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Immirzi ambiguity in the kinematics of quantum general relativity
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The Immirzi ambiguity arises in loop quantum gravity when geometric operators are represented in terms of
different connections that are related by means of an extended Wick transform. We analyze the action of this
transform in gravity coupled with matter fields and discuss its analogy with the Wick rotation on which the
Thiemann transform between Euclidean and Lorentzian gravity is based. In addition, we prove that the effect
of this extended Wick transform is equivalent to a constant scale transformation as far as the symplectic
structure and kinematical constraints are concerned. This equivalence is broken in the dynamical evolution.
Our results are applied to the discussion of the black hole entropy in the limit of large horizon areas. We first
argue that, since the entropy calculation is performed for horizons of fixed constant area, one might in principle
choose an Immirzi parameter that depends on this quantity. This would spoil the linearity with the area in the
entropy formula. We then show that the Immirzi parameter appears as a constant scaling in all the steps where
dynamical information plays a relevant role in the entropy calculation. This fact, together with the kinematical
equivalence of the Immirzi ambiguity with a change of scale, is used to preclude the potential nonlinearity of
the entropy on physical grounds.
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[. INTRODUCTION proved the existence of(generalizegicanonical transforma-
tion that converts the Lorentzian complex connection into a
The formulation of general relativity in terms of connec- real connectioh8] (which we will call the Ashtekar-Barbero
tion variables, introduced by Ashtekgt,2], constitutes one connection from now on The only drawback of this change
of the most promising approaches to the quantization obf phase-space variables is that the expression of the Hamil-
gravity. In the Ashtekar formalism, the gravitational field is tonian constraint loses its original simplicity. But this relative
described by a compleZU(2) connection and a canonically complication is overwhelmingly compensated for by the
conjugate, densitize8U(2) soldering form. The shift of em- availability of the realSU(2) group as the operationally rel-
phasis from geometrodynamics to connection dynamics alevant gauge group.
lows the import of techniques employed in the quantization This real connection formalism has been extensively used
of gauge field theories, providing a common mathematicafor the quantization of general relativity, mainly in the frame-
language for the analysis of quantum gravity and matter. lrwork of loop quantum gravity9]. Actually, the Ashtekar-
addition, the expressions of the gravitational constraints ifBarbero connection can easily be generalized to a one-
Ashtekar variables are extremely simple, raising renewegarameter family of real connections, all of them related by
hopes for their resolution in the quantum theory. means of canonical transformatiof8,10]. The associated
The price to be paid is that the Ashtekar connection isparameter is usually called the Immirzi parameter, and we
complex for Lorentzian general relativity. This leads to seri-will denote it byy. The remarkable point noticed by Immirzi
ous technical and conceptual difficulties, both owing to theis that the physical predictions of the quantum theory depend
lack of a suitable mathematical machinery to deal with theon . This is something striking, because the Immirzi param-
complex SU(2) group and because the real part of theeter designates just equivalent descriptions of the same phase
Lorentzian connection turns out to depend on the densitizedpace. From a classical point of view, its value does not
soldering form, a fact that is incorporated in the quantizatioraffect the physics. Quantum mechanically, however, there
program by imposing the so-called reality conditiggs3]. exists an ambiguity iry that appears, e.g., as a multiplicative
In order to circumvent these problems, essentially twoconstant in the area spectryit].
different avenues have been followed. A possible solution Recently, a radically different alternative to the Ashtekar-
was proposed by Thiemann, who showed that the LorentziaBarbero formulation has been suggested which is apparently
and Euclidean sectors of Ashtekar gravity can be related bfree of the Immirzi ambiguity. This alternative consists in
an automorphism on the algebra of functions on phase spacteveloping a manifestly Lorentz invariant formaligri].
[4,5]. This automorphism, often called the Thiemann transBy retaining the full Lorentz group, one ensures that the
form, can be regarded as the composition of a Wick transehoice of quantization scheme does not result in the appear-
form and a complex constant scale transformafi®yr]. It  ance of anomalies, which could cause the Immirzi ambiguity.
maps the Lorentzian to the Euclidean constraints and, morl addition, this approach preserves the correct spacetime
importantly, the Ashtekar connection of Lorentzian generalnterpretation of the gravitational variables. In this sense, it is
relativity to its Euclidean counterpart, which is real. None-worth commenting that the Ashtekar-Barbero connection has
theless, the complications show up when one tries to implebeen proved not to transform as the pull-back of a spacetime
ment the Thiemann transform quantum mechanically. connection under diffeomorphisms which are normal to the
The other possibility was put forward by Barbero. He sections of constant timl2]. However, the formalism and

0556-2821/2002/6@)/0240219)/$20.00 66 024021-1 ©2002 The American Physical Society


https://core.ac.uk/display/36081181?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

LUIS J. GARAY AND GUILLERMO A. MENA MARUGAN PHYSICAL REVIEW D 66, 024021 (2002

phase space of this Lorentz invariant approach are much We will also discuss the implications of our results for
more intricate than those of the original Ashtekar-Barbercone of the most outstanding predictions of loop quantum
theory, and further progress is needed to extract and comprgravity: the entropy formula of a quantum black hole. This
hend its physical predictions. entropy is calculated assuming a horizon with fixed adea
Since the family of real connections obtained by Immirziand adopting a loop quantization with given Immirzi param-
leads to different quantum results, it is clear that the canonieter [21-23. Apparently, therefore, nothing prevents the
cal transformations that relate these connections cannot b@lue of y from depending onA. This would destroy the
implemented unitarilyf13]. This obstruction for unitarity is linear dependence on the area in the deduced entropy
not well understood. To shed some light on its origin, the[21,22. A way out of this conundrum turns out to be pro-
Immirzi ambiguity has been compared with other quanturrvided by the kinematical equivalence between a change in
ambiguities or anomalies. Rovelli and Thiemarr8] have and a change of scale. As we will show, this equivalence
tried to construct a finite dimensional analogue, but theirallows one to regain the Bekenstein-Hawking formula.
attempt seems to have been unsucce$s#ll In fact, if one The paper is organized as follows. In Sec. Il we succinctly
could associate an independent Immirzi ambiguity with ev-describe the Ashtekar formalism for gravity coupled with
ery degree of freedorfa finite dimensional systemthe am- ~ matter fields. The real Ashtekar-Barbero connection is intro-
biguity in general relativity would admit an extension from a duced in Sec. lll, where we also revisit the action of constant
constant parameter to two functions of the spatial positiorthanges of scale and of some suitable extensions of the Wick
[12]. However, this hypothetical extension conflicts with dif- and Thiemann transforms. In addition, we analyze the rela-
feomorphism invariancgl5]. On the other hand, Corichi and tion between these extended transforms and the canonical
Krasnov have discussed the possible parallelism between tgansformations introduced by Immirzi. Then, we prove in
Immirzi ambiguity and a factor ambiguity that appears in theSec. IV that the Immirzi ambiguity amounts to a constant
electric charge of Maxwell theorfy1 6]. But, among standard scaling as far as the kinematics of general relativity is con-
quantum field theories, the closest similarity is probablycerned. The physical consequences of this equivalence are
found with thed ambiguity of Yang-Mill theorie§17]. Un-  analyzed in Sec. V. In particular, we show that the effect of
like what happens in that case, however, the Immirzi ambithe Immirzi ambiguity in the formula of the black hole en-
guity does not arise as a consequence of a multiply contropy can be absorbed into a change of length scale. Our
nected configuration spa¢@4,18. In this situation, further ~conclusions are summarized in Sec. VI. Finally, an Appendix
investigation is required to clarify the roots and implicationsis added where we include the expression of the scalar con-
of the Immirzi ambiguity in quantum gravity. straint in the presence of matter fields and study how it is
Some proposed interpretations of this ambiguity haveaffected by the Immirzi ambiguity.
been considered and criticized by Rovelli and Thiemann
[13], among them the possibility that the Immirzi parameter Il. GRAVITY WITH MATTER FIELDS
amounts to multiplying the classical action by a constant . . I .
factor. Although both ambiguities are not equivalent, a rela- -6t US briefly review the Hamiltonian formulation of gen-

tion between them should not be discarded. The main reasdfi® Te'a“"'ty in the presence O_f matter f'GIEES].' we will ,

is that, as pointed out by Rainft9], the semiclassical pre- consider a matter content consisting of a massive scalar field
dictions of quantum gravity may lead to subtle differences®, massive spin-1/2 fieldg, and 7,, and a Yang-Mills
between what we call the Planck length in low-energy physconnectior\Aa. All these fields are defined on a certain three-
ics,|,,, and what constitutes the fundamental length scale ifnanifold, and we will collectively denote them &g}, We

the quantum theony, . This fundamental length is deter- call  {pc} their respective  canonical ~momenta
mined by the overall factor that multiplies the symplectic{m4.p* @ E%}. By canonically conjugate we mean vari-
structure[20] (or, equivalently, the Poisson bracketyve ables whose Poisson bracket is the identity multiplied by
will return to this issue later in our work. 82, with |, = \/G#. Here, % is the Planck constarit.e.,

In connection with the above comments, it has been arthe fundamental quantum of actiprG is the true Newton
gued that the Immirzi parameter plays simply the role of aconstant that appears in the gravitational acf@®l, and we
scaling of the Planck length. Sincg appears as a global have takerc=1. Our notation is very similar to that intro-
factor in the spectrum of the area operaftd@], the Planck duced in Ref[7]. Internal Yang-Mills indices are not dis-
length would be multiplied by/y. However, the scalar con- played, and spatial indices are denoted with lowercase Latin
straint displays a non-homogeneous dependence ¢imat  letters from the beginning of the alphabet. Capital Latin let-
seems to conflict with this interpretatiqi7]. One of the ters, on the other hand, design&e(2) spinors when used
aims of the present paper is to discuss the actual relatio@s indices. They are raised and lowered with the alternating
between the Immirzi ambiguity and a constant scale transfortensorse"® andeg [2]. Whenever they are not necessary for
mation. We will prove that there indeed exists an equivalenceinderstanding the formulas, we will also suppress them.
if one restricts all considerations to the kinematics of the As for the gravitational part of the phase space, it can be
Ashtekar-Barbero formulation, i.e., if one disregards dynam<described by the canonical paia{,®,i vV20?,5), wherea,
ics. This analysis will be carried out in gravity with matter is the (complex SU(2) Ashtekar connection and? is the
fields[3], so that we can also clarify the extent to which the densitized soldering forri2]. The Ashtekar connection can
Immirzi ambiguity is or is not affected by the introduction of be written asa,=1",—i1V,, wherel', denotes the spin con-
matter(see the preliminary discussion in RgL7]). nection compatible witkr?®, andV,=K,+iC,, with K, and
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C, being the extrinsic-curvature and fermionic contributions ds?= — o®N2dt?+ h,,(dx3+ Nadt) (dx°+ NPdt),

[2,7]: 2.7
K 07 the metrich,, being the inverse oh#’= — o~ 2tr(c2c®).

a~— \/EO"

K

Ill. ASHTEKAR-BARBERO CONNECTIONS

[ The Ashtekar connection is not real for two reasons. First,
AB_ (AC B, ,BC A) (2.2) it - D >
a 42 Ta Yo T0a Yo ) : because it is a complex linear combination of the spin con-
nection I'; and the momenta of the soldering forms
In this formula,K ,,, is the extrinsic curvaturer, is the in-  Va=Ka+iC4. Second, because these momeéntare genu-
verse ofg?, o=[det(—tr{c2c?})]¥4 and inely complex when fermions are pres¢i7]. With the aim
of addressing the former of these issues, we introduce the
Yas=paépt @a7s- (220  connections
For the action proposed by Ashtekar, Romano and Tate "aa=I'a—yVa, (3.1

[2,3], the explicit expressions of the kinematical constraints . - . -
are the following: where y>0 is the Immirzi parameter. Since our definition

reproduces that of Ref8] in the absence of matter, we will

G=g D,E? call “a, the Ashtekar-Barbero connections. It should how-
ever be clear that such connections are not real when fermi-
Gap=I \/Eba(ff\s—yms) (2.3 ons are allowed. The canonically conjugate momenta of

—\[27a, are Yo?=y~ 152,

Formulations with different values of the Immirzi param-
etery are related by an extended Wick transfoRm [7,24]
such that

Va=—1i \/Etl’( Ub]:ab) - PAbafA

S 1.
—wpDan" = mydad— Etr(ﬂfd Bap).- 1 ok
Ryo A, ="a,, Ryoq =q-,

Here,G and G are the Gauss constraints associated with the Rogieg? R.opi— (3.2
Ashtekar and Yang-Mills connectiorishe latter scaled by POT O Ry Pk YRk

. . _1 .

fche Yang-Mills coupllng constarg ~ as cpmpared with that  Note that the action on the gravitational connection can be
in Ref. .[2])! andlva is the vector constraint. The scalar con- rephrased aR oV, = yV,. Similarly to the interpretation ac-
straint IS given In the Appe_nd|x. , , . cepted for the case of th@nverse Wick rotation, wherey

~ We will denote agx} this set of kinematical constraints 4 e equal to-i, the simultaneous multiplication by
{6,G,Va}. In their expressions), is the derivative operator o\ and all the momenta of the matter fields can be re-
associated with the Yang-Mills connection aligl, is twice garded as the consequence of a scaling of the [gfis€on-

its curvature, sequently, the action dR, on phase space is supplemented
D.E2= g5+ g[ A4, E2], (2.4) \[lggjl the following transformation laws on the lapse and shift
Bab=2(daAp— dpAat+ 9l Aa, Apl). (2.9 RoN=y"IN, R,oNa=N2 (3.3
Y ! Y ) -
In addition, D, is the derivative operator associated with the |, aqgition, it seems natural to admit that the transform does
Ashtekar connection and,, is its curvature, not affect the coupling constant®, o x = k
y .
<A A A B This extended Wick transform does not preserve the sym-
Daé"= 08"~ 2, 8¢, plectic structure. However, as in the case that leads to the
Thiemann transfornj7], one can complement the extended
Fap=dalp~ dpBat[8a,8p]- (26 wick transform with a constant scale transformation and

construct a symplectomorphism that relates formulations

l.t IS wor?h ”Ot'f‘g that the' only CO“p"T‘g constant ON \yith different values ofy. To show how this can be done, let
which the kinematical constraints depend is the Yang-Mills' .. ~ . C
us first introduce the constant scale transformations:

one, g. As we show in the Appendix, the scalar constraint

depends not just og, but also on the fermionic mass and C goX=pBPOOX. (3.4

the scalar field masg. Besides, it contains the cosmological p

constantA, if we allow for a cosmological term in the Here,D(X) is the dimension oK (a generic field or param-
Hamiltonian. We will generically refer to such parameters asetep. Adopting the convention that the dimensionality of the
coupling constants and denote their setxas{g,m,u,A}.  Jine element is carried by the metric and not by the coordi-
Finally, the line element can be expressed in terms of theates, it is possible to show thigt]

soldering form, the shift vectdX?® and the densitized lapse

function N (with weight equal to—1) as D(*ay)=0, D(g¥)=(—1)%%sy,

024021-3



LUIS J. GARAY AND GUILLERMO A. MENA MARUGAN PHYSICAL REVIEW D 66, 024021 (2002

D(c®)=2, D(p)=2—(—1)%%ks,, It is easy to check that, when acting on phase-space vari-
(3.5 ables, the transformatioﬁ'{ya} is generated via Poisson
D(N)=—-2, D(N?#=0, brackets by 7]

D(A)=—2, D(m)=D(u)=D(g)=—1. i
(A) (m)=D(n)=D(9) T{n}zig |n7aD(q“)fd3xpaq“, (3.12

In these formulass, denotes the spin of the fielgf.
We have now all the ingredients necessary to construct thﬁ/here{q“} denotes the set of variablés- 2a? 94, their

extended Thiemann transforim,: canonically conjugate variable§V,,p,} are denoted as
{p.}, and traces oveBU(2) and Yang-Mills indices are im-

Ty=Cyr12oR,. 3.6 plicity assumed. The generator of the standard Thiemann
Its action on phase space is transform is obtained foy,= —i, Va [.7]. .
As mentioned above, the connectiols, are still com-
Yagi=T ola,=Ly— YVa, plex in the presence of fermions, becausg then has a
7 non-vanishing imaginary contribution. More precisely, let us
Ygt=T ood=y L2, use the Pauli matrices’,® (with j=1,2,3) to express the
7 3.7 Ashtekar-Barbero variables in the fori8]
_(—1)2s
qu::Tyoqkz 0% (=1) kSk/qu, I I
Ygl=— — Vg7l Ya,=— —7al 7l (3.13
'}’pk:=Tyo pP= ,y(*l)zsksk/Zpk . \/E J a 2 a
The standard Thiemann transform would be attained wittwhereo =y ”o? is the densitized triad. It turns out that the
y=—i, except for the fact that our extended transform notmaginary part of VL=itr(V,7)) can be taken equal to
only acts on fields but also on coupling constants. Actually,—icltr(y)/4 [7], which differs from zero when the system
for y=—i, T, reproduces the modification of the Thiemannincludes fermions. In that case, one can still recover a real
transform proposed in Reff5], which has a nontrivial effect connection by simply replacing’al, with its real part,
on « [7]. We have namely, with
T en=y P2, (3.8 , vl
yA{.i: Vag+ Ttl’( 7y). (3.19

From the above equations, we see that our extended Thie-

mann transform preserves the canonical Poisson brackets ap|d h loved thet " d .y M
canonically implements the change from one Ashtekar- ere,twetl "’?}['9 emtpd(?%e it t& hy inth 7;‘:?]_ ga' ohre
Barbero connection to another. Note also thatleaves in- importantly, 1L1S not difficutt to check that the above change

variant the shift and densitized lapse of connections can indeed be promoted to a canonical trans-
' formation by introducing the following new set of fermionic

_ _ variables|7]:
ToN=N, T,oN3=N2 (3.9 {7]
Therefore, (7€ 7" 7 Yo' Y= {0 7€, pIN Yo VoV, Y0l VoY,

ds?:=T ods’= — 02y 3N2dt*+ y thy(dx®+N3dt)(dx®  with Yo=/det(’c?). In this way, one attains the desired
+NPdt) (3.10 descript!on of t_he gravitatjonal field in tgrms of a r&dl(2)

' ' connection while preserving the canonical structure on phase
space. Finally, note that from the definition of the new fer-
$hionic fields and the connectio#A,, the extended Thie-
mann transform continues to map canonical variables with
v=1 to their counterpart with a generic value of the positive
parametery.

i.e., it amounts to a constant scale transformation of the lin
element plus a change of lapse.

Introducing an indexa to denote the different fields
present in the theorygravitational, scalar, fermionic, and
Yang-Mills fields, the extended Thiemann transform can be

further generalized to
IV. KINEMATICS AND IMMIRZI AMBIGUITY

s }:H T, (3.1 The kinematical constraint®.3 can be written in terms
e e of the real connection3A, and the rest of the new canonical
variables introduced in the previous section. After some cal-
whereT? is the restriction off, to the fielde (viewed as  culations that involve the compatibility between the spin
a canonical pair of phase-space variapkesd its associated connection and the soldering form, the Bianchi identities,
coupling constant, . In other words, we may allow each and the relations between Pauli matrices’ {),°
field o to transform according to its own parametey. =ieX7 B+ 5iks, B [2], the constraints become
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G="g" 1D, YE3:="C, X) are dimensionless. This can be accomplished by introduc-
ing the universal length scald, and defining *X

) =] PXIX, so that

Gae=—\2"D4 Y035~ "Y(ag)*="Ons: (4.1 *

C,-1zo*X=*X and C,-wzol, =y, Y4, . (4.3

i i
2 \/Eytr( yOw(’G Yoa) + ;tr[ G(Ia="Ad) ], Obviously, the scaling transformations|gf for each kind of

field « are incompatible unless all the parametgfscoin-
cide. Then, in the casge,= 7y V «, we see that the action of
‘the extended Wick transform can indeed be interpreted as a
constant scale transformation if we restrict ourselves to kine-
matical considerations:

Vo=V, +

where YD, is the derivative operator associated with the con
nection YA,, "F,p, is its curvature, and

WVarm\2U( 0" F o) =3 (TP D€ A4 Y0y Do V')
o R,=C, . (4.9
+ %(y,Da yp/'\yé’AJf yDa yw'&ynrA)_y,n.(ﬁaa 7¢
The main reason underlying this result is that both the
— Ltr("EPYB,,) —t[ YG(T ,— "A)) 1. 4.2 constraints’y, and the fundamental non-vanishing Poisson
brackets have the same dimens{iaoamely, 2, as well as the

In addition, “/y(’AB) is the counterpart of expressi¢®.2) for same degree of homogeneityamely, J in the variables

the new fermionic variables, art), "E? and "B, stand for 1 1.1 1 pa
the result of evaluating Eq$2.4) and (2.5), respectively, at {Pa}={Ta="Aa, 7y, 7p" 0" B, “.5
the scaled Yang-Mills variables”{,,”F?) employing the
new coupling constantg:=C -u»g.

We hence see that the physical constraints of Lorentzia
general relativityx)} =10.G,Va} are equivalent to the new oo elements igP,} by a factor ofy while leaving invariant

constraints{”y} ={"C,”G,”Va}. We can therefore use the yneir canonically conjugate variables
latter as the kinematical constraints in the real connection

formulation. Furthermore, note that the functional depen-
dence of”y, on the corresponding set of canonical variables,
specified by the parameter, is the same for all values of
provided that the Yang-Mills coupling constant is also scalecie
with this parametefaccording to the definition ofg). Ac-
tually, this property continues to hold even when we allow
the parametey to take different values for each of the fields
that are present in the system, namely, when the canonic
variables and coupling constants denoted with the inglex
are in fact those obtained with the set of paramefers

up to terms that vanish because of the Bianchi identities or
the compatibility of the triad with the spin connection. No-
Hce that the extended Wick transfori®, multiplies each of

{Q}={—20%¢,2¢" 17’ A}, (4.6

We now want to discuss the implications of the equiva-
nce (4.4) for the Immirzi ambiguity that arises in loop
quantum gravity at the kinematical level. With this aim, let
us consider arabstrack operatord(o) constructed from the
sPIdering form, its dimension being(J¥). We assume that
fhis operator is an observable, at least from a kinematical
point of view. Let us call Sp3(o) ] and Sp[J(o)] its spec-
introduced in Eq(3.17). tra in the loop representations based, respectively, on the real

. l ,y . . _
It is now straightforward to check that the extended Thie_c_onnegtlons Aa and "A,, adoptmg in both cases as con
. . : -~ figuration variables for the matter fields the elements@f}
mann transfornT v} leaves the kinematical structure invari-

other than the soldering form. SincR,.Q“=Q* and

ant. We have already seen that the transform preserves tlpgyolAa: A, the two representations are related via the

canonical Poisson brackets. Then, we only have to show thalended Wick transform. Using in our kinematical analysis
it does not alter the kinematical constraints. By constructionyhatrR =c . one concludes that the spectrum S )]

- . . ’)/ ‘y tl
Tiy,) maps the canonical set of variabl@nd the coupling s the image of Spd(o)] under a constant scale transforma-
constants with y=1 to those with parameter§y,}; so, tion: namely,
T{ya}ol)n:y)n with our notation. But Eqs(4.1) ensure that
{"x\} is equivalent to{*y,}. The set of constraint§'y,} is Sp[9(0)]=SHC 12 °I(a)]=yPV?5d 9(0)].
thus invariant under the extended Thiemann transform. As a (4.7)
consequence, we can identify the symplectomorphisp,

with the identity transformation at the kinematical level. . . ;

Since.T,. =1 as far as the kinematical structure is con- contains a discrete component, as happens for instance for

Py T the area operatd26].

cerned, the action of the transforiRs, , andCy,v2 can be The discrepancy between the spectra of geometric opera-
regarded as equivalent at this level. It is worth noting that theors in the loop representations obtained with different con-
latter of these transforms amounts to a constant change ofections YA, is called the Immirzi ambiguityf10]. As we
scale if(and only i v,= v, Ya. To see this point clearly, it have seen, the ambiguity existing in vacuo persists also in
is convenient to introduce a formalism in which all fields andthe presence of matter fields. But much more importantly,
coupling constantéthat we denote generically by the symbol our discussion shows that, owing to the relatRy=C 12,

This spectrum is obviously different from Bp(o)] if it
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the Immirzi ambiguity can be considered equivalent to a conTo recover the Bekenstein-Hawking formuB= A/(4I§)
stant scale transformation at the kinematical level. (wherel,, is the Planck length of low-energy physjcit is

We should note that the presence of matter has introducegen argued that the Immirzi parameter must be fixed so that
a subtle modification in our analysis with respect to the purey|2 — 70';2)- In particular, ifl, andl, coincide, y must be

grawtatlona_l situation. As a resulj[ of a direct _ex_trapo!atlpn .Ofchosen equal tgy in order to reach an acceptable semiclas-
the conclusions for vacuum gravity, the Immirzi ambiguity is sical prediction

usually thought to arise in loop representations that are re- There is however a potential loophole in the above line of

Iated_ byatrapsform l.'kaw but re_strlcted to act onl_y on the reasoning that had remained unperceived so far. Namely,
gravitational field. With the notation of Sec. Ill, this would . .
since the calculation of the black hole entropy is performed

correspond to the replacement pfwith a collection of pa- ¢ fixed val f the hori d with tain choi
rameterq y,} (one for each fielgsuch that they all equal the Ofrti |x|e value ot the i O”iﬁn areaan \;\” ba cer al;n tC ?IC?
unity except for the gravitational component. The remarkabl@' (1€ IMMirzi parameter, there seems 1o be no obstacie 1o

point is that the same Immirzi ambiguity appears when the€/€Cty in terms of A, so thaty becomes in practice a
extended Wick transform acts on all fields with identical function of this quantity. Obviously, this would spoil the lin-
value of y. Moreover, as we have proved, the transform carfr relation between the entropy and the area. A way out of
be consistently interpreted in this case, from a kinematicalhis problem consists in proving that the appearance of the
point of view, as a constant scale transformation that equallymmirzi parameter in the entropy formula amounts in fact to
affects all fields and parameters, not only those associate?ichange of scale. As we will show, imposing that the Planck
with the gravitational sector. scale be unique for all the observers that carry out the mea-
Finally, it should be stressed that the equivalence betweesurements will then eliminate the postulated dependenge of
the extended Wick transforifwhose implementation results on the area.
in the Immirzi ambiguity and a constant scale transforma-  Note that, to attain our goal, we only have to demonstrate
tion is only valid for kinematical considerations. Indeed, asthat the Immirzi parameter can be absorbed through a con-
shown in the Appendix, the scalar constraint is not invarianktant scaling in all the steps where the dynamical structure
under the action of . Therefore, the equivalence does notenters the calculation of the entropy. For all other consider-
hold dynamically and, consequently, the Immirzi ambiguity ations we simply have to apply the results of Sec. IV, where
cannot be associated with the multiplication of the classicajye proved the kinematical equivalence of the Immirzi ambi-
action by a constantremovable by means of a change of gyity with a change of scale. Actually, the dynamical struc-

scalg when dynamics is taken into accoyas, 17, ture appears in the entropy calculation only through the
isolated-horizon boundary conditions. These conditions code
V. BLACK HOLE ENTROPY dynamical information and intervene in the analysis inas-

A particular example of a geometric operator with a dis_[rg;c;aas they are utllized to prove the following results

crete spectrum is that representing the adeaf an isolated
horizon in loop quantum gravitj22,2€. Since the dimen-
sion of the area operator is 2, E@.7) gives the relation
between the eigenvalue4(J) and.A,(J) in the respective
loop representations with connectioh&, and "A,:

(i) The surface terms of the action, necessary for a well-
posed variational problem, correspond to a Chern-Simons
theory whoseJ(1) connection isW,=tr(I',r). The under-
line denotes the pull-back to the spatial sections of the hori-
zon, which are topologicall$?, andr = —ir i 712 is a fixed
A(3)=yAQJ). (5.1) smooth function from the sphere to the Lie algebr&of(2)

with tr(r?)=—1. We note that botl and the spin connec-

Here, the symbol labels the different eigenvalues of the tion I'y are invariant under constant scale transformations.
spectrum. (i) The levelk of this U(1) Chern-Simons theory is

The explicit form of the area spectrum for an isolatedk=A/(4my12), whereA is the constant area of the horizon.
horizon, which is deduced from purely kinematical consider-This level determines the overall factor in the Chern-Simons
ations, is one of the keystones in the calculation of the stacontribution to the symplectic structure. Notice thatap-
tistical entropyS of a black hole, obtained in the Ashtekar pears ink exactly as a scaling of the universal length
approach by counting degrees of freedom in the Hilbert (i) The curvature of the Chern-Simons connection is
space of loop quantum gravity. An important point in this tr(@abr)/(Zkli). Here,2 ,p:= 725c0° and 7, is the Levi-
deduction of the black hole entropy is that, since the fullCivita form-density. Since’> =7y 3,,, we see that the
theory of quantum gravity is not known, the calculation isImmirzi parameter appears again as a constant scalihg.of
carried out by studying only the sector of isolated horizons Remarkably, the isolated-horizon boundary conditions en-
with constant areal. This sector is quantized in a loop rep- sure in addition that there do not exist non-trivial Hamil-
resentation with a certain Immirzi parametgrin the limit ~ tonian gauge transformations at the horizon, so that we do
of a large horizon area, the resulting entropy44,22| not have to impose the scalar constraint on it. This means

that the dynamical aspects of the matter content do not affect
the physics at the horizon and, as a consequence, the specific
S=—, with yo=—F= (5.2 choice of the Immirzi parameter for the matter fields does not
i ™3 affect the entropy calculation.

')/0./4 In2
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The only issue, purely non-dynamical, remaining in they, is just a numerical factor, this fixes the value pto be
calculation of the entropy is counting the physical stateshe same for all observers and, of course, independent of the
whose area eigenvalugl (J) (in the loop representation area.
based on”A,) lies within the interval

A Ay(J) A VI. SUMMARY AND DISCUSSION
< <45 (5.3

A b In this paper, we have shown that the Immirzi ambiguity
can be described at a kinematical level in terms of constant
The counting is made for largd/(yl5) and assuming that scale transformations. With this aim, we have considered the
5>4m/3 (to ensure the existence of at least one eigenvalugshtekar-Barbero formulation of general relativity coupled
that corresponds to an even number of spin insertidfsl-  with fermions, a scalar field, and a Yang-Mills field. In this
lowing the steps ir{22], one then obtains the entropy for- framework, the Immirzi ambiguity appears when one calcu-
mula (5.2. o ~_lates the spectra of geometric operators using loop represen-
As we have already argued, the Immirzi ambiguity is ki- tations that are based on different real connections for the
nematically equivalent to a constant scale transformation. Weayitational field. We have shown that these representations
have also seen that all the dynamical arguments involved iRap pe related via an extended Wick transform that, in addi-
the entropy calculation indicate thatappears as a constant jon, tg introducing the Immirzi parameter in the gravitational
scaling of the universal length, , even though the scalar connection, has also the effect of multiplying the matter mo-
constraint and hence the dynamics in general do not SUppOghenta by the same parameter. This extended Wick transform
such interpretation. Therefore, we can conclude that the apygmits a geometric interpretation as a scaling of the lapse
pearance of the Immirzi ambiguity in the entropy formula isfynction, and we have proved that it can be completed with a
equivalent to a scaling df, . . constant scale transformation to reach a symplectomorphism.
In our discussion, there seem to exist two length scaleg, 5 sense, the constructed symplectomorphism provides an
which, for the time being, have been treated as independegtension of the Thiemann transform that maps the Lorentz-
[19]. One of them would be the fundamental length stale  jan to the Euclidean formulation of Ashtekar gravity.
which appears in front of the action and determines the Pois- gch an extended Thiemann transform has been shown to
son bracket structurg7,20], and hence the strength of the preserve the kinematical constraints of the system, so that it
quantum gravitational effects. The other would be a low-can pe viewed as equivalent to the unit transform as far as
energy length scale, which would characterize the low-gne disregards the dynamical evolution. Based on this fact,
energy behavior of quantum gravity, and whose squarge have argued that the Immirzi ambiguity in loop quantum
would provide the quantum of area. Let us call this lengthgrayity can be understood in terms of a constant scale trans-
scale the Planck length and define it as formation for all kinematical considerations. Indeed, the
physical spectra of geometric operators in loop quantum
=1\ Y v0, (5.4  gravity are affected by the Immirzi parameter in a way which
appropriately depends on the dimension of the operators. The
so that corresponding scale transformation implies a change of con-
formal frame that can be considered responsible for the
A quantum ambiguity.
=—. (5.5 The scalar constraint, on the other hand, is not invariant
aly under the extended Thiemann transform, and hence the Im-
mirzi ambiguity cannot be absorbed dynamically into a
Our definition ofl, is feasible because, as we have shownchange of scale. This can also be rephrased by saying that the
the Immirzi ambiguity amounts to a change of scale, at leasfour-dimensional line elements obtained with a constant
as far as the area spectrum and the entropy formula are cogeale transformation and with a constant scaling of the lapse
cerned. From this point of view, fixing/ is equivalent to do not lead to dynamically equivalent theories. The break-
fixing the effective value of the low-energy Planck length  down of this equivalence with respect to the kinematical situ-
in terms of the fundamental lengtl . ation makes us suspicious of the special role played by time
Let us remember that, because the whole entropy analysia the Ashtekar-Barbero formulation, which can be traced
has been performed under the assumption that the area of theck to the time gauge fixing that is introduced in such a
isolated horizon is fixed and givem priori, the Immirzi pa-  formalism and the consequent loss of a genuine spacetime
rameter might in principle be made dependent.énthus interpretation for the gravitational connectift0—12.
spoiling the linearity of the relation between entropy and The Immirzi ambiguity affects one of the most outstand-
area. Fortunately, the possible effects of this potential depering predictions of loop quantum gravity, namely, the entropy
dence ofy on the area can now be eliminated on the basis oformula for isolated horizons. The derivation of this formula
a physical requirement: when comparing low-energy andnvolves not only kinematical but also dynamical processes.
large-horizon physics for different horizons, the comparisorHowever, the dynamical structure turns out to enter the cal-
must be carried out by observers that assign the same valwealation only coded in the isolated-horizon boundary condi-
to the Planck length, . Sincel, is a universal constant and tions. It is worth commenting that an analogous conclusion

=

S
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has been recently reached by Padmanabhan from a cordenote the masses of the fermionic and scalar fields, the
pletely independent point of vief27]. He has deduced the cosmological constant, afit},= 7,,E°, with 7, being the
entropy of a spherically symmetric spacetime with a horizon_evi-Civita form-density.
by studying the partition function of a canonical ensemble This constraint leads to the Einstein-Cartan theory, which
with fixed temperature on that horizon. This analysis doess quartic in the fermionic variables. Nevertheless, one can
not assume that the spacetimes in the ensemble are solutioattain the Einstein-Dirac theory, quadratic in fermionic fields,
to the Einstein equations; moreover, it is seen that the resuliy simply adding taS the term[2,7]
depends only on the form of the metric near the boundary
supplied by the horizon.

Returning to our study of the loop approach, we have Sf:_E(VAAVBB+VABVAB+VABVBA)'
shown that, whenever the Immirzi parameter appears in the
calculation of the black hole entropy through the conditions |n terms of the real connectiotd,, the scaled soldering
on the horizon, remarkably, it behaves in fact as though iform ?¢?, and the canonical set of matter variables specified
came from a constant scale transformation. The remainingy the parametery (here, we concentrate on the case of

arguments that lead to the entropy formula are strictly kineinteresty,=vy V«), the scalar constraint can be written as
matical. It then follows from our discussion that the Immirzi fgllows:

ambiguity in the relation between entropy and area can be

understood as a conformal ambiguity in the length scale em- i

ployed to measure large horizon areas and low-energy pro- S=92 'S+ —=y(y—1)"Y—(y*-1)"Z

cesses in general. This is important because the entropy cal- V2

culation is performed for isolated horizons with a constant i

area that is giver priori. Therefore, the choice of Immirzi — — D, tr("G0?), (A1)
parameter in the loop quantization might in principle be \/E

made dependent on this area, and this would ruin the possi-

bility of deducing the Bekenstein-Hawking formula. How- where D, is the derivative operator compatible with the
ever, this potential dependence on the area of the ImmirZriad, obtained with the spin connectidh,, and
parameter disappears if we insist that the results for different

large isolated horizons be compared by observers whichS:=—tr(*c® Ya® "F ) +tr(7o® Yo" [T = YA, T, — "A,])
agree on the value of the length scale that controls the semi-

c!assipal gravitational effects from the Iovx{-e'nergy point of Y2 YA+i "m Yo 'yg/Ay;A+ itr(yo_Da’yyl)

view, i.e., Planck length, because the Immirzi parameter can 2

be absorbed into this length scale.
+a47Y0? Yu? Y2 —Amtr(Yo® Ya)d," pd," b
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APPENDIX A: SCALAR CONSTRAINT Y =tr( 7a’a{Dayp’ YE + Dayw’ 7;’ —p’ Dayf'
In this appendix, we present the expressions of the scalar  _ yeray;r}),

constraint in terms of the Ashtekar connection and of the real
connections’A, . In the Ashtekar formulation of Lorentzian 3
gravity with matter fields, the scalar constrain{23,7| YZ:=tr(Yo? YT ,— "A,,Tp— "Ap]) + E[tr( 7y ]2

S=—tr(a®° Fpp) +im(02eA ga— p wp)

1
—i"m Yo "0'® Yo' — —tr (W FOtr (Yo <L — YA
9 g p W \/E(yT)(O'T{a a})

“ v — m™
V208 (pgDat™+ 0 Dar) + 0P A+ 15 y2
¢ a c b d b%
oo+ gr a0 OO0 Yoy ey

+ 470l p?— Amtr(020P) . pdnd

1 We have used the notation introduced in Secs. Ill and IV, and
+ — (o)t (o o)t (Bapleg+ BapBea), the scaled coupling constants ate:=y P92« D(k) is
8o equal to—1 except forA, whose dimension is-2.
Taking y=1, we see from the above expressions that
where we have employed the notation of Secniland u 18=S modulo the gravitational Gauss constraint. We can
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hence us€e'S as the scalar constraint in the real connection”S and 1S differ when y#1 even modulo the kinematical
formulation with y=1. On the other hand, recalling that the constraints, as can be easily checked from &d.). As a
different sets of canonical phase-space variables and cogensequence, the dynamical structure is not invariant under
pling constants parametrized by are related by the ex- the extended Thiemann transform. Therefore, the kinematical
tended Thiemann transforfi, and using our definition of equivalenceR,=C,u2 is not maintained when dynamics is
¥S, we straightforwardly obtain thaTyol‘S': ¥S. However, taken into account.
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