cell lines with DNA 

methylation and no EVI1 expression displayed reduced H3K4me3. These data supports 

the results of recent studies that observed that in AML there is an inverse correlation 

between DNA methylation and H3K4 trimethylation pattern compared with unmethylated 

samples. 31,32,33 The epigenetic modifications H3K4me3 and H3K27me3 are of particular 

interest as these modifications are catalyzed, respectively, by trithorax and polycomb-

group proteins, which have key developmental functions. H3K4me3 methylation positively 

regulates transcription by recruiting nucleosome remodeling enzymes and histone 

acetylases, while H3K27me3 methylation negatively regulates transcription by promoting a 

compact chromatin structure. It has been described that the most highly conserved 

noncoding elements in mammalian genomes cluster within regions enriched for genes 

encoding developmentally important transcription factors, such as EVI1.34 These findings 

suggest that these transcription factors would have key epigenetic regulatory controls 

involved in development. Mapping histone methylation patterns in mouse embryonic stem 

cells showed that EVI1 has an open chromatin structure with a H3K4me3 pattern, as we 

have observed in our EVI1 expressing cell lines, suggesting that this mechanism is 

involved in its regulation in early hematopoietic cells. Our results support that the same 

mechanism could be involved in the leukemic cells.34 Taken together, the histone 

modifications could explain the atypical expression pattern of both cell lines and patient 

samples with no EVI1 expression. This is of special interest since patients with no basal 

expression of EVI1 tend to have a better overall survival rate in comparison with cases 

with either expression or overexpression (Figure 1). Nevertheless, prospective studies are 

needed to clarify the role of histone modifications in EVI1 regulation. 
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In summary, our results support that EVI1 overexpression is an adverse prognostic factor 

in AML, and corroborate the necessity of the quantification of EVI1 and MDS1EVI1 

expression in the diagnosis of younger AML patients, mostly in cases with 3q aberrations, 

monosomy 7, MLL rearrangements, and in the subgroup with normal karyotype and no 

NPM1 mutations. Notably, we show that the total absence of EVI1 expression may have a 

prognostic impact on the outcome of AML patients, and that this atypical pattern may be 

regulated by epigenetic mechanisms. Further studies are needed to elucidate the 

prevalence, prognostic impact, and the significance of no basal EVI1 expression in the 

leukemic transformation of AML.  
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Table 1. Clinical and molecular characteristics of the 16 human myeloid cell lines, including the analysis of EVI1 expression. 

Cell line FAB Partial 3q Karyotype 

Overexpression (qRT-PCR) PR domain Protein 

EVI1-1A EVI1-1B EVI1-1C EVI1-1D EVI1-3L MDS1EVI1 GATA2 
Normal

Novel splicing 
variant 

MDS1EVI1 EVI1-FL 
0.085 0.033 0.099 0.036 0.801 1.969 2.820 

HL-60 AML-M2 no 3q aberrations 0 0 0 0 0.001 0.069 2.566 Yes No No No 

Kasumi-1 AML-M2 no 3q aberrations 0 0 0 0 0.001 0 0.691 No No No No 

MUTZ-3 AML-M4 t(1;3)(q43;q13)inv(3)(q21q26) 0.389 0.276 1.971 0.460 0.700 0 2.620 No No No Yes 

OCI-AML2 AML-M4 
+der(1)t(1;3)(q?;q26),inv(3)(q21q26),t(1;
3)(q?;q26) 

0 0 0 0 0.004 0 1.192 No No No No 

NOMO-1 AML-M5 +der(?)t(3;?)(q21;?) 0 0 0 0 0.002 0 0.438 No No No No 

MOLM-13 AML-M5 no 3q aberrations 0 0 0 0 0.002 0 0.680 No No No No 

MV4-11 AML-M5 no 3q aberrations 0 0 0 0 0.001 0 0.021 No No No No 

TF-1 AML-M6 +der(?)t(?;3)(?;q21)x2 0.187 0.134 1.835 0.125 0.313 0.419 18.427 Yes No No Yes 

HEL AML-M6 t(3;?6)(q21;q?),+3 0.181 0.140 0.244 0.121 0.102 0.313 21.730 Yes Yes Yes Yes 

F-36P AML-M6 no 3q aberrations 0.169 0.219 0.344 0.076 0.395 0.090 5.520 Yes Yes No Yes 

KG-1 AML-M6 no 3q aberrations 0 0 0 0 0.017 0 9.450 No No No No 

EOL1 AML no 3q aberrations 0 0 0 0 0.002 0 0.384 No No No No 

KYO-1 CML-BP no 3q aberrations 0.074 0.110 0.167 0.025 0.053 0.163 19.830 Yes Yes No Yes 

K562 CML-BP +der(?)t(3;?)(q26;?) 0.139 0.216 0 0.020 0.139 2.321 4.176 Yes Yes No Yes 

KU-812 CML-BP no 3q aberrations 0.038 0.045 0 0.010 0.080 0.009 56.600 Yes No No Yes 

MEG-01 CML-BP ?inv(3)(p25q26)* 0.039 0.065 0 0.028 0.370 0.256 6.640 Yes No No No 

Overexpression is highlighted in bold; with the cut-off calculated of 7 normal BM and 3 times the standard deviation; * not confirmed by FISH analysis; cut-offs 
values  calculated of 7 normal BM and 3 times the standard deviation are included for each EVI1 transcript 
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Table 2. Clinical and molecular characteristics of a series of 476 patients with AML and the 

association between EVI1 overexpression (-1C and/or -1D) and clinical and genetic parameters. 

    No. Cases No. EVI1- No. EVI1+ P 
EVI1 (-1C and/or -1D)   476 384 (80.7%) 92 (19.3%)   
Sex 450 367 83 p=0.057 
Male  245 192 (78.4%) 53 (21.6%)   
Female   205 175 (85.4%) 30 (14.6%)   
Age 445 366 79 p=0.002
<65 years  249 192 (77%) 57 (23%)   
≥65 years   194 172 (88.7%) 22 (11.3%)   
CR 220 174 46 p=0.515 
No  56 46 (82%) 10 (18%)   
Yes  164 128 (78%) 36 (22%)   
Diagnosis   476 384 92   
AML-M0  34 22 (64.7%) 12 (35.3%)   
AML-M1  79 72 (91%) 7 (9%)   
AML-M2  126 111 (88%) 15 (12%)   
AML-M3  16 15 (93.8%) 1 (6.3%)   
AML-M4  62 52 (84%) 10 (16%)   
AML-M5  57 47 (82.5%) 10 (17.5%)   
AML-M6  25 18 (72%) 7 (28%)   
AML-M7  7 4 (57%) 3 (43%)   
AML-NOS*   70 43 (61.4%) 27 (38.6%)   
sAML 292 243 49 p=0.013
No  243 209 (86.0%) 34 (14.0%)   
Yes   49 34 (69.4%) 15 (30.6%)   
Prognostic group 476 384 92 p<0.001
Good  55 53 (96.4%) 2 (3.6%)   
Intermediate  269 234 (87%) 35 (13%)   
Poor   152 97 (63.8%) 55 (36.2%)   
Cytogenetic group 415 329 86   

normal karyotype 
No 272 197 (72.4%) 75 (27.6%) 

p<0.001
Yes 143 132 (92.3%) 11 (7.7%) 

MLL (11q23) balanced translocation 
No 402 326 (81%) 76 (19%) 

p<0.001
Yes 13 3 (23%) 10 (77%) 

trisomy 8 
No 460 368 (80%) 92 (20%) 

p=0.034
Yes 16 16 (100%) 0  

3q aberrations 
No 372 317 (85.2%) 55 (14.8%) 

p<0.001
Yes 43 12 (28%) 31 (72%) 

monosomy 7 
No 393 317 (80.7%) 76 (19.3%) 

p=0.003
Yes 22 12 (54.5%) 10 (45.5%) 

del(7q) 
No 407 322 (79%) 85 (21%) 

p=0.562 
Yes 8 7 (87.5%) 1 (12.5%) 

complex karyotype 
No 345 272 (78.8%) 73 (21.2%) 

p=0.626 
Yes 70 57 (81.4%) 13 (18.6%) 

MDS1EVI1 overexpression   288 222 66 p<0.001
No  259 219 (84.6%) 40 (15.4%)   
Yes   29 3 (10.3%) 26 (89.7%)   
NPM1 mutated   223 203 20 p<0.001
No  144 124 (86%) 20 (14%)   
Yes   79 79 (100%) 0    
FLT3-ITD   362 329 33 p=0.166 
No  295 265 (89.8%) 30 (10.2%)   
Yes   67 64 (95.5%) 3 (4.5%)   

* AML-NOS: AML not otherwise specified 
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Figure Legends 

Figure 1. Survival analysis of a series of patients with acute myeloid leukemia according to 

the EVI1 expression status. (A) In Kaplan Meier analysis stratified by age, patients <65 

years and EVI1-1C overexpression show an inferior overall survival in comparison to 

patients with no EVI1-1C overexpression. (B) In Kaplan Meier analysis, patients <65 years 

and no basal expression of EVI1 (-1C/-1D) show a better overall survival in comparison to 

patients with either expression or overexpression of EVI1, and a trend to better outcome in 

the global cohort. (C) In Kaplan Meier analysis, patients <65 years and no basal 

expression of EVI1 (-1C/-1D) show a better overall survival in comparison to patients with 

EVI1 expression/overexpression. The same results are found in the global cohort. 

Figure 2. Analysis of the epigenetic status of the EVI1 locus in five myeloid cell lines. (A) 

Quantification of the relative expression of the EVI1 splice variants, with BM as control 

sample. (B) Quantification of the relative expression of EVI1 (EVI1 11-12) after treatment 

with 5’Aza and TSA. Statistical significance was estimated using non-parametric Wilcoxon 

matched pairs test; p < 0.05 was considered significant (*). (C) Diagram of the methylation 

status of the EVI1-Island 1 and MDS1EVI1-Island 2 by direct sequencing after bisulfite 

treatment (white: non-methylated; black: methylated).(D) Diagram of the methylation status 

of the EVI1-Island 1 and MDS1EVI1-Island 2 after treatment with 5’Aza and TSA (white: 

non-methylated; black: methylated).  

Figure 3. Analysis of the epigenetic status of the histones of the EVI1 locus in five myeloid 

cell lines. (A) qRT-PCR performed on fragmented chromatin, showing the enrichment of 

trimethylation of histone H3 lysine 4 (H3K4me3) and histone H3 lysine 27 (H3K27me3) on 

the EVI1 promoter. (B) qRT-PCR performed on fragmented chromatin, showing the 

enrichment of acetylated histones H3 and H4 on the EVI1 promoter. The results were 

calculated using the ΔΔCt method. They were presented as the fold enrichment of 

chromatin DNA precipitated by the specific antibody versus chromatin DNA precipitated by 

no antibody, as control. (C) qRT-PCR performed on fragmented chromatin, showing the 

enrichment of acetylated histones H3 and H4 on EVI1 promoter regions after treatment 

with 5’Aza and TSA. The results were calculated and presented as described above, and 

comparing with or without the treatment. Statistical significance was estimated using non-

parametric Wilcoxon matched pairs test; p < 0.05 was considered significant (*), and p < 

0.01 very significant (**). 
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Legends to Supplementary Figures  

Supplementary Figure 1. Genomic locus of the human EVI1 gene and EVI1 splice 

variants. A) Genomic structure of the human EVI1 gene with the three alternative splice 

variants: EVI1-Δ324, EVI1-Rp9 and the EVI1-Δ105. (B) Alternative mRNA 5′-end variants 

of the human EVI1 gene. The shadow in grey represents the relative position of the EVI1 

CpG islands. (Adapted from Wieser 2007, and Lugthart et al. 2008). 

Supplementary Figure 2. Quantification of the EVI1 5’-end variants in normal tissues. 

(Expression levels were normalized with spinal cord). 

Supplementary Figure 3. Analysis of EVI1 expression in 16 myeloid cell lines. (A) 

Quantification of the expression levels of EVI1 5’-end variants. Expression levels were 

normalized with normal bone marrow (B) Western blot analysis of EVI1 and MDS1EVI1. 

Supplementary Figure 4. Analysis of the MDS1EVI1 PR domain. Sequences of 

alternative splicings of MDS1EVI1. The previously described intergenic splicing between 

MDS1 (exon 2) and EVI1 (exon 2), and the novel alternative splicing between MDS1 (exon 

1) and EVI1 (exon 2). Different exons are colored with different colors; the sequence of 

MDS1 is underlined. 

Supplementary Figure 5. EVI1-1C overexpression is associated with poor survival 

outcome in AML patients <65 years. (A) In Kaplan Meier analysis stratified by age, patients 

<65 years and EVI1-1C overexpression shows an inferior event-free survival in 

comparison to patients with no EVI1-1C overexpression. 

Supplementary Figure 6. Representation of the 3q aberrations detected by FISH in 6 

myeloid cell lines, indicating the position of the probes used and the orientation of the 

genes located within these probes. 

Supplementary Figure 7. Analysis of the histone methylation of the EVI1 locus in three 

myeloid cell lines after treatment with 5-Aza and TSA. (A) qRT-PCR performed on 

fragmented chromatin, showing the levels of trimethylation of histone H3 lysine 4 

(H3K4me3) and histone H3 lysine 27 (H3K27me3) on EVI1 promoter before and after the 

treatment. The results were calculated using the ΔΔCt method. They were presented as 
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the fold enrichment of chromatin DNA precipitated by the specific antibody versus 

chromatin DNA precipitated by no antibody, as control, and comparing with or without the 

treatment.  
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Supplementary Table 1. Review of the literature of large series of AML adult patients that reported the prevalence and prognostic value of EVI1 overexpression. 

Reference 
No.  

cases 
analyzed 

No. cases 
with EVI1 

overexpression 

Prevalence of EVI1 
overexpression among the 
cytogenetic 
risk groups 

Univariate Multivariate 

Global cohort 
Intermediate-risk 
karyotype (*) 

Normal 
cytogenetics (*) 

Global cohort (*) 
Intermediate-risk 
karyotype (*) 

Barjesteh van Waalwijk van Doorn-Khosrovani et al., 2003 

  319 32 (10%) 
good: 0% (0/57) 
intermediate: 7.5% (16/212) 
poor: 32% (16/50) 

OS and EFS (-1D) OS and EFS (-1D)    OS and EFS (-1D) 

Haas et al., 2008 

  266 41 (15.4%) no data 
EFS (-3L) 
DFS (-1A, -1B, -1D, -3L, 
MDS1EVI1, cEVI1) 

EFS (-1B) 
DFS (-1A, -1B, -1D, -3L, 
MDS1EVI1, cEVI1) 

DFS (-1A, -1B, -1D, -3L, 
MDS1EVI1, cEVI1) 

   

Lugthart et al., 2008 

  534 41 (7.8%) 
good: 1.1% (1/90) 
intermediate: 4.7% (17/364) 
poor: 28.8% (23/80) 

OS (-1A, -1B, -1D, -3L) 
EFS (-1A, -1B, -1D, -3L)
DFS (-1A, -1B, -1D, -3L)

    
OS (-1A, -1B) 
EFS (-1A, -1B, -3L)
DFS (-1A, -1B)  

 

Groschel et al., 2010 

  1328 148 (10.7%) 
good: 0.4% (1/263) 
intermediate: 7.4% (62/836) 
poor: 38% (73/198) 

OS, EFS and RFS 
(EVI1/MDS1EVI1) 
<60 years 

  
OS, EFS and RFS 
(EVI1/MDS1EVI1) 
<60 years 

 

Vazquez et al., 2011 

  476 92 (19.3%) 
good: 3.6% (2/55) 
intermediate: 13% (35/269) 
poor: 36.2% (55/152) 

OS and EFS (-1C) 
<65 years        

(*) Significant data; overall survival (OS); event-free survival (EFS); disease-free survival (DFS); relapse-free survival (RFS); sum of all EVI1 transcripts (cEVI1) 
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Supplementary Table 2. Sequence of the primers used to analyze the PR domain of MDS1EVI1, 
the methylation status of CpG islands of EVI1 (Island 1 and Island 2) and MDS1EVI1 (Island 1 and 
Island 2), and primers used for qRT-PCR on ChIP. 

Primer Name Oligonucleotide sequence (5´-3´) AT(oC) 

PR domain F CACAGCATGAGATCCAAAGG 
59 

PR domain R AAGAGCGAAGACTATCCCCA 

PR domain R2 CCAGCGAATCTAATGTACTTGAGC 59.5 

EVI1-Island1 F TGTTGAGTTGAGGTTATAGAAATTTAAAG 
59 

EVI1-Island1 R CCCACAATCTAACCAAAAAATC 

EVI1-Island2 F GTAGGTTTGGTTAAATTAGGATTT 
55 

EVI1-Island2 R CCTAAACTACAATATACCTTCCTCTC 

MDS1EVI1-Island1 F TTTGTTTAAGTTTTTTTAATTTTTTTT 
55 

MDS1EVI1-Island1 R CTCTCCAACATTATCAATTTAAACAC 

MDS1EVI1-Island2 1F GGAAGGGATTTTAAGAGGTTTAAATT 
56 

MDS1EVI1-Island2 1R ACCCATAAAATTAAAAAACCATTTC 

MDS1EVI1-Island2 2F TTTTATATATATATTAGAAGTTGGATGGGA 
59 

MDS1EVI1-Island2 2R TATAAACACACATCCAAACAACAAC 

ChIP -724(EVI1) F CATTGGAACTGGGAAGGAGA 
60 

ChIP -724(EVI1) R CGCGTTTCGGATTTATTGTC 

ChIP -5000(MDS1EVI1) F GGGGAGGGAGTAGGATTGTA 
60 

ChIP -5000(MDS1EVI1) R CTTGCCGTTTTGTAAATTGC 

AT, annealing temperature. The relative position of the amplicon in the ChIP primers is specified 
before the name of the gene. 
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Supplementary Table 3. Quantification of the EVI1 5’-end variants in 18 patients with AML. 

ID Sex FAB sAML Karyotype 
EVI1-1A EVI1-1B EVI1-1C EVI1-1D EVI1-3L MDS1EVI1

0.085 0.033 0.099 0.036 0.801 1.969
43 F AML-M4 sAML 45,XX,t(3;10)(q24;q24),del(5)(q31),-7,del(13)(q21) 2.330 34.960 12.150 2.369 0.299 18.381

269 M 
AML-
NOS 

sAML 46,XY 0.070 0.004 0.161 0.058 0.298 1.222

270 M AML-M5 sAML 46,XY,add(11)(q24) 0.574 20.690 0.465 0.296 4.606 6.752
271 F AML-M4 de novo 46,XX 0.038 0.001 0 0.017 0.127 1.047
273 M AML-M4 de novo 46,XY 0.012 0.001 0 0.004 0.038 0.313
276 F AML-M5 de novo 46,XY 0.003 0 0 0.002 0.035 0.022
277 F AML-M5 sAML 48,+3,+8,t(9;11)(p21;q23)/46,XX 0.903 0.003 0.440 0.136 0.690 13.767
278 F AML-M5 de novo 43,X,-X,der(3)t(3;10)(p23;q11),-10,del(12)(p11),-20 0.002 0 0 0.002 0.370 0.042

280 M AML-M5 sAML 
46,XY,del(3)(p21),del(5q21q34),-13,-18,add(19)(q13),+2mar/ 
45,XY,-3,del(5)(q21q34),der(6),-17,-17,-18,-19,-20,+5mar 

0.044 0.001 0.108 0.023 0.148 0.469

281 M 
AML-
NOS 

sAML 46,XY 0.072 0.001 0.053 0.012 0.201 6.984

282 F AML-M2 de novo 45,XX,t(4;11)(p12;q23),-7 0.993 0.002 2.170 0.299 0.201 0.330
284 M AML-M2 de novo 47,XY,+4,t(8;21)(q22;q22) 0.014 0.000 0 0.004 0.511 0.124
286 F AML-M0 de novo 46,XX,t(5;16)(q14;q24) 8.767 0.025 7.960 2.086 4.523 0.157
289 M AML-M2 de novo 46,XY,t(8;21)(q22;q22) 0.019 0.003 0.150 0.012 0.060 0.367
290 M AML-M4 de novo 46,XY,t(10;11)(p14;q21) 0.066 0.002 0 0.030 0.263 3.107
291 F AML-M6 de novo 45,XX,-7 2.188 19.570 10.770 1.568 1.025 0.049
292 M AML-M1 de novo 46,XY 0.007 0 0.169 0.004 0.012 0.108
471 M AML-M5 de novo 46,XY,add(11)(q23) 0.024 0.001 0 0.009 0.131 0.112

AML not otherwise specified (AML-NOS); Overexpression is highlighted in red; with the cut-off calculated of 7 normal BM and 3 times the standard deviation. 
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Supplementary Table 4. Correlations between the expression levels of the EVI1 transcripts in AML patients and cell lines. 

Correlations between the expression levels of EVI1 transcripts in 18 AML cases: 

 EVI1-1B EVI1-1C EVI1-1D EVI1-3L MDS1EVI1 
EVI1-1A 0.860(**) 0.792 (**) 0.965 (**) 0.631 (**) 0.550 (*) 

EVI1-1B  0.759 (**) 0.902 (**) 0.557 (*) 0.593 (**) 
EVI1-1C   0.824 (**) 0.473 (*) 0.294 
EVI1-1D    0.597 (**) 0.542 (*) 
EVI1-3L     0.267 

Correlations between the expression levels of EVI1 transcripts in 16 AML cell lines: 

  EVI1-1B EVI1-1C EVI1-1D EVI1-3L MDS1EVI1 
EVI1-1A 0.970(**) 0.852(**) 0.987(**) 0.877(**) 0.677(**) 

EVI1-1B  0.783(**) 0.943(**) 0.889(**) 0.660(**) 
EVI1-1C   0.852(**) 0.672(**) 0.374 
EVI1-1D    0.889(**) 0.657(**) 
EVI1-3L     0.567(*) 

Spearman’s Rho correlation coefficients were calculated for the 18 AML patient samples and 16 myeloid cell lines in which the EVI1 transcripts had been 
measured. 

p<0.05 (*) 

p<0.001 (**) 
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Supplementary Table 5. Multivariate analysis of EVI1-1C overexpression as a prognostic marker for survival in the cohort of AML patients under 65 years old. 

 

Prognostic Marker P (univariate) P (multivariate) HR 95% CI 

Overall survival1  

Cytogenetic risk group <0.001 <0.001 2.026 1.410-2.371 

EVI1-1C overexpression 0.006 0.211 1.436 0.814-2.942 

Event-free survival1  

Cytogenetic risk group <0.001 0.002 1.756 1.226-2.517 

EVI1-1C overexpression 0.018 0.235 1.403 0.802-2.456 
 

1Other parameters such as sex, type of AML, FLT3-ITD mutations and NPM1 mutations were not significantly associated with survival in the univariate analysis and were not included 
in the multivariate model. 

Abbreviations: HR, hazard ratio; CI confidence interval. 
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Supplementary Table 6. Multivariate analysis of EVI1 expression groups (patients with no basal expression versus patients with expression/overexpression) as a 

prognostic marker for survival in the global cohort of AML patients, and in AML patients under 65 years old. 

 

Prognostic Marker (global cohort) P (univariate) P (multivariate) HR 95% CI 

Overall survival1  

Age <0.001 <0.001 2.038 1.489- 2.790 

Cytogenetic risk group <0.001 <0.001 1.828 1.410-2.371 

EVI1 with no basal expression 0.037 0.642 1.080 0.781-1.493 

Prognostic Marker (under 65) P (univariate) P (multivariate) HR 95% CI 

Overall survival1  

Cytogenetic risk group <0.001 <0.001 1.941 1.395-2.702 

EVI1 expression groups 0.006 0.100 1.428 0.934-2.183 
 
1Other parameters such as sex, age (only for the global cohort), type of AML, FLT3-ITD mutations and NPM1 mutations were not significantly associated with survival in the univariate 
analysis and were not included in the multivariate model. 

Abbreviations: HR, hazard ratio; CI confidence interval. 
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Supplementary Table 7. Schematic representation of the FISH breakpoints in 25 cases with 3q aberrations. 

         centr.      3q21               3q26   tel. 

  

Case Partial karyotype after FISH 
Gene 

FAB   
 

390G14   
475N22 

  
689D3 

      
82C9 

  
115B16 

  
196F13 

overexpression  (GATA2) (RPN1) (EVI1) (MDS1) (TRAIL) 

3q
23

1 
&

 3
q

26
 

18352 der(3)t(?;3)(?;q21)inv(3)(q21q26) E+ME AML-M0          X       X           
15525 der(3)inv(3)(q21q26)t(3;17)(q27?;q12) E+ME AML-M7          X       X           
8689s der(3)inv(3)(q21q26)del(3)(q21) E AML-M0      X del         X           

18707s inv(3)(q21q26) E+ME AML-NOS              X           X   
15845s t(3;3)(q21;q26) E AML-NOS        X                 X   
10357s t(3;3)(q21;q26) E MDS          X               X   
30840 ins(3;3)(q21q26) E+ME RAEB-1      X       X           X   

21872s t(3;3)(q21;q26) NO AML-NOS              X   X           

3q
26

 

21029s t(3;?6)(q26;?q25) E AML-M0                          X der(6) 
3666v t(2;3)(p23;q26) E+ME AML-M0                          X der(2) 
28783 t(3;3)(q26;p?) E (ME n.d.) AML-M7                          X der(3p) 

562v t(3;12)(q26;p13) E+ME CML-BP                          X der(12) 
19491s t(3;21)(q26;q21) E+ME MDS                          X der(21) 

1389v t(2;3)(p15;q26) E RAEB-2                          X der(2) 
19130 der(3)t(3;?)(q26;?) E AML-M5                      X der(?)   der(?) 

3q
21

 

14066s del(3)(q21q26) E AML-M2  X del   del   del       del   del   del 
24188 der(3)t(3;5)(q26q21;q31) NO AML-M2  X der(5)   der(5)   der(5)       n.d.   der(5)     
24316 der(3)del(3)(q21)t(3;?9)(q26;?) E AML-M4  X del   del   del       n.d.   der(9p)     
25704 inv(3;3)(p?;q21) E RAEB-2  X                           
12201 del(3)(q21) NO RAEB-2      X del   del                 
30157 der(3)t(3;?)(q26q21;?) NO AML-M6          X der(5)       der(5)   der(5)   der(5) 
12826  -3,der(3)t(3;12)(q13;p13) NO MDS          X der(12?)       der(12?)   der(12?)   der(12?) 

3q
 

15285 t(3;12)(q?21;q?) NO AML-M1                X   der(12)   der(12)   der(12) 

26164 
der(3)ins(3;3)(q26;p?) (probes 3q26 in 
both 3q and 3p) NO AML-M5   

 
            X   dup(3p)   dup(3p)   dup(3p) 

8706s der(3)t(3;?)(q26;?),der(?)t(3;?)(q26;?)x2 NO MDS                X   der(?)x2   der(?)x2   der(?)x2 

EVI1 (E); MDS1EVI1 (ME); No gene overexpression (NO); no data (n.d.); centromere (centr.); telomere (tel.); the crosses (X) show the positions of the breakpoints. 
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