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Immirzi ambiguity in the kinematics of quantum general relativity
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The Immirzi ambiguity arises in loop quantum gravity when geometric operators are represented in terms of
different connections that are related by means of an extended Wick transform. We analyze the action of this
transform in gravity coupled with matter fields and discuss its analogy with the Wick rotation on which the
Thiemann transform between Euclidean and Lorentzian gravity is based. In addition, we prove that the effect
of this extended Wick transform is equivalent to a constant scale transformation as far as the symplectic
structure and kinematical constraints are concerned. This equivalence is broken in the dynamical evolution.
Our results are applied to the discussion of the black hole entropy in the limit of large horizon areas. We first
argue that, since the entropy calculation is performed for horizons of fixed constant area, one might in principle
choose an Immirzi parameter that depends on this quantity. This would spoil the linearity with the area in the
entropy formula. We then show that the Immirzi parameter appears as a constant scaling in all the steps where
dynamical information plays a relevant role in the entropy calculation. This fact, together with the kinematical
equivalence of the Immirzi ambiguity with a change of scale, is used to preclude the potential nonlinearity of
the entropy on physical grounds.
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I. INTRODUCTION

The formulation of general relativity in terms of conne
tion variables, introduced by Ashtekar@1,2#, constitutes one
of the most promising approaches to the quantization
gravity. In the Ashtekar formalism, the gravitational field
described by a complexSU(2) connection and a canonicall
conjugate, densitizedSU(2) soldering form. The shift of em
phasis from geometrodynamics to connection dynamics
lows the import of techniques employed in the quantizat
of gauge field theories, providing a common mathemat
language for the analysis of quantum gravity and matter
addition, the expressions of the gravitational constraints
Ashtekar variables are extremely simple, raising renew
hopes for their resolution in the quantum theory.

The price to be paid is that the Ashtekar connection
complex for Lorentzian general relativity. This leads to se
ous technical and conceptual difficulties, both owing to
lack of a suitable mathematical machinery to deal with
complex SU(2) group and because the real part of t
Lorentzian connection turns out to depend on the densit
soldering form, a fact that is incorporated in the quantizat
program by imposing the so-called reality conditions@2,3#.

In order to circumvent these problems, essentially t
different avenues have been followed. A possible solut
was proposed by Thiemann, who showed that the Lorent
and Euclidean sectors of Ashtekar gravity can be related
an automorphism on the algebra of functions on phase s
@4,5#. This automorphism, often called the Thiemann tra
form, can be regarded as the composition of a Wick tra
form and a complex constant scale transformation@6,7#. It
maps the Lorentzian to the Euclidean constraints and, m
importantly, the Ashtekar connection of Lorentzian gene
relativity to its Euclidean counterpart, which is real. Non
theless, the complications show up when one tries to im
ment the Thiemann transform quantum mechanically.

The other possibility was put forward by Barbero. H
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proved the existence of a~generalized! canonical transforma-
tion that converts the Lorentzian complex connection int
real connection@8# ~which we will call the Ashtekar-Barbero
connection from now on!. The only drawback of this chang
of phase-space variables is that the expression of the Ha
tonian constraint loses its original simplicity. But this relativ
complication is overwhelmingly compensated for by t
availability of the realSU(2) group as the operationally re
evant gauge group.

This real connection formalism has been extensively u
for the quantization of general relativity, mainly in the fram
work of loop quantum gravity@9#. Actually, the Ashtekar-
Barbero connection can easily be generalized to a o
parameter family of real connections, all of them related
means of canonical transformations@8,10#. The associated
parameter is usually called the Immirzi parameter, and
will denote it byg. The remarkable point noticed by Immirz
is that the physical predictions of the quantum theory dep
on g. This is something striking, because the Immirzi para
eter designates just equivalent descriptions of the same p
space. From a classical point of view, its value does
affect the physics. Quantum mechanically, however, th
exists an ambiguity ing that appears, e.g., as a multiplicativ
constant in the area spectrum@10#.

Recently, a radically different alternative to the Ashtek
Barbero formulation has been suggested which is appare
free of the Immirzi ambiguity. This alternative consists
developing a manifestly Lorentz invariant formalism@11#.
By retaining the full Lorentz group, one ensures that t
choice of quantization scheme does not result in the app
ance of anomalies, which could cause the Immirzi ambigu
In addition, this approach preserves the correct space
interpretation of the gravitational variables. In this sense, i
worth commenting that the Ashtekar-Barbero connection
been proved not to transform as the pull-back of a spacet
connection under diffeomorphisms which are normal to
sections of constant time@12#. However, the formalism and
©2002 The American Physical Society21-1
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phase space of this Lorentz invariant approach are m
more intricate than those of the original Ashtekar-Barb
theory, and further progress is needed to extract and com
hend its physical predictions.

Since the family of real connections obtained by Immi
leads to different quantum results, it is clear that the cano
cal transformations that relate these connections canno
implemented unitarily@13#. This obstruction for unitarity is
not well understood. To shed some light on its origin, t
Immirzi ambiguity has been compared with other quant
ambiguities or anomalies. Rovelli and Thiemann@13# have
tried to construct a finite dimensional analogue, but th
attempt seems to have been unsuccessful@14#. In fact, if one
could associate an independent Immirzi ambiguity with
ery degree of freedom~a finite dimensional system!, the am-
biguity in general relativity would admit an extension from
constant parameter to two functions of the spatial posit
@12#. However, this hypothetical extension conflicts with d
feomorphism invariance@15#. On the other hand, Corichi an
Krasnov have discussed the possible parallelism between
Immirzi ambiguity and a factor ambiguity that appears in t
electric charge of Maxwell theory@16#. But, among standard
quantum field theories, the closest similarity is proba
found with theu ambiguity of Yang-Mill theories@17#. Un-
like what happens in that case, however, the Immirzi am
guity does not arise as a consequence of a multiply c
nected configuration space@14,18#. In this situation, further
investigation is required to clarify the roots and implicatio
of the Immirzi ambiguity in quantum gravity.

Some proposed interpretations of this ambiguity ha
been considered and criticized by Rovelli and Thiema
@13#, among them the possibility that the Immirzi parame
amounts to multiplying the classical action by a const
factor. Although both ambiguities are not equivalent, a re
tion between them should not be discarded. The main rea
is that, as pointed out by Rainer@19#, the semiclassical pre
dictions of quantum gravity may lead to subtle differenc
between what we call the Planck length in low-energy ph
ics, l p , and what constitutes the fundamental length scal
the quantum theory,l * . This fundamental length is dete
mined by the overall factor that multiplies the symplec
structure@20# ~or, equivalently, the Poisson brackets!. We
will return to this issue later in our work.

In connection with the above comments, it has been
gued that the Immirzi parameter plays simply the role o
scaling of the Planck length. Sinceg appears as a globa
factor in the spectrum of the area operators@10#, the Planck
length would be multiplied byAg. However, the scalar con
straint displays a non-homogeneous dependence ong that
seems to conflict with this interpretation@17#. One of the
aims of the present paper is to discuss the actual rela
between the Immirzi ambiguity and a constant scale trans
mation. We will prove that there indeed exists an equivale
if one restricts all considerations to the kinematics of
Ashtekar-Barbero formulation, i.e., if one disregards dyna
ics. This analysis will be carried out in gravity with matt
fields @3#, so that we can also clarify the extent to which t
Immirzi ambiguity is or is not affected by the introduction
matter~see the preliminary discussion in Ref.@17#!.
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We will also discuss the implications of our results f
one of the most outstanding predictions of loop quant
gravity: the entropy formula of a quantum black hole. Th
entropy is calculated assuming a horizon with fixed areaA
and adopting a loop quantization with given Immirzi para
eter @21–23#. Apparently, therefore, nothing prevents th
value of g from depending onA. This would destroy the
linear dependence on the area in the deduced ent
@21,22#. A way out of this conundrum turns out to be pro
vided by the kinematical equivalence between a changeg
and a change of scale. As we will show, this equivalen
allows one to regain the Bekenstein-Hawking formula.

The paper is organized as follows. In Sec. II we succinc
describe the Ashtekar formalism for gravity coupled w
matter fields. The real Ashtekar-Barbero connection is int
duced in Sec. III, where we also revisit the action of const
changes of scale and of some suitable extensions of the W
and Thiemann transforms. In addition, we analyze the re
tion between these extended transforms and the cano
transformations introduced by Immirzi. Then, we prove
Sec. IV that the Immirzi ambiguity amounts to a consta
scaling as far as the kinematics of general relativity is c
cerned. The physical consequences of this equivalence
analyzed in Sec. V. In particular, we show that the effect
the Immirzi ambiguity in the formula of the black hole en
tropy can be absorbed into a change of length scale.
conclusions are summarized in Sec. VI. Finally, an Appen
is added where we include the expression of the scalar c
straint in the presence of matter fields and study how i
affected by the Immirzi ambiguity.

II. GRAVITY WITH MATTER FIELDS

Let us briefly review the Hamiltonian formulation of gen
eral relativity in the presence of matter fields@2,3#. We will
consider a matter content consisting of a massive scalar
f, massive spin-1/2 fieldsjA and h̄A , and a Yang-Mills
connectionAa . All these fields are defined on a certain thre
manifold, and we will collectively denote them as$qk%. We
call $pk% their respective canonical momen
$pf ,rA,vA,Ea%. By canonically conjugate we mean var
ables whose Poisson bracket is the identity multiplied
8p l

*
2 , with l * 5AG\. Here,\ is the Planck constant~i.e.,

the fundamental quantum of action!, G is the true Newton
constant that appears in the gravitational action@20#, and we
have takenc51. Our notation is very similar to that intro
duced in Ref.@7#. Internal Yang-Mills indices are not dis
played, and spatial indices are denoted with lowercase L
letters from the beginning of the alphabet. Capital Latin l
ters, on the other hand, designateSU(2) spinors when used
as indices. They are raised and lowered with the alterna
tensorseAB andeAB @2#. Whenever they are not necessary f
understanding the formulas, we will also suppress them.

As for the gravitational part of the phase space, it can
described by the canonical pair (aaA

B ,iA2s A
a B), whereaa

is the ~complex! SU(2) Ashtekar connection andsa is the
densitized soldering form@2#. The Ashtekar connection ca
be written asaa5Ga2 iVa , whereGa denotes the spin con
nection compatible withsa, andVa5Ka1 iCa , with Ka and
1-2
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Ca being the extrinsic-curvature and fermionic contributio
@2,7#:

Ka5
Kabs

b

A2s
,

Ca
AB5

2 i

4A2
~sa

ACyC
B1sa

BCyC
A!. ~2.1!

In this formula,Kab is the extrinsic curvature,sa is the in-
verse ofsa, s5@det(2tr$sasb%)#1/4, and

yAB5rAjB1vAh̄B . ~2.2!

For the action proposed by Ashtekar, Romano and T
@2,3#, the explicit expressions of the kinematical constrai
are the following:

G5g21DaE
a,

GAB5 iA2D̆asAB
a 2y(AB) , ~2.3!

Va52 iA2tr~sbFab!2rAD̆ajA

2vAD̆ah̄A2pf]af2
1

2
tr~EbBab!.

Here,G andG are the Gauss constraints associated with
Ashtekar and Yang-Mills connections~the latter scaled by
the Yang-Mills coupling constantg21 as compared with tha
in Ref. @2#!, andVa is the vector constraint. The scalar co
straint is given in the Appendix.

We will denote as$x l% this set of kinematical constraint
$G,G,Va%. In their expressions,Da is the derivative operato
associated with the Yang-Mills connection andBab is twice
its curvature,

DaE
a5]aE

a1g@Aa ,Ea#, ~2.4!

Bab52~]aAb2]bAa1g@Aa ,Ab# !. ~2.5!

In addition,D̆a is the derivative operator associated with t
Ashtekar connection andFab is its curvature,

D̆ajA5]ajA2aa
A

BjB,

Fab5]aab2]baa1@aa ,ab#. ~2.6!

It is worth noting that the only coupling constant o
which the kinematical constraints depend is the Yang-M
one, g. As we show in the Appendix, the scalar constra
depends not just ong, but also on the fermionic massm and
the scalar field massm. Besides, it contains the cosmologic
constantL, if we allow for a cosmological term in the
Hamiltonian. We will generically refer to such parameters
coupling constants and denote their set askª$g,m,m,L%.
Finally, the line element can be expressed in terms of
soldering form, the shift vectorNa and the densitized laps
function N ~with weight equal to21) as
02402
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ds252s2N2dt21hab~dxa1Nadt!~dxb1Nbdt!,
~2.7!

the metrichab being the inverse ofhab52s22tr(sasb).

III. ASHTEKAR-BARBERO CONNECTIONS

The Ashtekar connection is not real for two reasons. Fi
because it is a complex linear combination of the spin c
nection Ga and the momenta of the soldering form
Va5Ka1 iCa . Second, because these momentaVa are genu-
inely complex when fermions are present@2,7#. With the aim
of addressing the former of these issues, we introduce
connections

gaa5Ga2gVa , ~3.1!

whereg.0 is the Immirzi parameter. Since our definitio
reproduces that of Ref.@8# in the absence of matter, we wi
call gaa the Ashtekar-Barbero connections. It should ho
ever be clear that such connections are not real when fe
ons are allowed. The canonically conjugate momenta
2A2gaa are gsa5g21sa.

Formulations with different values of the Immirzi param
eterg are related by an extended Wick transformRg @7,24#
such that

Rg+1aa5gaa , Rg+qk5qk,
~3.2!

Rg+sa5sa, Rg+pk5gpk .

Note that the action on the gravitational connection can
rephrased asRg+Va5gVa . Similarly to the interpretation ac
cepted for the case of the~inverse! Wick rotation, whereg
would be equal to2 i , the simultaneous multiplication byg
of Va and all the momenta of the matter fields can be
garded as the consequence of a scaling of the lapse@7#. Con-
sequently, the action ofRg on phase space is supplement
with the following transformation laws on the lapse and sh
@25#:

Rg+N5g21N, Rg+Na5Na. ~3.3!

In addition, it seems natural to admit that the transform d
not affect the coupling constants,Rg+k5k.

This extended Wick transform does not preserve the s
plectic structure. However, as in the case that leads to
Thiemann transform@7#, one can complement the extende
Wick transform with a constant scale transformation a
construct a symplectomorphism that relates formulatio
with different values ofg. To show how this can be done, le
us first introduce the constant scale transformations:

Cb+X5bD(X)X. ~3.4!

Here,D(X) is the dimension ofX ~a generic field or param
eter!. Adopting the convention that the dimensionality of th
line element is carried by the metric and not by the coor
nates, it is possible to show that@7#

D~1aa!50, D~qk!5~21!2sksk ,
1-3
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D~sa!52, D~pk!522~21!2sksk ,
~3.5!

D~N!522, D~Na!50,

D~L!522, D~m!5D~m!5D~g!521.

In these formulas,sk denotes the spin of the fieldqk.
We have now all the ingredients necessary to construct

extended Thiemann transformTg :

TgªCg21/2 +Rg . ~3.6!

Its action on phase space is

gaaªTg+1aa5Ga2gVa ,

gsa
ªTg+sa5g21sa,

~3.7!
gqk

ªTg+qk5g2(21)2sksk/2qk,

gpkªTg+pk5g (21)2sksk/2pk .

The standard Thiemann transform would be attained w
g52 i , except for the fact that our extended transform n
only acts on fields but also on coupling constants. Actua
for g52 i , Tg reproduces the modification of the Thiema
transform proposed in Ref.@5#, which has a nontrivial effec
on k @7#. We have

Tg+k5g2D(k)/2k. ~3.8!

From the above equations, we see that our extended T
mann transform preserves the canonical Poisson brackets
canonically implements the change from one Ashtek
Barbero connection to another. Note also thatTg leaves in-
variant the shift and densitized lapse,

Tg+N5N, Tg+Na5Na. ~3.9!

Therefore,

gds2
ªTg+ds252s2g23N2dt21g21hab~dxa1Nadt!~dxb

1Nbdt!, ~3.10!

i.e., it amounts to a constant scale transformation of the
element plus a change of lapse.

Introducing an indexa to denote the different fields
present in the theory~gravitational, scalar, fermionic, an
Yang-Mills fields!, the extended Thiemann transform can
further generalized to

T$ga%5)
a

Tga

a , ~3.11!

whereTga

a is the restriction ofTga
to the fielda ~viewed as

a canonical pair of phase-space variables! and its associated
coupling constantka . In other words, we may allow eac
field a to transform according to its own parameterga .
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It is easy to check that, when acting on phase-space v
ables, the transformationT$ga% is generated via Poisso
brackets by@7#

T$ga%5
i

2 (
a

ln gaD~qa!E d3xpaqa, ~3.12!

where$qa% denotes the set of variables$2A2sa,qk%, their
canonically conjugate variables$Va ,pk% are denoted as
$pa%, and traces overSU(2) and Yang-Mills indices are im-
plicitly assumed. The generator of the standard Thiem
transform is obtained forga52 i , ;a @7#.

As mentioned above, the connectionsgaa are still com-
plex in the presence of fermions, becauseVa then has a
non-vanishing imaginary contribution. More precisely, let
use the Pauli matricest A

j B ~with j 51,2,3) to express the
Ashtekar-Barbero variables in the form@2#

gsa52
i

A2
gs j

at j , gaa52
i

2
gaa

j t j , ~3.13!

wheres j
a5g gs j

a is the densitized triad. It turns out that th
imaginary part of Va

j 5 i tr(Vat j ) can be taken equal to
2 isa

j tr(y)/4 @7#, which differs from zero when the system
includes fermions. In that case, one can still recover a
connection by simply replacinggaa

j with its real part,
namely, with

gAa
j 5gaa

j 1

gs a
j

4
tr~gy!. ~3.14!

Here, we have employed thaty5gy and gsa5gsa . More
importantly, it is not difficult to check that the above chan
of connections can indeed be promoted to a canonical tr
formation by introducing the following new set of fermion
variables@7#:

$gj8,gr8,gh̄8,gv8%5$A gs gj,gr/A gs,A gsgh̄,gv/A gs%,

with gs5Adet(gs j
a). In this way, one attains the desire

description of the gravitational field in terms of a realSU(2)
connection while preserving the canonical structure on ph
space. Finally, note that from the definition of the new fe
mionic fields and the connectiongAa , the extended Thie-
mann transform continues to map canonical variables w
g51 to their counterpart with a generic value of the positi
parameterg.

IV. KINEMATICS AND IMMIRZI AMBIGUITY

The kinematical constraints~2.3! can be written in terms
of the real connectionsgAa and the rest of the new canonic
variables introduced in the previous section. After some c
culations that involve the compatibility between the sp
connection and the soldering form, the Bianchi identiti
and the relations between Pauli matrices (t jtk)A

B

5 i e jklt A
l B1d jkdA

B @2#, the constraints become
1-4
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G5gg21gDa
gEa

ª

gG,

GAB52A2gD a
gsAB

a 2gy(AB)8 ª

gGAB , ~4.1!

Va5gVa1
i

4A2g
tr~gy8!tr~gG gsa!1

i

g
tr@gG~Ga2gAa!#,

wheregDa is the derivative operator associated with the co
nection gAa , gFab is its curvature, and

gVaªA2tr~gsbgFab!2 1
2 ~grA8

gDa
gj8A1gvA8

gD a
gh̄8A!

1 1
2 ~gD a

grA8
gj8A1gD a

gvA8
gh̄8A!2gpf]a

gf

2 1
2 tr~gEbgBab!2tr@gG~Ga2gAa!#. ~4.2!

In addition, gy(AB)8 is the counterpart of expression~2.2! for
the new fermionic variables, andgDa

gEa and gBab stand for
the result of evaluating Eqs.~2.4! and ~2.5!, respectively, at
the scaled Yang-Mills variables (gAa ,gEa) employing the
new coupling constantggªCg21/2+g.

We hence see that the physical constraints of Lorentz
general relativity$x l%5$G,G,Va% are equivalent to the new
constraints$gx l%5$gG,gG,gVa%. We can therefore use th
latter as the kinematical constraints in the real connec
formulation. Furthermore, note that the functional dep
dence ofgx l on the corresponding set of canonical variabl
specified by the parameterg, is the same for all values ofg
provided that the Yang-Mills coupling constant is also sca
with this parameter~according to the definition ofgg). Ac-
tually, this property continues to hold even when we allo
the parameterg to take different values for each of the field
that are present in the system, namely, when the canon
variables and coupling constants denoted with the indeg
are in fact those obtained with the set of parameters$ga%
introduced in Eq.~3.11!.

It is now straightforward to check that the extended Th
mann transformT$ga% leaves the kinematical structure invar
ant. We have already seen that the transform preserves
canonical Poisson brackets. Then, we only have to show
it does not alter the kinematical constraints. By constructi
T$ga% maps the canonical set of variables~and the coupling

constants! with g51 to those with parameters$ga%; so,
T$ga%+

1x l5
gx l with our notation. But Eqs.~4.1! ensure that

$gx l% is equivalent to$1x l%. The set of constraints$1x l% is
thus invariant under the extended Thiemann transform. A
consequence, we can identify the symplectomorphismT$ga%

with the identity transformation at the kinematical level.
Since,T$ga%[1 as far as the kinematical structure is co

cerned, the action of the transformsR$ga% andC$ga
1/2% can be

regarded as equivalent at this level. It is worth noting that
latter of these transforms amounts to a constant chang
scale if~and only if! ga5g, ;a. To see this point clearly, i
is convenient to introduce a formalism in which all fields a
coupling constants~that we denote generically by the symb
02402
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X) are dimensionless. This can be accomplished by introd
ing the universal length scalel * and defining * X
ª l

*
2D(X)X, so that

Cg
a
21/2 +* X5* X and Cg

a
21/2 + l * 5ga

21/2l * . ~4.3!

Obviously, the scaling transformations ofl * for each kind of
field a are incompatible unless all the parametersga coin-
cide. Then, in the casega5g ;a, we see that the action o
the extended Wick transform can indeed be interpreted
constant scale transformation if we restrict ourselves to ki
matical considerations:

Rg[Cg1/2. ~4.4!

The main reason underlying this result is that both
constraints1x l and the fundamental non-vanishing Poiss
brackets have the same dimension~namely, 2!, as well as the
same degree of homogeneity~namely, 1! in the variables

$Pa%ª$Ga21Aa ,pf ,1r8,1v8,Ea%, ~4.5!

up to terms that vanish because of the Bianchi identities
the compatibility of the triad with the spin connection. N
tice that the extended Wick transformRg multiplies each of
the elements in$Pa% by a factor ofg while leaving invariant
their canonically conjugate variables

$Qa%ª$2A2sa,f,1j8,1h̄8,Aa%. ~4.6!

We now want to discuss the implications of the equiv
lence ~4.4! for the Immirzi ambiguity that arises in loop
quantum gravity at the kinematical level. With this aim, l
us consider an~abstract! operatorq(s) constructed from the
soldering form, its dimension beingD(q). We assume tha
this operator is an observable, at least from a kinemat
point of view. Let us call Sp@q(s)# and Spg@q(s)# its spec-
tra in the loop representations based, respectively, on the
connections1Aa and gAa , adopting in both cases as con
figuration variables for the matter fields the elements of$Qa%
other than the soldering form. SinceRg+Qa5Qa and
Rg+1Aa5gAa , the two representations are related via t
extended Wick transform. Using in our kinematical analy
that Rg[Cg1/2, one concludes that the spectrum Spg@q(s)#
is the image of Sp@q(s)# under a constant scale transform
tion: namely,

Spg@q~s!#5Sp@Cg1/2 +q~s!#5gD(q)/2Sp@q~s!#.
~4.7!

This spectrum is obviously different from Sp@q(s)# if it
contains a discrete component, as happens for instance
the area operator@26#.

The discrepancy between the spectra of geometric op
tors in the loop representations obtained with different c
nections gAa is called the Immirzi ambiguity@10#. As we
have seen, the ambiguity existing in vacuo persists also
the presence of matter fields. But much more importan
our discussion shows that, owing to the relationRg[Cg1/2,
1-5
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the Immirzi ambiguity can be considered equivalent to a c
stant scale transformation at the kinematical level.

We should note that the presence of matter has introdu
a subtle modification in our analysis with respect to the p
gravitational situation. As a result of a direct extrapolation
the conclusions for vacuum gravity, the Immirzi ambiguity
usually thought to arise in loop representations that are
lated by a transform likeRg , but restricted to act only on th
gravitational field. With the notation of Sec. III, this woul
correspond to the replacement ofg with a collection of pa-
rameters$ga% ~one for each field! such that they all equal th
unity except for the gravitational component. The remarka
point is that the same Immirzi ambiguity appears when
extended Wick transform acts on all fields with identic
value ofg. Moreover, as we have proved, the transform c
be consistently interpreted in this case, from a kinemat
point of view, as a constant scale transformation that equ
affects all fields and parameters, not only those associ
with the gravitational sector.

Finally, it should be stressed that the equivalence betw
the extended Wick transform~whose implementation result
in the Immirzi ambiguity! and a constant scale transform
tion is only valid for kinematical considerations. Indeed,
shown in the Appendix, the scalar constraint is not invari
under the action ofTg . Therefore, the equivalence does n
hold dynamically and, consequently, the Immirzi ambigu
cannot be associated with the multiplication of the class
action by a constant~removable by means of a change
scale! when dynamics is taken into account@13,17#.

V. BLACK HOLE ENTROPY

A particular example of a geometric operator with a d
crete spectrum is that representing the areaA of an isolated
horizon in loop quantum gravity@22,26#. Since the dimen-
sion of the area operator is 2, Eq.~4.7! gives the relation
between the eigenvaluesA(J) and Ag(J) in the respective
loop representations with connections1Aa and gAa :

Ag~J!5gA~J!. ~5.1!

Here, the symbolJ labels the different eigenvalues of th
spectrum.

The explicit form of the area spectrum for an isolat
horizon, which is deduced from purely kinematical consid
ations, is one of the keystones in the calculation of the
tistical entropyS of a black hole, obtained in the Ashteka
approach by counting degrees of freedom in the Hilb
space of loop quantum gravity. An important point in th
deduction of the black hole entropy is that, since the f
theory of quantum gravity is not known, the calculation
carried out by studying only the sector of isolated horizo
with constant areaA. This sector is quantized in a loop rep
resentation with a certain Immirzi parameterg. In the limit
of a large horizon area, the resulting entropy is@21,22#

S5
g0A
4g l

*
2

, with g05
ln 2

pA3
. ~5.2!
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To recover the Bekenstein-Hawking formulaS5A/(4l p
2)

~where l p is the Planck length of low-energy physics!, it is
then argued that the Immirzi parameter must be fixed so
g l

*
2 5g0l p

2 . In particular, if l * and l p coincide,g must be
chosen equal tog0 in order to reach an acceptable semicla
sical prediction.

There is however a potential loophole in the above line
reasoning that had remained unperceived so far. Nam
since the calculation of the black hole entropy is perform
for a fixed value of the horizon area and with a certain cho
of the Immirzi parameter, there seems to be no obstacl
select g in terms of A, so thatg becomes in practice a
function of this quantity. Obviously, this would spoil the lin
ear relation between the entropy and the area. A way ou
this problem consists in proving that the appearance of
Immirzi parameter in the entropy formula amounts in fact
a change of scale. As we will show, imposing that the Plan
scale be unique for all the observers that carry out the m
surements will then eliminate the postulated dependenceg
on the area.

Note that, to attain our goal, we only have to demonstr
that the Immirzi parameter can be absorbed through a c
stant scaling in all the steps where the dynamical struc
enters the calculation of the entropy. For all other consid
ations we simply have to apply the results of Sec. IV, wh
we proved the kinematical equivalence of the Immirzi am
guity with a change of scale. Actually, the dynamical stru
ture appears in the entropy calculation only through
isolated-horizon boundary conditions. These conditions c
dynamical information and intervene in the analysis in
much as they are utilized to prove the following resu
@22,23#.

~i! The surface terms of the action, necessary for a w
posed variational problem, correspond to a Chern-Sim
theory whoseU(1) connection isWa5tr(Gar ). The under-
line denotes the pull-back to the spatial sections of the h
zon, which are topologicallyS2, andr 52 ir jt

j /A2 is a fixed
smooth function from the sphere to the Lie algebra ofSU(2)
with tr(r 2)521. We note that bothr and the spin connec
tion Ga are invariant under constant scale transformation

~ii ! The level k of this U(1) Chern-Simons theory is
k5A/(4pg l

*
2 ), whereA is the constant area of the horizo

This level determines the overall factor in the Chern-Simo
contribution to the symplectic structure. Notice thatg ap-
pears ink exactly as a scaling of the universal lengthl * .

~iii ! The curvature of the Chern-Simons connection
tr(gSabr )/(2kl

*
2 ). Here,Sabªhabcs

c andhabc is the Levi-
Cività form-density. SincegSab5g21Sab , we see that the
Immirzi parameter appears again as a constant scaling ofl * .

Remarkably, the isolated-horizon boundary conditions
sure in addition that there do not exist non-trivial Ham
tonian gauge transformations at the horizon, so that we
not have to impose the scalar constraint on it. This me
that the dynamical aspects of the matter content do not af
the physics at the horizon and, as a consequence, the sp
choice of the Immirzi parameter for the matter fields does
affect the entropy calculation.
1-6
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The only issue, purely non-dynamical, remaining in t
calculation of the entropy is counting the physical sta
whose area eigenvalueAg(J) ~in the loop representation
based ongAa) lies within the interval

A
g l

*
2

2d<
Ag~J!

g l
*
2

<
A

g l
*
2

1d. ~5.3!

The counting is made for largeA/(g l
*
2 ) and assuming tha

d.4pA3 ~to ensure the existence of at least one eigenva
that corresponds to an even number of spin insertions!. Fol-
lowing the steps in@22#, one then obtains the entropy fo
mula ~5.2!.

As we have already argued, the Immirzi ambiguity is
nematically equivalent to a constant scale transformation.
have also seen that all the dynamical arguments involve
the entropy calculation indicate thatg appears as a consta
scaling of the universal lengthl * , even though the scala
constraint and hence the dynamics in general do not sup
such interpretation. Therefore, we can conclude that the
pearance of the Immirzi ambiguity in the entropy formula
equivalent to a scaling ofl * .

In our discussion, there seem to exist two length sca
which, for the time being, have been treated as indepen
@19#. One of them would be the fundamental length scalel * ,
which appears in front of the action and determines the P
son bracket structure@7,20#, and hence the strength of th
quantum gravitational effects. The other would be a lo
energy length scale, which would characterize the lo
energy behavior of quantum gravity, and whose squ
would provide the quantum of area. Let us call this leng
scale the Planck length and define it as

l p5 l *
Ag/g0, ~5.4!

so that

S5
A

4l p
2

. ~5.5!

Our definition of l p is feasible because, as we have show
the Immirzi ambiguity amounts to a change of scale, at le
as far as the area spectrum and the entropy formula are
cerned. From this point of view, fixingg is equivalent to
fixing the effective value of the low-energy Planck lengthl p
in terms of the fundamental lengthl * .

Let us remember that, because the whole entropy ana
has been performed under the assumption that the area o
isolated horizon is fixed and givena priori, the Immirzi pa-
rameter might in principle be made dependent onA, thus
spoiling the linearity of the relation between entropy a
area. Fortunately, the possible effects of this potential dep
dence ofg on the area can now be eliminated on the basis
a physical requirement: when comparing low-energy a
large-horizon physics for different horizons, the comparis
must be carried out by observers that assign the same v
to the Planck lengthl p . Sincel * is a universal constant an
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g0 is just a numerical factor, this fixes the value ofg to be
the same for all observers and, of course, independent o
area.

VI. SUMMARY AND DISCUSSION

In this paper, we have shown that the Immirzi ambigu
can be described at a kinematical level in terms of cons
scale transformations. With this aim, we have considered
Ashtekar-Barbero formulation of general relativity coupl
with fermions, a scalar field, and a Yang-Mills field. In th
framework, the Immirzi ambiguity appears when one calc
lates the spectra of geometric operators using loop repre
tations that are based on different real connections for
gravitational field. We have shown that these representat
can be related via an extended Wick transform that, in ad
tion to introducing the Immirzi parameter in the gravitation
connection, has also the effect of multiplying the matter m
menta by the same parameter. This extended Wick transf
admits a geometric interpretation as a scaling of the la
function, and we have proved that it can be completed wit
constant scale transformation to reach a symplectomorph
In a sense, the constructed symplectomorphism provide
extension of the Thiemann transform that maps the Lore
ian to the Euclidean formulation of Ashtekar gravity.

Such an extended Thiemann transform has been show
preserve the kinematical constraints of the system, so th
can be viewed as equivalent to the unit transform as fa
one disregards the dynamical evolution. Based on this f
we have argued that the Immirzi ambiguity in loop quantu
gravity can be understood in terms of a constant scale tr
formation for all kinematical considerations. Indeed, t
physical spectra of geometric operators in loop quant
gravity are affected by the Immirzi parameter in a way whi
appropriately depends on the dimension of the operators.
corresponding scale transformation implies a change of c
formal frame that can be considered responsible for
quantum ambiguity.

The scalar constraint, on the other hand, is not invari
under the extended Thiemann transform, and hence the
mirzi ambiguity cannot be absorbed dynamically into
change of scale. This can also be rephrased by saying tha
four-dimensional line elements obtained with a const
scale transformation and with a constant scaling of the la
do not lead to dynamically equivalent theories. The bre
down of this equivalence with respect to the kinematical s
ation makes us suspicious of the special role played by t
in the Ashtekar-Barbero formulation, which can be trac
back to the time gauge fixing that is introduced in such
formalism and the consequent loss of a genuine space
interpretation for the gravitational connection@10–12#.

The Immirzi ambiguity affects one of the most outstan
ing predictions of loop quantum gravity, namely, the entro
formula for isolated horizons. The derivation of this formu
involves not only kinematical but also dynamical process
However, the dynamical structure turns out to enter the c
culation only coded in the isolated-horizon boundary con
tions. It is worth commenting that an analogous conclus
1-7
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has been recently reached by Padmanabhan from a c
pletely independent point of view@27#. He has deduced th
entropy of a spherically symmetric spacetime with a horiz
by studying the partition function of a canonical ensem
with fixed temperature on that horizon. This analysis do
not assume that the spacetimes in the ensemble are solu
to the Einstein equations; moreover, it is seen that the re
depends only on the form of the metric near the bound
supplied by the horizon.

Returning to our study of the loop approach, we ha
shown that, whenever the Immirzi parameter appears in
calculation of the black hole entropy through the conditio
on the horizon, remarkably, it behaves in fact as thoug
came from a constant scale transformation. The remain
arguments that lead to the entropy formula are strictly ki
matical. It then follows from our discussion that the Immir
ambiguity in the relation between entropy and area can
understood as a conformal ambiguity in the length scale
ployed to measure large horizon areas and low-energy
cesses in general. This is important because the entropy
culation is performed for isolated horizons with a const
area that is givena priori. Therefore, the choice of Immirz
parameter in the loop quantization might in principle
made dependent on this area, and this would ruin the po
bility of deducing the Bekenstein-Hawking formula. How
ever, this potential dependence on the area of the Imm
parameter disappears if we insist that the results for diffe
large isolated horizons be compared by observers wh
agree on the value of the length scale that controls the s
classical gravitational effects from the low-energy point
view, i.e., Planck length, because the Immirzi parameter
be absorbed into this length scale.

ACKNOWLEDGMENTS

G.A.M.M. is very thankful to J.F. Barbero G. for enligh
ening discussions. This work was supported by funds p
vided by the Spanish Ministry of Science and Technolo
under the Research Project No. BFM2001-0213.

APPENDIX A: SCALAR CONSTRAINT

In this appendix, we present the expressions of the sc
constraint in terms of the Ashtekar connection and of the
connectionsgAa . In the Ashtekar formulation of Lorentzia
gravity with matter fields, the scalar constraint is@2,3,7#

S52tr~sasbFab!1 im~s2jAh̄A2rAvA!

1 iA2s A
a B~rBD̆ajA1vBD̆ah̄A!1s2L1

pf
2

16p

14ps2m2f224ptr~sasb!]af]bf

1
1

8s2
tr~sasc!tr~sbsd!tr~EabEcd1BabBcd!,

where we have employed the notation of Sec. II,m and m
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denote the masses of the fermionic and scalar fields,L is the
cosmological constant, andEab5habcE

c, with habc being the
Levi-Cività form-density.

This constraint leads to the Einstein-Cartan theory, wh
is quartic in the fermionic variables. Nevertheless, one
attain the Einstein-Dirac theory, quadratic in fermionic field
by simply adding toS the term@2,7#

Sf52
3

16
~yA

AyB
B1yAByAB1yAByBA!.

In terms of the real connectiongAa , the scaled soldering
form gsa, and the canonical set of matter variables specifi
by the parameterg ~here, we concentrate on the case
interestga5g ;a), the scalar constraint can be written
follows:

S5g2 gS1
i

A2
g~g21!gY2~g221!gZ

2
i

A2
gDatr~gG gsa!, ~A1!

where Da is the derivative operator compatible with th
triad, obtained with the spin connectionGa , and

gSª2tr~gsa gsb gFab!1tr~gsa gsb@Ga2gAa ,Gb2gAb# !

1gs2 gL1 i gm gs gj8Agh̄A81
1

A2
tr~gsDa

gy8!

14pgs2 gm2 gf224ptr~gsa gsb!]a
gf]b

gf

1
1

8gs2
tr~gsa gsc!tr~gsb gsd!tr~gBab

gBcd!

1gZ2
i

A2
gY1

1

A2
Datr~gG gsa!,

gYªtr~gsa$Da
gr8gj81Da

gv8gh̄82gr8Da
gj8

2gv8Da
gh̄8%!,

gZªtr~gsa gsb@Ga2gAa ,Gb2gAb# !1
3

16
@ tr~gy8!#2

2 i gm gs gr8A gvA82
1

A2
tr~gy8tk!tr~gsatk$Ga2gAa%!

1

gpf
2

16p
1

1

8gs2
tr~gsa gsc!tr~gsb gsd!tr~gEab

gEcd!.

We have used the notation introduced in Secs. III and IV, a
the scaled coupling constants aregkªg2D(k)/2k. D(k) is
equal to21 except forL, whose dimension is22.

Taking g51, we see from the above expressions th
1S5S modulo the gravitational Gauss constraint. We c
1-8
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hence use1S as the scalar constraint in the real connect
formulation withg51. On the other hand, recalling that th
different sets of canonical phase-space variables and
pling constants parametrized byg are related by the ex
tended Thiemann transformTg and using our definition of
gS, we straightforwardly obtain thatTg+1S5gS. However,
v-

d

02402
n

u-

gS and 1S differ when gÞ1 even modulo the kinematica
constraints, as can be easily checked from Eq.~A1!. As a
consequence, the dynamical structure is not invariant un
the extended Thiemann transform. Therefore, the kinema
equivalenceRg[Cg1/2 is not maintained when dynamics
taken into account.
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