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Microcausality and quantum cylindrical gravitational waves
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We study several issues related to the different choices of time available for the classical and quantum
treatment of linearly polarized cylindrical gravitational waves. We pay special attention to the time evolution
of creation and annihilation operators and the definition of Fock spaces for the different choices of time
involved. We also discuss the issue of microcausality and the use of field commutators to extract information
about the causal properties of quantum spacetime.
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I. INTRODUCTION

The quantization of polarized gravitational cylindric
waves has received a lot of attention in recent years@1–9#.
This is partly due to the fact that this system provides
tractable, yet nontrivial, reduction of full general relativi
and hence is an ideal framework to explore several iss
involved in the quantization of gravity. Some intriguing ph
nomena, related to the existence of large quantum gra
effects, have been discussed by studying precisely this m
@1–5#. It has also been argued that some manifestation
quantum gravity, such as the smearing of light cones
indeed, present and can be understood in this simplified
ting @2#.

One of the interesting points behind the obtained result
the realization of the fact that the physical Hamiltonian is
function of the free field Hamiltonian for a~211!-
dimensional, axially symmetric, massless scalar field evo
ing in an auxiliary Minkowski background@1,10,11#. As we
show in the first section of the paper, this free Hamilton
naturally appears when one linearizes the system, thus
gesting that, in a precise sense, it can be considered a
free part of an interacting model. However, the full intera
ing Hamiltonian is obtained by adding a very specific type
term to the free part, namely, just functions of it. Here w
plan to explore the consequences of this functional rela
between the two physically relevant Hamiltonians for t
system and explore how this affects the causal structur
quantum spacetime. To this end we will pay attention to
smearing of the light cones due to quantum gravity effe
within the framework of linearly polarized cylindrical wave
Instead of considering the full information encoded in t
metric tensor we will concentrate on the causal structure p
vided by light cones. An interesting, albeit somewhat indir
way, to look at this structure is to study the commutators
field operators at different spacetime points. These are
basic objects to discuss the commutativity of observab
and the microcausality of the model; conventionally, a phy
cal model should be such that observables commute
space-like intervals. This has been discussed in the stan
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perturbative quantum field theory framework for simple e
amples such as scalar or fermion fields~see, e.g.,@12#!. In
fact, microcausality is one of the key conditions to pro
such important results as the spin-statistics theorem@12,13#.

Here we will use the commutator of the scalar field th
describes linearly polarized cylindrical waves as a way to
information about the causal structure of quantum spaceti
As we show later it is possible to give exact expressions
this commutator both for the evolution provided by the fr
and the full physical Hamiltonians. We will use these expr
sions to study in a quantitative way the smearing of the li
cones as a function of the three-dimensional gravitatio
constant and explore some physical issues, in particular
appearance of singularities as a consequence of havin
Hamiltonian bounded from above@14,15#.

The rest of the paper is structured as follows. In Sec. II
discuss how the free Hamiltonian is derived from the line
ized cylindrical wave model. Section III deals with the cla
sical and quantum dynamics of cylindrical gravitation
waves under the evolution provided both by the free Ham
tonian and the physical Hamiltonian. We will pause here
discuss and compare on a familiar example~the harmonic
oscillator! the main features of the time evolution defined
functionally related Hamiltonians, both from the classic
and the quantum points of view. This will provide valuab
insights for the problem considered in this work. Section
is devoted to the study of microcausality. We will look at th
main features of the field commutators and study the sm
ing of the light cones due to quantum gravitational effec
We end the paper with a discussion of the main results
perspectives for future work.

II. CYLINDRICAL WAVES IN LINEARIZED GRAVITY

Linearly polarized cylindrical waves in general relativi
can be described by the spacetime metric@2,3#

ds25e2cds3
21ecdZ2, ~1!

whereZPR is the coordinate of the symmetry axis andds3
2

is the three-metric

ds3
252N2dt21eg~dR1NRdt!21r 2du2. ~2!

From this three-dimensional point of view,RPR1 and u
PS1 correspond to polar coordinates,NR is the radial com-
©2003 The American Physical Society06-1
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ponent of the shift vector andN is the lapse function. All
metric functions (g, r, N, andNR) depend only on the time
and radial coordinates,t andR.

Unless otherwise stated, we adopt a system of units s
that c5\58G351, wherec is the speed of light,\ is the
Planck constant, andG3 is the effective Newton constant pe
unit length in the direction of the symmetry axis@3#. In these
units, the gravitational action of the system has the fo
@8,10#

S5E
t1

t2
dtF E

0

`

dR~pgġ1pr ṙ 1pcċ!2HG , ~3!

where the dot denotes the derivative with respect tot, thep’s
are the momenta canonically conjugate to the metric v
ables andH is the total Hamiltonian

H52~12e2g`/2!1E
0

`

dR@NC1NRCR#. ~4!

The first term is a boundary contribution at infinity@g`

ªg(R→`)# and the second term is a linear combination
the Hamiltonian constraintC and the ~radial! diffeomor-
phisms constraintCR:

C5e2g/2F2r 92g8r 82pgpr1
pc

2

2r
1

r ~c8!2

2 G ,
CR5e2g~22pg81pgg81prr 81pcc8!.

The prime denotes the derivative with respect toR. The
gauge freedom associated with these constraints can b
moved by imposing, respectively, the gauge fixing conditio
@2,3#

xR
ªr 2R50, xªpg50.

On the other hand, the Lagrangian form of the action can
obtained from the relations between momenta and time
rivatives of the metric provided by the Hamilton equation

pgN52eg/2ṙ 1e2g/2NRr 8,

pcN5eg/2r ċ2e2g/2NRrc8,

prN52eg/2ġ12~NRe2g/2!8.

From a three-dimensional perspective, the system
scribes an axially symmetric model consisting of a sca
field c coupled to gravity@2#, the line element being Eq.~2!.
A particular classical solution is a vanishing scalar field
three-dimensional Minkowski spacetime or, equivalen
Minkowski spacetime in four dimensions. In this solutio
N51 and r 5R, whereas the rest of metric fields and m
menta vanish~i.e. c5g5NR5pc5pg5pr50).

In this section we will consider this solution as a bac
ground and discuss first-order perturbations around it.
other words, we will analyze the linearized theory of grav
around this Minkowski spacetime, as it is usually done in
12400
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perturbative, quantum field theory approach to gravity.
order to expand the metric fields around the classical s
tion, let us call

r 5R1 r̄ , N511N̄.

Up to first-order terms in the fields, the expression of t
three-metric becomes

ds̄3
252~112N̄!dt212NRdtdR1~11g!dR2

1~R212Rr̄!du2,

while the four-dimensional metric is given by

ds̄25~12c!ds̄3
21~11c!dZ2. ~5!

Here it is understood that the product ofc with any other
metric field vanishes in the perturbative order considered.
the other hand, regularity on the axis of symmetry impo
the following conditions:

g~R50!50, NR~R50!50,

r̄ ~R50!50, r̄ 8~R50!50. ~6!

In order to discuss the linearized gravitational system,
must keep up to quadratic terms in the fields in the action~3!.
A straightforward calculation leads to the result

S̄5E
t1

t2
dtF E

0

`

dR~pgġ1pr̄ r̄̇ 1pcċ!2H̄G ,
H̄5E

0

`

dRF pc
2

2R
1

R~c8!2

2
2pgpr̄1N̄C̄1NRC̄RG

1~22g`! r̄ 8~R→`!.

Here pr̄ªpr is the momentum canonically conjugate tor̄ ,
and the linearized constraints are

C̄52r̄ 92g8, C̄R5pr̄22pg8 .

The diffeomorphisms gauge freedom can be fixed just l
in the cylindrical reduction of general relativity, namely, b
demanding thatr 5R1 r̄ coincides with the radial coordinat
@3#. We thus impose the gauge fixing conditionx̄R

ª r̄ 50. It
is easily checked that the Poisson brackets$x̄R,C̄R% of this
condition with the linearized constraint do not vanish, so t
the gauge fixing is admissible. Dynamical consistency of
gauge fixing procedure requires, in addition,

x̄ Ṙ5$x̄R,H̄%5NR2pg50.

Hence, the shift must be chosen asNR5pg . Finally, the
momentum conjugate tor̄ is fixed by solving the diffeomor-
phisms constraint:pr̄52pg8 . In this way, the canonical pai

( r̄ ,pr̄) is removed from the set of degrees of freedom. T
action of the resulting reduced model is
6-2
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S̄15E
t1

t2
dtE

0

`

dR~pgġ1pcċ2N̄C̄1!

2E
t1

t2
dt@H02pg

2~R→`!1pg
2~R50!#.

HereC̄152g8 is the Hamiltonian constraint of the reduce
linearized system, and

H05E
0

`

dRF pc
2

2R
1

R~c8!2

2 G . ~7!

Remarkably, the condition employed to eliminate t
Hamiltonian gauge freedom in full cylindrical gravity@3# can
be used as well to fix the corresponding gauge in the line
ized theory. The gauge fixingx̄ªpg50 is acceptable, be
cause the Poisson brackets ofx̄ and C̄1 differ from zero. In
addition, consistency of the chosen gauge demands the
ishing of

ẋ̄5H x̄,H01E
0

`

dRN̄C̄1J 52N̄8.

Therefore,N̄ has to be independent of the radial coordina
Actually, we can setN̄50 by demanding that the total laps
equals the unity at spatial infinity. On the other hand, tak
into account the regularity condition~6!, the solution to the
Hamiltonian constraint is simplyg50. This allows us to
remove the canonical pair (g,pg) from the system and arrive
at a constraint-free model in linearized gravity.

The degrees of freedom of this system are the fieldc and
its momentum. The reduced action is

S̄25E
t1

t2
dtF2H01E

0

`

dRpcċG .
Note thatH0, given in Eq.~7!, is the Hamiltonian of a mass
less scalar field with axial symmetry in three dimensio
Furthermore, in the gauge that we have selected, the th
dimensional metric of the linearized gravitational theory
exactly that of Minkowski spacetime and contains no phy
cal degrees of freedom. The scalar fieldc determines the
norm of the Killing vector]Z , and appears in the four
dimensional metric of the gauge-fixed, linearized model
the form ~5!, but with ds̄3

2 substituted by the flat metric

~ds̄3
2! fª2dT21dR21R2du2, ~8!

where we have renamedT the time coordinate of the reduce
system.

Summarizing, the perturbative description provided in l
earized gravity for cylindrical waves with linear polarizatio
around four-dimensional Minkowski spacetime is equival
to a massless scalar field with axial symmetry in a thr
dimensional flat background. The dynamics of this field
dictated by the free HamiltonianH0, which generates the
evolution in the Minkowskian timeT.
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It is worth noticing that the action and metric of th
gauge-fixed model in linearized gravity reproduce in fact
results that one would obtain from the gauge-fixed mode
full cylindrical gravity by working just in the first perturba
tive order, i.e., by keeping in the action and metric, resp
tively, up to quadratic and linear terms in the fieldc and its
momentum. In this sense, the gauge fixing and lineariza
procedures commute.

III. TIME COORDINATES AND EVOLUTION FOR
CYLINDRICAL WAVES

A. Systems with functionally related Hamiltonians

One of the significant features of gravitational cylindric
waves is the existence of two distinct, physically releva
Hamiltonians~or equivalently two distinct time coordinates!
to define both the classical and quantum evolution. One
the HamiltonianH0 @given in Eq. ~7!# that generates the
dynamics in the linearized gravitational theory; the other
the HamiltonianH that provides the energy per unit leng
along the symmetry axis in general relativity@2,14,15#. In
fact, they are functionally dependent, sinceH52(1
2e2H0/2). In order to gain insight into the relation that ca
be established between the dynamics associated with t
two different Hamiltonians, we open this section by discu
ing a similar situation in a very simple example provided
the harmonic oscillator.

The usual description of the harmonic oscillator in
phase space coordinatized by (x0 ,p0) comes from its stan-
dard Hamiltonianh0(x0 ,p0)5(p0

21v2x0
2)/2. The dynamics

is given by the Hamilton equations

dx0

dT
5p0 ,

dp0

dT
52w2x0 .

The general solution can be written as

x0~T!5
1

A2v
~ae2 ivT1a†eivT!,

p0~T!5
2 iv

A2v
~ae2 ivT2a†eivT!,

wherea and its complex conjugatea† are fixed by the initial
conditions.

Consider next a phase space (x,p) with Hamiltonian h
5F(h0), i.e. a function of the standard Hamiltonian for th
harmonic oscillator. For instance, the caseF(ho)5h0

2 arises
in the context of quantum optics, in relation with the prop
gation of light in non-linear Kerr media@16#. The equations
of motion now read

dx

dt
5$x,F~h0!%5F8~h0!p,

dp

dt
5$p,F~h0!%52v2F8~h0!x,
6-3
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whereF8 denotes the derivative ofF with respect to its ar-
gument. These new equations can be easily solved by m
of a change of time. Specifically, making use of the tim
independence of the Hamiltonianh0 (h05wa†a on solutions
to the equations of motion!, we can introduce the new tim
parameter T(t)5F8(h0)t. Then, the functions x(t)
5x0@T(t)#, p(t)5p0@T(t)# and the new timeT serve us to
transform the Hamilton equations into the standard ones
responding to the harmonic oscillator. So, the classical s
tions are

x~ t !5x0@T~ t !#5
1

A2v
@ae2 ivF8(va†a)t1a†eivF8(va†a)t#,

p~ t !5p0@T~ t !#5
2 iv

A2v
@ae2 ivF8(va†a)t2a†eivF8(va†a)t#.

What we find is an energy dependent redefinition of time t
induces a different time change for each solution to the eq
tions of motion.

The situation in the quantum theory is quite different. T
reason lies in the fact that in quantum mechanics a phys
state does not need to have a definite energy. The
‘‘change of time’’ of the form T̂5F8(ĥ0)t has non-trivial
consequences for the dynamics.

The usual quantum theory for the harmonic oscillator c
be described by introducing a Fock space with creation
annihilation operatorsa†, a. Every initial state can be ex
pressed asuf(0)&5(n50

` cnun&, wherecn are Fourier coeffi-
cients~with the convenient normalization! andun& are energy
eigenvectors~that is, ĥ0un&5nwun&). In the Schro¨dinger
picture, evolving withĥ0, we find

uf0~T!&5e2 i ĥ0Tuf~0!&5 (
n50

`

cne2 inwTun&.

However, if the same stateuf(0)& evolves in time according
to the evolution generated byĥ5F(ĥ0), we get1

ufF~ t !&5e2 i ĥ tuf~0!&5 (
n50

`

cne2 iF (nw)tun&.

Hence we do not recover an analogous situation to that fo
in the classical system by replacing~formally! the timeT in
uf0(T)& with T̂5F8(ĥ0)t, becauseufF(t)&Þuf0„T̂(t)…& ex-
cept for linear homogeneous functionsF. Moreover, the
properties of the statesuf0(T)& andufF(t)& are quite differ-
ent. For example, if we consider the bounded Hamilton
ĥ5F(ĥ0)512e2ĥ0 it is obvious that the high energy con
tributions to ufF(t)& are essentially frozen in time with re

1Notice that the operatorsĥ0 and ĥ5F(ĥ0) act on the same Hil-
bert space. Moreover, if we demand the functionF to have a unique
absolute minimum at 0, the two Hamiltonians have also the sa
vacuum.
12400
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that the phase of the former type of contributions rema
practically coherent in time.

B. Functionally related Hamiltonians and cylindrical waves

Let us turn now to the discussion of our gravitation
system. We will deal with the Einstein-Rosen family of lin
early polarized gravitational waves@17#. These waves dis-
play the so-called whole cylindrical symmetry@18#, namely,
they correspond to topologically trivial spacetimes whi
possess two linearly independent, commuting, spacelike,
hypersurface orthogonal Killing vector fields. It is we
known @8,10# that these spacetimes admit coordina
(T,R,u,Z) such that the metric is given by

ds25eg2c~2dT21dR2!1e2cR2du21ecdZ2,

where c and g are functions of onlyR and T. When the
Einstein equations are imposed,c encodes the physical de
grees of freedom and satisfies the usual wave equation fo
axially symmetric massless scalar field in three dimensio

]T
2c2]R

2c2
1

R
]Rc50.

The metric functiong can be expressed in terms of this fie
on the classical solutions@2,3#. One gets

g~R!5
1

2E0

R

dR̄R̄@~]Tc!21~] R̄c!2#,

g`5
1

2E0

`

dRR@~]Tc!21~]Rc!2#. ~9!

Note thatg(R) andg` are the energy of the scalar field in
ball of radiusR and in the whole of the two-dimensional fla
space, respectively. Furthermore,g` coincides with the
HamiltonianH0 given in Eq.~7! @2#.

Nevertheless, to reach a unit asymptotic timelike Killin
vector field in the actual four-dimensional spacetime, w
respect to which one can truly introduce a physical notion
energy ~per unit length! @14,15#, one must make use of
different system of coordinates, namely (t,R,u,Z) whereT
5e2g`/2t. In these new coordinates the metric has the fo

ds25eg2c~2e2g`dt21dR2!1e2cR2du21ecdZ2.

Assuming as a boundary condition that the metric functionc
falls off sufficiently fast asR→`, the above metric de-
scribes asymptotically flat spacetimes with a, generally n
zero, deficit angle. In this asymptotic region] t is a unit time-
like vector. The Einstein field equations can be obtained fr
a Hamiltonian action principle@8,14,15# where the on-shell
Hamiltonian is given in terms of that for the free scalar fie
by

H5E~H0!52~12e2H0/2!. ~10!
e

6-4
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Owing to these reasons, in the following we will refer tot as
the physical time and toH as the physical Hamiltonian.

When we use theT time and impose regularity at th
origin R50 @2#, the classical solutions for the fieldc can be
expanded in the form

c~R,T!5E
0

` dk

A2
J0~Rk!@A~k!e2 ikT1A†~k!eikT#.

A(k) and A†(k) are fixed by the initial conditions and ar
complex conjugate to each other, becausec and J0 ~the
zeroth-order Bessel function of the first kind! are real. From
Eq. ~9!, we then obtain

g`5H05E
0

`

dkkA†~k!A~k!.

Using this formula, we can express the field in thet frame as

cE~R,t !5E
0

` dk

A2
J0~Rk!@A~k!e2 ikte2g`/2

1A†~k!eikte2g`/2
#.

Notice thatc(R,0)5cE(R,0).
In principle, the quantization of the fieldc can be carried

out in a standard way. We can introduce a Fock space
which ĉ(R,0), the quantum counterpart ofc(R,0), is an
operator-valued distribution@19#. Its action is determined by
those ofÂ(k) andÂ†(k), the usual annihilation and creatio
operators, whose only non-vanishing commutators are

@Â~k1!,Â†~k2!#5d~k1 ,k2!. ~11!

Explicitly,

ĉ~R,0!5ĉE~R,0!5E
0

` dk

A2
J0~Rk!@Â~k!1Â†~k!#.

~12!

In the Schro¨dinger picture, operators do not evolve, and t
problem of the time evolution is transferred to the physi
states. We will return later to this issue. In the Heisenb
picture, on the contrary, operators change in time and st
remain fixed. In this case, the value of the quantum fieldĉ at
any time can be obtained from its value atT5t50, evolving
in one of the two times that we have at hand. One is
physical timet, with associated HamiltonianH given in Eq.
~10!. The other is the timeT of the auxiliary three-
dimensional Minkowski spacetime, its Hamiltonian bei
that of a massless scalar field,H0. From our discussion in
Sec. II, this time can be identified with the perturbative tim
~denoted also byT) that arises in the study of the Einstei
Rosen waves in linearized gravity.

In the perturbative timeT, the evolution is provided by
the unitary operatorÛ0(T)5exp(2iTĤ0) where
12400
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Ĥ05E
0

`

dkkÂ†~k!Â~k! ~13!

is the quantum Hamiltonian of an axially symmetric sca
field in three dimensions. Then

ĉ~R,T!5Û0
†~T!ĉ~R,0!Û0~T!

5E
0

` dk

A2
J0~Rk!@Â~k!e2 ikT1Â†~k!eikT#.

~14!

The quantization procedure in this case is very simple:
have substituted the initial conditionsA(k) andA†(k) in the
classical solution by the corresponding quantum operato

The situation changes when we choose the physical timt
as the time parameter. The quantum Hamiltonian can be
fined as Ĥ5E(Ĥ0)52(12e2Ĥ0/2). We can then reach a
unitary evolution by means ofÛ(t)5exp(2itĤ). This leads
to the following time evolved operators:

ÂE~k,t !ªÛ†~ t !Â~k!Û~ t !5exp@2 i tE~k!e2Ĥ0/2#Â~k!,

ÂE
†~k,t !5Â†~k!exp@ i tE~k!e2Ĥ0/2#, ~15!

whereE(k)52(12e2k/2). It is important to realize that the
quantum evolution in the physicalt frame is not obtained by
changingA(k), A†(k), andg` by their direct quantum coun
terparts. In fact, by restoring the value of the dimension
constants \ and G3, we can write E(k)5(1
2e24Ḡk)/(4G3) with Ḡ5\G3, so that

t

\
E~k!5tk1o~\!,

and we can expandÂE(k,t) and ÂE
†(k,t) in powers of\,

ÂE~k,t !5exp~2 i tke24ḠĤ0!Â~k!1o~\!,

ÂE
†~k,t !5Â†~k!exp~ i tke24ḠĤ0!1o~\!.

~Here, we have expressedĤ0 with dimensions of an inverse
length.!

Setting again 8Ḡ51, the expansion above clearly show
that the quantum evolution of the creation and annihilat
variables in the physical time differs from the ‘‘classical ev
lution’’ in higher-order quantum corrections.

This unusual behavior can be partially corrected in
sense that one can actually find an operator forH such that
the quantum evolution in thet time is similar to the classica
one. In fact, if one considers the normal ordered Hamilton
Ĥnor5:Ĥ: and its associated unitary evolution opera
Ûnor5exp(2itĤnor), it is easy to prove that

Ânor~k,t !5exp~2 i tk:e2Ĥ0/2: !Â~k!,

Ânor
† ~k,t !5Â†~k!exp~ i tk:eĤ0/2: !.
6-5
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Therefore, the quantum evolution int given byĤnor parallels
that encountered in the classical picture. Unfortunately, th
is a severe problem with this quantum dynamics that rend
it physically unacceptable: the HamiltonianĤnor is un-
bounded both from above and below@2#.

Obviously, the different possibilities for the unitary tim
evolution of the fieldĉ considered here are closely relate
Specifically, there exists a unitary mapping between b
types of evolution. This is a consequence of the fact that t
are both unitary and coincide with the identity in the sa
Hilbert space atT5t50. So, if we denote the operato
evolved from X̂(0) in the times T and t by X̂(T)
5Û0

†(T)X̂(0)Û0(T) and X̂E(t)5Û†(t)X̂(0)Û(t), respec-
tively, we obtain

X̂E~ t !5Û†~ t !Û0~T!X̂~T!Û0
†~T!Û~ t !.

Then, we can go from one evolution to the other by mean
the unitary operatorÛ0

†(T)Û(t).
Let us close this section with a few comments about

Fock space on which the fieldĉ acts. In the Heisenberg
picture the states do not depend on time. They are c
structed by successive actions of the time independent
ation operators on the vacuum of the theory. It is importan
point out that bothĤ0 and Ĥ act on the same Hilbert spac
and have the same vacuum, which will be referred to asu0&.
Explicitly, given any square integrable complex functio
fn(k1 , . . . ,kn) ~with the convenient normalization! we can
write ann-particle state in the form

ufn&5E
0

`

dk1 •••E
0

`

dknfn~k1 , . . . ,kn!

3Â†~k1!•••Â†~kn!u0&.

According to the usual interpretation of quantum mechan
the measurable physical quantities correspond to expecta
values of observables. We can go over to the Schro¨dinger
picture by assigning the time evolution to the quantum sta

X~ t;f!5^f~0!uÛ†~ t !X̂~0!Û~ t !uf~0!&

5^f~ t !uX̂~0!uf~ t !&.

Defining ufE(t)&5Û(t)uf(0)&, uf(T)&5Û0(T)uf(0)&,
and noticing that theU operators satisfy

i ] tÛ~ t !5ĤÛ~ t !, i ]TÛ0~T!5Ĥ0Û0~T!,

it is straightforward to see that the evolved states are s
tions to the Schro¨dinger equations

i ] tufE~ t !&5ĤufE~ t !&, i ]Tuf~T!&5Ĥ0uf~T!&.

As in the Heisenberg picture, the unitary opera
Û(t)Û0

†(T) provides the bridge between the two kinds
quantum evolution,
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ufE~ t !&5Û~ t !Û0
†~T!uf~T!&.

Particularizing the above results to the case ofn-particle
states we readily get that, for theT time,

ufn~T!&5Û0~T!ufn&

5E
0

`

dk1•••E
0

`

dkne2 iktotTfn~k1 , . . . ,kn!

3Â†~k1!•••Â†~kn!u0&

wherektot5( j 51
n kj . Notice thatufn(T)& is a superposition

of eigenvectors ofĤ0 with eigenvalues equal toktot . On the
other hand, if we evolve the states withÛ(t), it is not diffi-
cult to check that

ufE,n~ t !&5Û~ t !ufn&

5E
0

`

dk1•••E
0

`

dkne2 iE(ktot)tfn~k1 , . . . ,kn!

3Â†~k1!•••Â†~kn!u0&.

In other words,ufE,n(t)& is a superposition of eigenvector
of Ĥ, each of them with energyE(ktot). Finally, it is worth
pointing out that theĤ energy is not additive:

E~ktot!5222e2((1
nki )/2Þ(

i 51

n

E~ki !52n22(
i 51

n

e2ki /2.

This property is directly related to the existence of an up
bound for the physical Hamiltonian.

IV. MICROCAUSALITY

A. Free Hamiltonian

Microcausality plays a crucial role in perturbative qua
tum field theory; in fact it is a crucial ingredient in suc
important issues as the spin-statistics theorem@13#. The point
of view that we will develop in this section is the idea th
field commutators of the scalar field that encodes the ph
cal information in linearly polarized cylindrical waves can b
used as an alternative to the metric operator to extract ph
cal information about quantum spacetime. Some relevan
formation may be lost, but the availability of explicit exa
expressions for commutators@even under the evolution give
by the Hamiltonian~10!# opens up the possibility of getting
precise information about the quantum causal structure
spacetime. In particular we will see how the light cones
smeared by quantum corrections in a precise and quantita
way.

As is well known, the study of causality in perturbativ
quantum field theory requires the consideration of meas
ments of observables at different spacetime points and t
mutual influence. The key question is whether measurem
taken at spatial separations commute or not. The relev
commutators can be seen to be proportional to those of
6-6
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quantum fields at two different spacetime pointsx andy. For
a free massless scalar field described by the standard
grangian, this commutator is a (c-number! function ofx and
y that is exactly zero whenx-y is space-like@12#. This means
that observables at points separated by spatial intervals c
mute. Something similar happens for fermions described
the usual Lagrangians if, instead of commutators, one ta
anticommutators of the fields~observables for fermion field
can be written as even powers of them and the relevant c
mutators can be written in terms of anticommutators of
basic fields! @12#.

In the case that we are considering in this work the o
physical local degree of freedom that we have is given by
scalar fieldc. What we will do in the following is discuss
microcausality by considering the different time evolutio
introduced in the first part of the paper.

We start by computing@ĉ(R1 ,T1),ĉ(R2 ,T2)# for the
field operators~14! obtained in the Heisenberg picture b
evolving the field at timeT50 with the HamiltonianĤ0
given in Eq.~13!. It is straightforward to get~see@20# for a
somewhat related computation!

@ĉ~R1 ,T1!,ĉ~R2 ,T2!#5 i E
0

`

dkJ0~R1k!J0~R2k!

3sin@~T22T1!k#. ~16!

Let us discuss the main features of this commutation fu
tion, which we will refer to in the following as theH0 com-
mutator. See Fig. 1. To begin with we can easily see that
it happens for the familiar free field theories, the commuta
~16! is ac number, i.e. it is proportional to the identity in th
Fock space. In addition, forR1 fixed, let us call regions I, II,

FIG. 1. Regions in the (R2 ,T22T1) plane for theH0 commu-
tator. Region I corresponds to 0,uT22T1u,uR22R1u, region II to
uR22R1u,uT22T1u,R21R1, and region III to R21R1,uT2

2T1u. The singularity of theH0-commutation function lies in the
boundary between regions II and III, whereas the singularity for
E(H0) commutator appears forR15R2.
12400
a-

m-
y

es

-
e

y
e

-

as
r

and III the regions of the (R2 ,T22T1) plane defined, respec
tively, by 0,uT22T1u,uR22R1u, uR22R1u,uT22T1u
,R21R1, and R11R2,uT22T1u. Then, it can be shown
that the H0 commutator vanishes in region I, whereas
region II it can be written as@21,22#

@ĉ~R1 ,T1!,ĉ~R2 ,T2!#

5
i

p

1

AR1R2

KSA~T22T1!22~R22R1!2

4R1R2
D .

~17!

Finally, its value in region III is@21#

@ĉ~R1 ,T1!,ĉ~R2 ,T2!#5
2i

Ap2@~T22T1!22~R22R1!2#

3KSA 4R1R2

~T22T1!22~R22R1!2D .

Here, K denotes the complete elliptic integral of the fir
kind, K(k)ª*0

p/2du/A12k2sin2u @alternatively, the integral
in Eq. ~16! can be written in terms of the associated Le
endre functionsP21/2 andQ21/2 @21##.

Several plots of the absolute value of this function~in
fact, of its imaginary part! for fixed values ofR1 andR2 are
shown in Fig. 2, and a three-dimensional plot for a fix
value ofR1 can be found in Fig. 3. Some interesting prope
ties can be read off from the previous expressions. First o
we see that the commutator is in fact identically zero in
region labeled I; outside it differs from zero. Second we s
that it is singular in the lineT22T15R21R1. It is easy to
check that the singularity is logarithmic by using the expli
form of the propagator~17! and expanding aroundT22T1
5R21R1. This singularity can be understood as a con
quence of the presence of the symmetry axis; this is s
ported by the fact that theH0-commutation function satisfie

S ]T
22

1

R
]R~R]R! D •@ĉ~R,T!,ĉ~R2 ,T2!#50,

e

FIG. 2. Absolute valueA of the commutator of the scalar fiel

@ĉ(R1 ,T1),ĉ(R2 ,T2)# for R151 and several values ofR2 as a
function of T22T1.
6-7
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S ]T
22

1

R
]R~R]R! D •u~T2T2!@ĉ~R,T!,ĉ~R2 ,T2!#

5
i

R2
d (2)~R2R2 ,T2T2!,

which shows that the full commutator is an axially symm
ric solution to the~211!-dimensional wave equation and th
future part of it~obtained by multiplying by a step function!
is an axially symmetric Green function for the same eq
tion. It is important to point out that even though there is
Minkowskian background metric, the presence of a cente
symmetry breaks Lorentz invariance; in fact, the only sy
metries of the 211 axially symmetric wave equation

S ]T
22

1

R
]R~R]R! DF~T,R!50

that transform solutionsF(T,R) into solutions2 are as fol-
lows:

~i! translations

F~T,R!°F~T2e,R! ~ePR!,

~ii ! dilatations

F~T,R!°F~eeT,eeR! ~ePR!,

~iii ! inversions

F~T,R!°
F@te~T,R!,re~T,R!#

A122Te1~T22R2!e2
~e small enough!

with

2In addition to the ones coming from its linear and homogene
character.

FIG. 3. Absolute valueA of the commutator of the scalar fiel

@ĉ(R1 ,T1),ĉ(R2 ,T2)# for R151 as a function ofT22T1 andR2.
The light cone structure and the singularity atT22T15R21R1 can
be readily seen. The plot for negative values ofT22T1 is obtained
by reflecting with respect to theR2 axis.
12400
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te~T,R!5
T2e~T22R2!

122Te1~T22R2!e2
,

re~T,R!5
R

122Te1~T22R2!e2
.

These can be obtained systematically by using the gen
theory of symmetry groups for partial differential equatio
~see@23#!.

B. E„H 0… Hamiltonian

Let us consider now the commutator of the field operat
obtained in the Heisenberg picture with the quantum Ham
tonian ĤªE(Ĥ0)5(12e24ḠĤ0)/(4G3). Here Ḡ5G3\,
and we have restored the values of the Planck constant
the three-dimensional gravitational constant~but keptc51)
to have the possibility of discussing the semiclassical lim
Recall that the HamiltonianĤ0 is given by Eq.~13!, where
we choose the normalization of the creation and annihilat
operators so that the commutation relation~11! is satisfied
@with no \ in the right-hand side~rhs!#. Notice that, with this
convention,Â(k), Ĥ0, andĤ have formally the same dimen
sions asḠ1/2 ~or k21/2), k, andG3

21 ~or \k), respectively. To
distinguish the field operators evolved with the new Ham
tonianĤ, we will denote them byĉE(R,t). In order to com-
pute the commutator@ĉE(R1 ,t1),ĉE(R2 ,t2)#, we make use
of the expressions~15! for the creation and annihilation op
erators evolved int, which can also be written as

ÂE~k,t !5Â~k!exp$ i t @E~Ĥ02k!2E~Ĥ0!#%,

ÂE
†~k,t !5Â†~k!exp$ i t @E~Ĥ01k!2E~Ĥ0!#%.

~18!

Substituting then the relation

ĉE~R,t !5A4ḠE
0

`

dkJ0~Rk!@ÂE~k,t !1ÂE
†~k,t !#,

we get the relevant field commutator

@ĉE~R1 ,t1!,ĉE~R2 ,t2!#

5E
0

`

dk1E
0

`

dk2J0~R1k1!J0~R2k2!

34Ḡ$@ÂE~k1 ,t1!,ÂE~k2 ,t2!#

1@ÂE
†~k1 ,t1!,ÂE

†~k2 ,t2!#1@ÂE~k1 ,t1!,ÂE
†~k2 ,t2!#

1@ÂE
†~k1 ,t1!,ÂE~k2 ,t2!#%.

The commutators involvingÂE(k,t) and ÂE
†(k,t) can be

found in AppendixA. Note that, in contrast with the evol
tion given byH0, for which the commutation function is ac
number, the situation now is more complicated beca
s

6-8
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@ĉE(R1 ,t1),ĉE(R2 ,t2)# is an operator, as it happens in in
teracting theories. We will analyze two types of matrix e
ments for it, namely, the expectation value on the vacu
and on one-particle states. In addition, we will briefly co
ment on the expectation value on coherent states.

1. Vacuum expectation value

We have

^0u@ĉE~R1 ,t1!,ĉE~R2 ,t2!#u0&

5 i8ḠE
0

`

dkJ0~R1k!J0~R2k!

3sinF t22t1

4Ḡ
~12e24Ḡk!G . ~19!

In the following we will discuss the differences and simila
ties of this matrix element and theH0-commutation function.

We point out that the factor sin@(T22T1)k# that appears in
the integrand of theH0 commutator is substituted now b
sin@(t22t1)(12e24Ḡk)/(4Ḡ)#. They coincide fork→0, but the
former of these functions oscillates for all values ofk
whereas the latter approaches a constant value whenk→`.
This changes the convergence properties of the integra
particular it is straightforward to see that the integral~19!

diverges wheneverR15R2 „except if sin@(t22t1)/(4Ḡ)#50…
but converges otherwise. Therefore, the vacuum expecta
value has a singularity structure that differs from the o
given by Eq.~16!. This has some interesting physical cons
quences. First we see that the singularity that originate
the axis in theH0 case is not present when the evolution
dictated byE(H0); this can be interpreted as a blurring
the axis due to quantum corrections. Second we see th
completely different kind of singularity pops up when th
evolution is generated byE(H0). From a mathematical poin
of view its origin is clearly related to the fact that the ener
is bounded from above and, hence, for large values ofk the
integrand is just a product of twoJ0 Bessel functions~which
give a divergent integral if their arguments coincide!. Physi-
cally, the emergence of the singularity can be understoo
an intuitive manner by writing a state as a superposition
vectors of the formÂ†(k)u0&,

ĉE~R1 ,t1!u0&5A4ḠE
0

`

dkJ0~R1k!e( i t 1/4Ḡ)(12e24Ḡk)

3Â†~k!u0&,

and projecting ontoĉE(R2 ,t2)u0&. Theeit j (12e24Ḡk)/(4Ḡ) fac-
tor ~for j 51 or 2! goes to a phase that depends only ont j as
k→`. So, if R15R2, the coefficients of the linear superpo
sition defining, respectively,ĉE(R,t1)u0& and ĉE(R,t2)u0&
differ only by a constant phase for large values ofk. This
means that, in the sector of largek, these two states hav
coherent phases and therefore a constructive interfere
Since each of them has an infinite norm, their scalar prod
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diverges. A similar effect can be found in the quantum d
namics of a free particle with an energy given by a functi
E(k) with dE(k)/dk→0 as k→`. If one builds a wave
packet as

F~ t,x!5E
0

`

dkC~k!e2 i [ tE(k)1kx] ,

with C(k) peaked around a large value ofk, k0@1, the
group velocity becomes almost zero andF(t,x) stays essen-
tially the same at everyx for long periods of time.

The integral in Eq.~19! can be written explicitly as a
convergent series~when R1ÞR2) by expanding the sine
function as a power series ofe24Ḡk and computing the re-
sulting integrals involving two Bessel functions and an e
ponential@21#

^0u@ĉE~R1 ,t1!,ĉE~R2 ,t2!#u0&

5
i8Ḡ

pAR1R2
H sin~Dt ! (

n50

`
~21!n~Dt !2n

~2n!!

3Q21/2@s2n~R1 ,R2!#2cos~Dt !

3 (
n50

`
~21!n~Dt !2n11

~2n11!!
Q21/2@s2n11~R1 ,R2!#J .

~20!

Here, we have introduced the notation

Dt5
t22t1

4Ḡ
,

sn~R1 ,R2!5
16Ḡ2n21R1

21R2
2

2R1R2
.

Besides,Q21/2(x)5pF( 3
4 , 1

4 ;1;1/x2)/A2x @with x.1] is
the associated Legendre function of the second kind@21#. We
recall that the functionQ21/2(x) grows without bound as the
argument approachesx51 and falls off to zero asp/A2x
whenx→`. WhenR15R2 the singularity in Eq.~20! comes
just from then50 term in the first series of the expansio
which is given by

i8Ḡ

pAR1R2

Q21/2S R1
21R2

2

2R1R2
D sinS t22t1

4Ḡ
D .

A series of plots of @ĉ(R1 ,T15t1),ĉ(R2 ,T25t2)# and

^0u@ĉE(R1 ,t1),ĉE(R2 ,t2)#u0& ~both over 8Ḡ) is shown in
Fig. 4 for fixed values ofR1 and t22t1 as a function ofR2,
with several choices forḠ. We chooset22t1 small enough
to guarantee the rapid convergence of the series in Eq.~20!
and leave a discussion of the behavior of the integral~19!

when Ḡ→0 for future work. As we can see

^0u@ĉE(R1 ,t1),ĉE(R2 ,t2)#u0& seems to approach

@ĉ(R1 ,T15t1),ĉ(R2 ,T25t2)# at least in a certain averag
6-9
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sense whenḠ is sufficiently small~though not vanishing!. It
falls off to zero quite quickly outside the light cone defin
by the free commutator and the auxiliary Minkowski metr
and displays an oscillatory behavior within this light con
The characteristic length of this oscillation decreases withḠ,
as well as close to theR15R2 singularity. The approxima-
tion obtained by truncating the series expansion~20!, keep-
ing a sufficiently large number of terms, compares well w
the results of numerically computing expression~19!, at least
for low enough values oft22t1.

2. Expectation value on one-particle states

We consider now states of the form

ur&5E
0

`

dk f~k!A†~k!u0&

where the functionf 5u f ueif f satisfies*0
`dku f (k)u251. We

then have

^ru@ĉE~R1 ,t1!,ĉE~R2 ,t2!#ur&

52 i8ḠE
0

`

dk1 E
0

`

dk2J0~R1k1!

3$2J0~R2k2!u f ~k1! f ~k2!usin@2Ḡ~ t12t2!

3E~k1!E~k2!#cos@V f~k1 ,k2!#

2J0~R2k1!u f ~k2!u2sin@~ t22t1!E~k1!e24Ḡk2#%, ~21!

where

FIG. 4. Comparison between the absolute values~over 8Ḡ) of
theH0 commutator and the vacuum expectation value of theE(H0)

commutator for two different values ofḠ, plotted forR151.
12400
,
.

V f~k1 ,k2!52Ḡ~ t22t1!E~k1!E~k2!1t1E~k1!2t2E~k2!

2f f~k1!1f f~k2!.

A complete discussion of the meaning of the previo
expression is beyond the scope of this paper. Neverthe
some features already present in the vacuum expecta
value are also present here; in particular theR15R2 singu-
larity. This can be seen by considering the last term in
~21!: the integral ink2 is

E
0

`

dk2u f ~k2!u2sin@~ t22t1!E~k1!e24Ḡk2#,

which takes in general a non-vanishing constant value~de-
pending ont22t1 and Ḡ) ask1→`, thus rendering the re
maining integral ink1 divergent. As the first term in Eq.~21!
leads to a convergent integral, we conclude that the expe
tion value is singular whenR15R2.

It is not difficult to obtain as well an explicit expressio
for the expectation value of theE(H0) commutator on the
coherent states of the fieldc. These diagonal matrix ele
ments are calculated in Appendix B. For our discussion
this work, let us only comment that the result is actua
divergent whenR15R2. This supplies further support to th
claim that the considered singularity is indeed a generic f
ture of the system.

V. CONCLUSIONS AND PERSPECTIVES

Linearly polarized cylindrical waves can be studied
great detail both from the classical and quantum points
view. As we have seen, there are two relevant Hamiltoni
for the study of the system. We have shown that the ac
and the metric of the gauge-fixed model in linearized grav
reproduce the results obtained by considering full cylindri
gravity and working to the first perturbative order. We get
this way a free Hamiltonian. The Hamiltonian governing t
dynamics of the full system, on the other hand, is differe
from the free one, but turns out to be a function of it a
presents certain features with deep physical consequen
such as, e.g., the existence of an upper bound.

We have studied the similarities and differences of th
two admissible kinds of evolution; in particular, we hav
discussed how the emergence of an upper bound for the
ergy affects the causal structure of the model and the spr
ing of the light cones. The field commutator for the fre
Hamiltonian is ac number and shows the typical light con
structure found in standard perturbative quantum field th
ries. The commutator for the physical Hamiltonian, as it u
ally happens for interacting theories, is no longer ac number,
so one has to consider its matrix elements. By concentra
on the vacuum expectation value we have been able to
several interesting phenomena: a spreading of the light c
as a function of the gravitational constant, the disappeara
of the singularity present in the free case due to the smea
of the symmetry axis and the appearance of a new type
singularity associated with the fact that the energy
bounded from above. This new singularity is also presen
6-10
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MICROCAUSALITY AND QUANTUM CYLINDRICA L . . . PHYSICAL REVIEW D 67, 124006 ~2003!
the other expectation values discussed in the paper, na
for one-particle states and coherent states, and appears
a generic feature of the model.

There are several open questions that we plan to add
in future work. In particular, it would be desirable to reach
better understanding of the behavior of the field commuta
in the limit in which the length scale provided byḠ goes to
zero. The expectation values of theE(H0) commutator dis-
cussed here resemble those derived from the free Ha
tonianH0 at least in a certain average sense. However,
not obvious how precisely and up to what extent they ac
ally relate to each other. This is partly so because of
different singularity structure found in both cases. Furth
research on this subject will concentrate on the propertie
the model in the semiclassical limitḠ→0. We will also pay
detailed attention to matrix elements of the field commuta
other than the vacuum expectation value, with the aim
discussing how the smearing of the light cones depends
the energy.
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APPENDIX A: USEFUL COMMUTATORS

In this appendix we compute the commutators of the c
ation and annihilation operatorsÂE(k,t) and ÂE

†(k,t), ob-

tained from the corresponding operatorsÂ(k) andÂ†(k) via
the unitary evolution generated byE(Ĥ0), where Ĥ0

5*0
`dkkÂ†(k)Â(k). Employing relations~18! and the basic

commutators~11!, it is possible to show that
@ÂE~k1 ,t1!,ÂE~k2 ,t2!#5Â~k1!Â~k2!exp@ i t 1E~Ĥ02k12k2!1 i ~ t22t1!E~Ĥ02k2!2 i t 2E~Ĥ0!#

2Â~k1!Â~k2!exp@ i t 2E~Ĥ02k12k2!1 i ~ t12t2!E~Ĥ02k1!2 i t 1E~Ĥ0!#,

@ÂE
†~k1 ,t1!,ÂE

†~k2 ,t2!#5Â†~k1!Â†~k2!exp@ i t 1E~Ĥ01k11k2!1 i ~ t22t1!E~Ĥ01k2!2 i t 2E~Ĥ0!#

2Â†~k1!Â†~k2!exp@ i t 2E~Ĥ01k11k2!1 i ~ t12t2!E~Ĥ01k1!2 i t 1E~Ĥ0!#,

@ÂE~k1 ,t1!,ÂE
†~k2 ,t2!#5Â~k1!Â†~k2!exp@ i t 1E~Ĥ01k22k1!1 i ~ t22t1!E~Ĥ01k2!2 i t 2E~Ĥ0!#

2Â†~k2!Â~k1!exp@ i t 2E~Ĥ01k22k1!1 i ~ t12t2!E~Ĥ02k1!2 i t 1E~Ĥ0!#,

@ÂE
†~k1 ,t1!,AE~k2 ,t2!#5Â†~k1!Â~k2!exp@ i t 1E~Ĥ01k12k2!1 i ~ t22t1!E~Ĥ02k2!2 i t 2E~Ĥ0!#

2Â~k2!Â†~k1!exp@ i t 2E~Ĥ01k12k2!1 i ~ t12t2!E~Ĥ01k1!2 i t 1E~Ĥ0!#.

APPENDIX B: EXPECTATION VALUES ON COHERENT STATES

We consider coherent states of the fieldc, given by

uCC&5KCexpS E
0

` dk

A8Ḡ
C~k!A†~k!D u0&

5KC(
n50

` 1

n! S E0

` dk

A8Ḡ
C~k!A†~k!D n

u0&,

whereC(k) is a square integrable function andKC is a normalization constant satisfying

uKCu25expS 2E
0

` dk

8Ḡ
uC~k!u2D .

The expectation value of theE(H0) commutator is

^CCu@ĉE~R1 ,t1!,ĉE~R2 ,t2!#uCC&5E
0

`dk1

2 E
0

`

dk2J0~R1k1!J0~R2k2!(
s50

`
I s~C!

s!
Gs~k1 ,k2!,
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where

I s~C!5expH E
0

` dk

8Ḡ
uC~k!u2~e24Ḡsk21!J ,

Gs~k1 ,k2!58Ḡd~k1 ,k2!$@b~k1 ,2k2!#s2@b~k2 ,2k1!#s%1C̄~k2!C~k1!$@b~k1 ,2k2!#s2@b~2k2 ,k1!#s%e24Ḡsk1

1C̄~k1!C~k2!$@b~2k1 ,k2!#s2@b~k2 ,2k1!#s%e24Ḡsk21C~k1!C~k2!$@b~k1 ,k2!#s2@b~k2 ,k1!#s%e24Ḡs(k11k2)

1C̄~k1!C̄~k2!$@b~2k1 ,2k2!#s2@b~2k2 ,2k1!#s%,

and we have employed the notation

b~kn ,km!5
2 i

4Ḡ
@ tne4Ḡkm~e4Ḡkn21!1tm~e4Ḡkm21!#.

Note that, whenR15R2, the delta in the expression ofGs(k1 ,k2) leads to the divergent integral

E
0

`

dkJ0
2~R1k!(

s50

`
8ḠI 2s11

~2s11!! F i ~ t22t1!~12e24Ḡk!

4Ḡ
G 2s11

.
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