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Microcausality and quantum cylindrical gravitational waves
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We study several issues related to the different choices of time available for the classical and quantum
treatment of linearly polarized cylindrical gravitational waves. We pay special attention to the time evolution
of creation and annihilation operators and the definition of Fock spaces for the different choices of time
involved. We also discuss the issue of microcausality and the use of field commutators to extract information
about the causal properties of quantum spacetime.
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[. INTRODUCTION perturbative quantum field theory framework for simple ex-
amples such as scalar or fermion fieldee, e.g.[12]). In

The quantization of polarized gravitational cylindrical fact, microcausality is one of the key conditions to prove
waves has received a lot of attention in recent yéars9).  such important results as the spin-statistics thedrezl 3.
This is part|y due to the fact that this System pro\/ides a Here we will use the commutator of the scalar field that
tractable, yet nontrivial, reduction of full general relativity describes linearly polarized cylindrical waves as a way to get
and hence is an ideal framework to explore several issud§formation about the causal structure of quantum spacetime.
involved in the quantization of gravity. Some intriguing phe- As we show later it is possible to give exact expressions for
nomena, related to the existence of large quantum gravit{his commutator both for the evolution provided by the free
effects, have been discussed by studying precisely this modand the full physical Hamiltonians. We will use these expres-
[1-5]. It has also been argued that some manifestations @fions to study in a quantitative way the smearing of the light
guantum gravity, such as the smearing of light cones arecones as a function of the three-dimensional gravitational
indeed, present and can be understood in this simplified seonstant and explore some physical issues, in particular the
ting [2]. appearance of singularities as a consequence of having a

One of the interesting points behind the obtained results islamiltonian bounded from abové4,15.
the realization of the fact that the physical Hamiltonian is a  The rest of the paper is structured as follows. In Sec. Il we
function of the free field Hamiltonian for a2+1)- discuss how the free Hamiltonian is derived from the linear-
dimensional, axia”y Symmetric’ massless scalar field evo|Vized Cylindrical wave model. Section Il deals with the clas-
ing in an auxiliary Minkowski backgrounfi,10,11. As we sical and quantum dynamics of cylindrical gravitational
show in the first section of the paper, this free Hamiltonianwaves under the evolution provided both by the free Hamil-
naturally appears when one linearizes the system, thus supnian and the physical Hamiltonian. We will pause here to
gesting that, in a precise sense, it can be considered as tHEcuss and compare on a familiar examftiee harmonic
free part of an interacting model. However, the full interact-0scillatop the main features of the time evolution defined by
ing Hamiltonian is obtained by adding a very specific type offunctionally related Hamiltonians, both from the classical
term to the free part, namely, just functions of it. Here weand the quantum points of view. This will provide valuable
plan to explore the consequences of this functional relationsights for the problem considered in this work. Section IV
between the two physically relevant Hamiltonians for theis devoted to the study of microcausality. We will look at the
system and explore how this affects the causal structure dhain features of the field commutators and study the smear-
quantum spacetime. To this end we will pay attention to théng of the light cones due to quantum gravitational effects.
smearing of the light cones due to quantum gravity effectdVe end the paper with a discussion of the main results and
within the framework of linearly polarized cylindrical waves. perspectives for future work.
Instead of considering the full information encoded in the
metric tensor we will concentrate on the causal structure pro- 1l. CYLINDRICAL WAVES IN LINEARIZED GRAVITY
vided by light cones. An interesting, albeit somewhat indirect
way, to look at this structure is to study the commutators of
field operators at different spacetime points. These are thed
basic objgcts to dis_cuss the commutativity_of observable_:s dsz=e“”d§+e‘”d22, 1)
and the microcausality of the model; conventionally, a physi-

cal model should be such that observables commute fofnerez <R is the coordinate of the symmetry axis ad\%
space-like intervals. This has been discussed in the standaidine three-metric

Linearly polarized cylindrical waves in general relativity
n be described by the spacetime mdiziS]

ds3=—N2dt>+ e”(dR+ NRdt)2+r2d . )
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ponent of the shift vector anl is the lapse function. All  perturbative, quantum field theory approach to gravity. In
metric functions ¢, r, N, andNR) depend only on the time order to expand the metric fields around the classical solu-

and radial coordinates,andR. tion, let us call
Unless otherwise stated, we adopt a system of units such o o
thatc=%=8G3=1, wherec is the speed of light is the r=R+r, N=1+N.

Planck constant, an@; is the effective Newton constant per . . i )
unit length in the direction of the symmetry aB. In these Up to flrst'-order terms in the fields, the expression of the
units, the gravitational action of the system has the forninrée-metric becomes

) _
[8,10] ds2=— (1+2N)dt?+ 2NRdtdR+ (1+ y)dR?
t
szf “dt
ty

where the dot denotes the derivative with respecf thep’s
are the momenta canonically conjugate to the metric vari- d2=(1— Y)dS+ (1+ y)dZ2. (5)
ables andH is the total Hamiltonian

f:dR(py'w pr'r+p¢,i/f)—H}, (3) +(R2+2Rr)d6?,

while the four-dimensional metric is given by

Here it is understood that the product #fwith any other
H=2(1—e 7/?)+ de RINC+ NRCR]. (4) metric field vanishes in the perturbative order considered. On
0 the other hand, regularity on the axis of symmetry imposes
the following conditions:
The first term is a boundary contribution at infinifyy.,

:=y(R—)] and the second term is a linear combination of y(R=0)=0, N¥(R=0)=0,
the Hamiltonian constrain€ and the (radia) diffeomor- o o
phisms constrain€Ck: r(R=0)=0, r’'(R=0)=0. (6)
o pi r(y')? In order to discuss the linearized gravitational system, we
C=e M 2r"=y'r'=pyprt 5+ —5—|, must keep up to quadratic terms in the fields in the adt®n
A straightforward calculation leads to the result
CR=e""(=2p,+p,y +p +py¢'). i [ [ o
, N S=| dt f dR(p,y+ P +pyih) —H|,
The prime denotes the derivative with respectRoThe ty 0
gauge freedom associated with these constraints can be re- 5
moved by imposing, respectively, the gauge fixing conditions 7 fwdR Py . R(y')? - o=\ N
[2,3] o [2R 2 Y
XR::r—RZO, X::pyzo. +(2_,yx)F(R_>QO)_

On the other hand, the Lagrangian form of the action can brfL| _ : . . —
. ! : . ere p;:=p, is the momentum canonically conjugate rt
obtained from the relations between momenta and time de- Pri=Pr y 1ug P

rivatives of the metric provided by the Hamilton equations: and the linearized constraints are
~—or"_ 1 (R_ P on’
pyN:_e'yIZI',_’_ef'y/ZNRrr, C=2r Y C =Pr Zpy
The diffeomorphisms gauge freedom can be fixed just like

p,N=e"?ry—e "2NRry/’, in the cylindrical reduction of general relativity, namely, by
. N demanding that=R-+r coincides with the radial coordinate
prN=—e"y+2(N"e" )" [3]. We thus impose the gauge fixing conditigR:=r =0. It

From a three-dimensional perspective, the system dei-S ea_s_ily ch.ecked 'ghat the Poisson _bracl{e(tg,CR} .Of this
scribes an axially symmetric model consisting of a Sca|arcond|t|on with the linearized constraint do not vanish, so that

field s coupled to gravity 2], the line element being EQR). the gauge fixing is admissiblg. Dy_namica_l consistency of the
A particular classical solution is a vanishing scalar field in9au9€ fixing procedure requires, in addition,
three-dimensional Minkowski spacetime or, equivalently, - —h R

Minkowski spacetime in four dimensions. In this solution, X" ={x"H}=N"-p,=0.

N=1 andr=R, whereas the rest of metric fields and mo- . _ .
menta vanishi.e. = y=NR=p,=p,=p,=0). Hence, the shift must be chosen B§=p,. Finally, the

In this section we will consider this solution as a back-momentum conjugate wis fixed by solving the diffeomor-
ground and discuss first-order perturbations around it. IPhisms constraintp;=2p;,. In this way, the canonical pair
other words, we will analyze the linearized theory of gravity (r,p,) is removed from the set of degrees of freedom. The
around this Minkowski spacetime, as it is usually done in theaction of the resulting reduced model is
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_ ty o . L It is worth noticing that the action and metric of the
SFJ dtJ dR(p,y+py¥—NCy) gauge-fixed model in linearized gravity reproduce in fact the
E 0 results that one would obtain from the gauge-fixed model in
tp full cylindrical gravity by working just in the first perturba-
—f dtf{Ho—p3(R—)+p5(R=0)]. tive order, i.e., by keeping in the action and metric, respec-
E tively, up to quadratic and linear terms in the fiefdand its
momentum. In this sense, the gauge fixing and linearization

-, o _
HereC,=—v' is the Hamiltonian constraint of the reduced procedures commute.

linearized system, and

HOZJ dR
0

Remarkably, the condition employed to eliminate the  ne of the significant features of gravitational cylindrical
Hamiltonian gauge freedom in full cylindrical gravitgl can  aves is the existence of two distinct, physically relevant
be used as well to fix the corr_espondmg gauge in the IInearHamiltonians(or equivalently two distinct time coordinajes
ized theory. The gauge fixing:=p,=0 is acceptable, be- to define both the classical and quantum evolution. One is
cause the Poisson bracketsyofind C; differ from zero. In  the HamiltonianH, [given in Eq.(7)] that generates the
addition, consistency of the chosen gauge demands the vadlynamics in the linearized gravitational theory; the other is
ishing of the HamiltonianH that provides the energy per unit length

along the symmetry axis in general relativit®,14,15. In
— | = N — fact, they are functionally dependent, sindd=2(1
X:|X’H0+ fo dRNCl} =N —e ") n order to gain insight into the relation that can
be established between the dynamics associated with these

Therefore,N has to be independent of the radial coordinate.f[\’v0 different Hamiltonians, we open this section by discuss-

— . ing a similar situation in a very simple example provided by
Actually, we can seN=0 by demanding that the total lapse the harmonic oscillator.

gquals the unity at Spa“?' infinity..On the other .hand, taking The usual description of the harmonic oscillator in a
into account the regularity conditiaf), the solution to the phase space coordinatized by, (py) comes from its stan-

Hamiltonian constraint is simply=0. This allows us to - A TN :
remove the canonical paity(p,) from the system and arrive dard Hamiltonianho(xo,Po) = (Po + @*Xg)/2. The dynamics
is given by the Hamilton equations

at a constraint-free model in linearized gravity.
The degrees of freedom of this system are the fielhd
its momentum. The reduced action is

IIl. TIME COORDINATES AND EVOLUTION FOR

2 1\ 2
R
s_é + (‘é ) (7) CYLINDRICAL WAVES

A. Systems with functionally related Hamiltonians

dx_  dpo_
ar Po gt~

. The general solution can be written as

_ t w )
0

ty

Note thatH,, given in Eq.(7), is the Hamiltonian of a mass- Xo(T)= L(aefinjLa’rein),

less scalar field with axial symmetry in three dimensions. \/Z

Furthermore, in the gauge that we have selected, the three-

dimensional metric of the linearized gravitational theory is “iw _ _

exactly that of Minkowski spacetime and contains no physi- Po(T)= T\/_(ae*"”— ae'eT),
w

cal degrees of freedom. The scalar fielddetermines the

norm of the Killing vectord,, and appears in the four- h dit | — fixed by the initial
dimensional metric of the gauge-fixed, linearized model in\(’:vori;ﬁ%?g ItS complex conjuga@’ are fixed by the initia

the form(5), but with d% substituted by the flat metric Consider next a phase spacef) with Hamiltonian h

=F(hg), i.e. a function of the standard Hamiltonian for the
harmonic oscillator. For instance, the cd&sg,) = h(z) arises

in the context of quantum optics, in relation with the propa-
gation of light in non-linear Kerr medigl6]. The equations
of motion now read

(dsh):=—dT?+dR?+ R?d¢?, ®)

where we have renamddthe time coordinate of the reduced
system.

Summarizing, the perturbative description provided in lin-
earized gravity for cylindrical waves with linear polarization dx
around four-dimensional Minkowski spacetime is equivalent —={x,F(hg)}=F'(hg)p,
to a massless scalar field with axial symmetry in a three- dt
dimensional flat background. The dynamics of this field is dp
dictated by the free Hamiltoniakl,, which generates the _ _ 2r
evolution in the Minkowskian timéo. ar- P Fho)}==wF(ho)x,
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whereF’ denotes the derivative df with respect to its ar- spect to the evolution of the low energy ones, in the sense
gument. These new equations can be easily solved by meatigat the phase of the former type of contributions remains
of a change of time. Specifically, making use of the timepractically coherent in time.

independence of the Hamiltonidig (ho=wa'a on solutions

to the equations of motignwe can introduce the new time g Functionally related Hamiltonians and cylindrical waves
parameter T(t)=F'(hy)t. Then, the functions x(t) ) ) o
=x[T()], p(t)=po[T(t)] and the new timd serve us to Let us turn now to _the dlsc_ussu_)n of our gra_wtatlo_nal
transform the Hamilton equations into the standard ones corYStem- We will deal with the Einstein-Rosen family of lin-

responding to the harmonic oscillator. So, the classical sol €&y Polarized gravitational wavgd7]. These waves dis-

play the so-called whole cylindrical symmefry/8], namely,

tions are they correspond to topologically trivial spacetimes which
1 possess two linearly independent, commuting, spacelike, and
X(1)=xo[T(t)]= _[aefin’(waTa)tJra‘rein’(waTa)t], hypersurface orthogonal Killing vector fields. It is well
V2w known [8,10] that these spacetimes admit coordinates
(T,R,6,2) such that the metric is given by
p(t) — po[T(t)] — %[aein’(waTa)t_ aTein’(waTa)t]' dszz e’ lﬂ( _ dT2+ dRZ) +e WR2d62+ e‘#dzZ,
w

o _ . where s and y are functions of onlyR and T. When the
What we find is an energy dependent redefinition of time thaginstein equations are imposefl,encodes the physical de-

induces a different time change for each solution to the equajrees of freedom and satisfies the usual wave equation for an

tions of motion. o axially symmetric massless scalar field in three dimensions:
The situation in the quantum theory is quite different. The

reason lies in the fact that in quantum mechanics a physical 1

state does not need to have a definite energy. Then, a P2p— Jap— ﬁaRlﬁ:O.
“change of time” of the formT=F’(hy)t has non-trivial
consequences for the dynamics.

The usual quantum theory for the harmonic oscillator ca
be described by introducing a Fock space with creation an
annihilation operators®, a. Every initial state can be ex- 1 (R
pressed agp(0)) ==/ _,cq|n), wherec, are Fourier coeffi- y(R)= _f dﬁ[(ﬁTw)er(aﬁz//)z],
cients(with the convenient normalizatipmand|n) are energy 2Jo

eigenvectors(that is, ho/ny=nw|n)). In the Schrdinger
. . LD . 1 )
picture, evolving withhy, we find Y= Efo dRF (970)%+ (9th)?]. (9)

The metric functiony can be expressed in terms of this field
n the classical solutior®,3]. One gets

— a—ihgT - —inwT
| bo(T))y=e""0 |¢(O)>_n§0 cne " n). Note thaty(R) andy., are the energy of the scalar field in a
ball of radiusR and in the whole of the two-dimensional flat
However, if the same stafeb(0)) evolves in time according SPace, respectively. Furthermorg,, coincides with the

; 0 P HamiltonianHq given in Eq.(7) [2].
to th lut ted by=F(h t 0 . o
0 the evolution generated (o), we ge Nevertheless, to reach a unit asymptotic timelike Killing

i * vector field in the actual four-dimensional spacetime, with
|pe(t))=e" M ¢(0))= 2 cpe” FMWY )y, respect to whiqh one can truly introduce a physical notion of
n=0 energy (per unit length [14,15, one must make use of a

o different system of coordinates, namelyR, 6,Z) whereT
Hence we do not recover an analogous situation to that found g-r-/2t | these new coordinates the metric has the form

in the classical system by replaciigrmally) the timeT in

|$o(T)) with T=F'(ho)t, becausede(t))# | po(T(t))) ex- d?=e? ¥(—e "=dt*+dR?) +e YR?d6*+e’dZ?.

cept for linear homogeneous functio®s Moreover, the

properties of the statgg(T)) and|#g(t)) are quite differ-  Assuming as a boundary condition that the metric function

ent. For example, if we consider the bounded Hamiltoniafa|ls off sufficiently fast asR—o, the above metric de-

ﬁ:F(ﬁ0)=1—e‘h0 it is obvious that the high energy con- scribes asymptotically flat spacetimes with a, generally non-

tributions to| ¢ (t)) are essentially frozen in time with re- zero, deficit angle. In this asymptotic regiénis a unit time-
like vector. The Einstein field equations can be obtained from
a Hamiltonian action principl¢8,14,13 where the on-shell

INotice that the operatoffs, andh=F(h,) act on the same Hil- Hamiltonian is given in terms of that for the free scalar field
bert space. Moreover, if we demand the functtoto have a unique by

absolute minimum at 0, the two Hamiltonians have also the same
vacuum. H=E(Hg)=2(1—e Hd?), (10)
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Owing to these reasons, in the following we will referttas . o N

the physical time and tél as the physical Hamiltonian. Ho= JO dkkA'(k)A(k) (13
When we use thel time and impose regularity at the

origin R=0 [2], the classical solutions for the fielldcan be s the quantum Hamiltonian of an axially symmetric scalar

expanded in the form field in three dimensions. Then

o g Ot g )
w(R,T)sz d—\/;JO(Rk)[A(k)e”‘T+AT(k)e“‘T]. WRT)=Uo(MPROUo(T)

~ dk A —ikT 4 A ikT
=J — Jo(RK[A(k)e KT+ AT(k)e'kT].
A(k) and AT(k) are fixed by the initial conditions and are 0 \2

complex conjugate to each other, becayseand J, (the (14)
zeroth-order Bessel function of the first kinakre real. From
Eg. (9), we then obtain The quantization procedure in this case is very simple: we

have substituted the initial conditiodgk) andA'(k) in the

classical solution by the corresponding quantum operators.
The situation changes when we choose the physicalttime

as the time parameter. The quantum Hamiltonian can be de-

Using this formula, we can express the field in tieame as ~ fined asH=E(Hg)=2(1—e "?). We can then reach a
unitary evolution by means dfi(t) =exp(—itH). This leads
to the following time evolved operators:

Yo=Hp= f:dkkAT(k)A(k).

= dk ikte— 72
wE(R,t):j —=Jo(RK[A(k)e~ e ~ . A A
0 \2 Ae(k,):=UT()Ak)U(t)=exf —itE(k)e Ho?]A(k),

(k) elkte 72 ¥
+Af(k)e 1. AL(k,t)=At(K)exitE (k) e o], (15)

Noltice Fha.t‘ﬂl(R’g): Ye(R0).  the f b od whereE(k)=2(1—e ). It is important to realize that the
n principie, the quantization o .t e fiel can be carrie .quantum evolution in the physicaframe is not obtained by
out in :’;1 standard way. We can introduce a Fock space 'QhangingA(k), A'(k), andy.. by their direct quantum coun-
which ¥(R,0), the quantum counterpart @f(R,0), is an  terparts. In fact, by restoring the value of the dimensionful
operator-valued distributiofiL9]. Its action is determined by constants % and Gs, we can write E(k)=(1
those ofA(k) andAT(k), the usual annihilation and creation — g=46k)/(4G,) with G=%#Gs, so that

operators, whose only non-vanishing commutators are

t
[A(ky) Al(kp) 1= 8Ky ko). (11) 5 E(K)=tk+o(#),

Explicitly, and we can expandg(k,t) andAL(k,t) in powers off,

Ac(k,t)=exp(—itke CHo)A(k) +o(4),

N ~ dk R At
¢(R,0)=¢E(R,0)=fo EJo(Rk)[A(k)JrA (k)].

12 AL(k,t)=AT(k)exp(itke 4CHo) + o(#).

In the Schrdinger picture, operators do not evolve, and the(Here’ we have expressety with dimensions of an inverse

problem of the time evolution is transferred to the physicallength)_ - )

states. We will return later to this issue. In the Heisenberg Setting again &=1, the expansion above clearly shows
picture, on the contrary, operators change in time and stat gaF the quantum ev_olutlt_)n of _the creation and an.n|h|lat|on
remain fixed. In this case, the value of the quantum fielat variables in the physical time differs from the “classical evo-

any time can be obtained from its valuelat t=0, evolving lution” in higher-order guantum corrections.

) . . This unusual behavior can be partially corrected in the
in one of the two times that we have at hand. One is the ,

. . . . o . . Sense that one can actually find an operatorHauch that
physical timet, with associated HamiltoniaH given in Eq.

(10). The other is the timeT of the auxiliary three- the quantum evolution in thietime is similar to the classical

. . : . . . Lo . __one. In fact, if one considers the normal ordered Hamiltonian
dimensional Minkowski spacetime, its Hamiltonian being -

that of a massless scalar fieldo. From our discussion in  Hnor=H: a.naj its .atssociated unitary evolution operator
Sec. Il this time can be identified with the perturbative timeU nor=eXp(—itHy), it is easy to prove that
(denoted also byl that arises in the study of the Einstein-

Rosen waves in linearized gravity. Anor(k,t)=exp(—itk:e MoZ)A(k),
In the perturbative timél, the evolution is provided by . R .
the unitary operatot)o(T)=exp(—iTHy) where Alor(k,t)=AT(k)exp(itk:e"0%).
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Therefore, the quantum evolutiontigiven byH ., parallels | pe(t))= U(t)US(T)W(T»-
that encountered in the classical picture. Unfortunately, there
is a severe problem with this quantum dynamics that renderBarticularizing the above results to the casengfarticle
it physically unacceptable: the Hamiltoniaf,,, is un-  States we readily get that, for tfietime,
bounded both from above and bel¢@]. .

Obviously, the different possibilities for the unitary time  |¢n(T))=Uo(T)|dn)
evolution of the fieldys considered here are closely related. % % _
Specifically, there exists a unitary mapping between both zf dky- - f dkye kotT g (kq, ... kp)
types of evolution. This is a consequence of the fact that they 0 0
are both unitary and coincide with the identity in the same
Hilbert space affT=t=0. So, if we denote the operators

evi)l;/ed _from X(0) in the timAeJrs T and t by X(T) wherek;o=3_;k; . Notice that|,(T)) is a superposition
=Uo(T)X(0)Uo(T) and Xg(t)=U'(t)X(0)U(t), respec-  of eigenvectors ofl, with eigenvalues equal tk,,. On the

tively, we obtain other hand, if we evolve the states wlfh(t), it is not diffi-
cult to check that

X AT(ky)- - AT(k,)[0)

Xe()=0T(t)Uo(MX(MUHTO(1).

Then, we can go from one evolution to the other by means of | ben(t)=U 0] bn)

the unitary operatot j(T)U(t). [ o ikt

Let us close this section with a few comments about the “Jo dky- - o dkne™ oty (ky, .. . Kn)
Fock space on which the fielgh acts. In the Heisenberg R R
picture the states do not depend on time. They are con- XAT(k1)~-~AT(kn)|O>.

structed by successive actions of the time independent cre- _ N _

ation operators on the vacuum of the theory. It is important tdn other words | ¢ (1)) is a superposition of eigenvectors
point out that botiH, andH act on the same Hilbert space of H, each of them with energ§(kio,). Finally, it is worth
and have the same vacuum, which will be referred tfas  pointing out that theH energy is not additive:

Explicitly, given any square integrable complex function

dn(Ky, ... ky) (with the convenient normalizatiorwe can Con i o
write ann-particle state in the form E(kior) =2—2e (zlk'm?&;l E(ki)=2n—2i§1 e k2,
| )= fx dky - - - fm dk,bn(Ky, . .. Ky This property is directly related to the existence of an upper
0 0 bound for the physical Hamiltonian.

XAT(ky)- - - Al(k,)|0). IV. MICROCAUSALITY

According to the usual interpretation of quantum mechanics, A. Free Hamiltonian

the measurable physical quantities correspond to expectation Microcausality plays a crucial role in perturbative quan-

values of observables. We can go over to the Singer tum field theory; in fact it is a crucial ingredient in such

picture by assigning the time evolution to the quantum State;smportant issues as the spin-statistics thed&gh The point

. ~ of view that we will develop in this section is the idea that
X(t; ) =((0)|UT(H)X(0)U(t)[$(0)) field commutators of the scalar field that encodes the physi-
_ S cal information in linearly polarized cylindrical waves can be
=((IX(O0)]4(1))- used as an alternative to the metric operator to extract physi-
. N o cal information about quantum spacetime. Some relevant in-
Defining [¢e(t))=U(1)[4(0)), [#(T)=Uo(T)|4(0)).  formation may be lost, but the availability of explicit exact
and noticing that théJ operators satisfy expressions for commutatdisven under the evolution given
A . A n by the Hamiltonian(10)] opens up the possibility of getting
aU(t)=HU(1), 1drUo(T)=HoUo(T), precise information about the quantum causal structure of
spacetime. In particular we will see how the light cones get

it is straightforward to see that the evolved states are solusmeared by quantum corrections in a precise and quantitative
tions to the Schrdinger equations

way.
. R _ . As is well known, the study of causality in perturbative
i pe(t)) =H[de(t)), 1d7|p(T))=Hq|(T)). quantum field theory requires the consideration of measure-

) ) . . ments of observables at different spacetime points and their
As in the Heisenberg picture, the unitary operatormytyal influence. The key question is whether measurements
U(t)Ug(T) provides the bridge between the two kinds of taken at spatial separations commute or not. The relevant
guantum evolution, commutators can be seen to be proportional to those of the
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-1 A Ry =0 A Ry =05
1.4 1.4
1 1.2 1.2
H, singularity // g 1 1
I E 0.8 0.8
d 5
111 7/ | g 0.4 0.4
// I > 0.2 0.2
) £ S IR S i N R——
e ' A Rp—1 A Ry —15
/ | 1.4 1.4
/7 1.2 1.2
I : :
0.8 0.8
I 0.6 0.6
0.4 0.4
| 0.2 0.2
l 0.5 1 1.5 2 2.5 3 T2_T1 a.5 1 1.5 2 2.5 3 T2_T1
I I I FIG. 2. Absolute value\ of the commutator of the scalar field
|

[#(Ry,T1),#(R,,T,)] for R;=1 and several values d®, as a
function of T,—Tj;.

Ry

By and Il the regions of theR,,T,—T,) plane defined, respec-

FIG. 1. Regions in theR,,T,—T,) plane for theH, commu-  tively, by 0<|To—Ti|<|R,—Ry|, |Ry—Ry|<[T,— T
tator. Region | corresponds toT,— T,|<|R,— Ry, region ll'to  <Rp+ Ry, andRy+R,<|T,—T,|. Then, it can be shown
|IR,—Ry|<|T,—T4/<R,+R;, and region Il to R,+R;<|T, that theH, commutator vanishes in region I, whereas in
—T,|. The singularity of theH,-commutation function lies in the region Il it can be written af21,22
boundary between regions Il and Ill, whereas the singularity for the

E(H,) commutator appears fdr;=R,. [,:/,( Ry, Ty), f/,( R,,T5)]
quantum fields at two different spacetime poir@ndy. For i1 K( \/(TZ_Tl)Z_ (R,—Ry)?
a free massless scalar field described by the standard La- T JRR, 4RR, '

grangian, this commutator is &-umbeyj function ofx and
y that is exactly zero whexry is space-likg 12]. This means 17)
that observables at points separated by spatial intervals com- ; . ; .
mute. Something similar happens for fermions described br)\jﬁmally, its value in region Ill ig21]
the usual Lagrangians if, instead of commutators, one takes 2
anticommutators of the field®bservables for fermion fields [ (R, T,),#(R,,T,)]=

can be written as even powers of them and the relevant com- Va[(T,—T1)?— (R,—Ry)?]
mutators can be written in terms of anticommutators of the

basic fields$ [12]. 4R1R,
In the case that we are considering in this work the only X K( \/(T —T,)2—(R,—R )2)'

physical local degree of freedom that we have is given by the 2z 1 2 1

scalar fieldyy. What we will do in the following is discuss Here K denotes the complete elliptic integral of the first

mmrocausa}ny by _conS|der|ng the different time eVO'“t'OnSkind, K (K) ==fg/2d9/ [1—KZsir?0 [alternatively, the integral

introduced in the first part of the paper. in Eq. (16) can be written in terms of the associated Leg-

We start by computing (R, T1),4#(Rz,T2)] for the  endre functiond_,, andQ_,, [21]].

field operators(14) obtained in the Heisenberg picture by  Several plots of the absolute value of this functién

evolving the field at timeT=0 with the HamiltonianH, fact, of its imaginary pajtfor fixed values olR; andR, are

given in Eq.(13). It is straightforward to getsee[20] fora  shown in Fig. 2, and a three-dimensional plot for a fixed

somewhat related computation value ofR; can be found in Fig. 3. Some interesting proper-

ties can be read off from the previous expressions. First of all

we see that the commutator is in fact identically zero in the

region labeled I; outside it differs from zero. Second we see

. that it is singular in the lindl,—T;=R,+R;. It is easy to
Xsin (T,—Ty)k]. (160 check that the singularity is logarithmic by using the explicit

form of the propagatof17) and expanding around,—T;

Let us discuss the main features of this commutation func=Ry+R;. This singularity can be understood as a conse-

tion, which we will refer to in the following as thel, com- ~ quence of the presence of the symmetry axis; this is sup-

mutator. See Fig. 1. To begin with we can easily see that, agorted by the fact that thiel -commutation function satisfies

it happens for the familiar free field theories, the commutator 1

(16) is ac number, i.e. it is proportional to the identity in the 2_ = 5 . _

Fock space. In addition, fdR, fixed, let us call regions I, II, (&T R‘?R(RaR)) LH(RT),4(Ry,T5)]=0,

[HRLT2) R To) 1= [ dk( Rk Io(Rk)
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T—€(T°~R?)
TE(T!R): ’
1-2Te+(T?~R?) €
R
p{T,R)

 1-2Te+(T?—R?) &’

These can be obtained systematically by using the general
theory of symmetry groups for partial differential equations
(see[23)).

B. E(Hy) Hamiltonian

Let us consider now the commutator of the field operators
obtained in the Heisenberg picture with the quantum Hamil-
tonian H:=E(Hq)=(1—e *C"0)/(4G;). Here G=Gh,
and we have restored the values of the Planck constant and
the three-dimensional gravitational constédmit keptc=1)
to have the possibility of discussing the semiclassical limit.

Recall that the Hamiltoniafl, is given by Eq.(13), where

1 A . we choose the normalization of the creation and annihilation
(a%— ﬁaR( RaR)) CH(T—TH[HR,T),h(Ry,To)] operators so that the commutation relatidd) is satisfied
[with no# in the right-hand sidérhs)]. Notice that, with this

conventionA(k), Ho, andA have formally the same dimen-
sions asG*? (ork=%?), k, andG; * (or k), respectively. To
distinguish the field operators evolved with the new Hamil-
which shows that the full commutator is an aXiaIIy Symmet-tonianﬂ, we will denote them by?,E(R,t) In order to com-
ric solution to the(2+ 1)-dimensional wave equation and the pute the commutatqrfﬁE(Rl,tl),pr(Rz,tZ)], we make use

future part of it(obtained by multiplying by a step functibn ¢ yhe expressiongl5) for the creation and annihilation op-
is an axially symmetric Green function for the same equa-

. o ; 1" “erators evolved irt, which can also be written as
tion. It is important to point out that even though there is a

Minkowskian background metnc;, the .p.resence of a center of Ag(k,t) =A(k)exp{it[E(I:|0— K)— E(I:io)]},
symmetry breaks Lorentz invariance; in fact, the only sym-
metries of the 2-1 axially symmetric wave equation

FIG. 3. Absolute valuéA of the commutator of the scalar field
[#(Ry,T1),(R,,T,)] for Ri=1 as a function off ,— T; andR,.
The light cone structure and the singularityTat- T;=R,+ R, can
be readily seen. The plot for negative valuesTef- T, is obtained
by reflecting with respect to the, axis.

i
== A(R-R,, T-Tp),
R,

AL(k,t)=AT(k)explit[E(Ho+k)— E(Ho)1}.

1 (18
<(9$_ ﬁaR(R&R))qD(T’R):O Substituting then the relation
that transform solution®(T,R) into solutiong are as fol- . = (= - A
lows: Ye(Rt)= \/Ef dkJo(RK[Ag(k,t)+AL(k,1)],
(i) translations °
O(T,R)y>D(T—€,R) (ecR), we get the relevant field commutator
(i) dilatations [Ye(Ry,t1), ¥e(Ro,ty)]
P(T.R)—>P(eT,eR) (ech), = f: dkljow dkoJo(R1K1)Jo(R2kz)
() inversions X 4G{[Aetky o) Ay )]
PL7T.R).pdT.R)] +[AL(Ky 1) ALKz, t2) 1+ [Ag(ky tr), ALKy, )]

O(T,R)— (e small enough

V1-2Te+(T?—R?)é€? ~ .
+[Ag(Ky,ty),Ae(ka,to) 1}
with R ~
The commutators involvingAg(k,t) and Ag(k,t) can be
found in AppendixA. Note that, in contrast with the evolu-
2In addition to the ones coming from its linear and homogeneoudion given byH,, for which the commutation function is@
character. number, the situation now is more complicated because
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[@E(Rl,tl),{/,E(Rz'tz)] is an operator, as it happens in in- diverges. A similar effect can be found in the quantum dy-
teracting theories. We will analyze two types of matrix ele-namics of a free particle with an energy given by a function
ments for it, namely, the expectation value on the vacuunf(k) with dE(k)/dk—0 ask—vco. If one builds a wave
and on one-particle states. In addition, we will briefly com-packet as

ment on the expectation value on coherent states.

@(t,X):dequ)e—i[tE(k)wx],
1. Vacuum expectation value 0

We have with C(k) peaked around a large value kf ko>1, the
N A group velocity becomes almost zero abdt,x) stays essen-
(Ol[ e(Ry,t1), ¥e(R2,15)1]0) tially the same at every for long periods of time.
_ (= The integral in Eq.(19) can be written explicitly as a
=i8Gf0 dkJy(R1k)Jo(R2K) convergent serieswhen R;#R,) by expanding the sine

function as a power series ef “°% and computing the re-
sulting integrals involving two Bessel functions and an ex-

tr—t —
X sin 2461(1—e‘40k)l. (19 ponential[21]

Ol Je(Ry,t1), e(Ry,15)]|0
In the following we will discuss the differences and similari- (Ol e(Ry. ) Ye(Re,12)110)

ties of this matrix element and thé,-commutation function. isG _ * (—1)"(At)?"
We point out that the factor di(T,—T,)k] that appears in = ———1sin(At) X Tamt
the integrand of thed, commutator is substituted now by 7mVRiRy n=0 '
sin(t,—t;)(1—e *®/(4G)]. They coincide fok—0, but the X Q_y1 0n(Ry,Ry)]— COg AL)
former of these functions oscillates for all values lof .
whereas the latter approaches a constant value When. (—D"(At)>*t
This changes the convergence properties of the integral. In &=, (2n+1)! Q-1d o2n+1(RLR) 1T

particular it is straightforward to see that the integ(®9)
diverges wheneveR;=R, (except if sifi(t,—t;)/(4G)]=0)
but converges otherwise. Therefore, the vacuum expectatiofere, we have introduced the notation
value has a singularity structure that differs from the one
given by Eq.(16). This has some interesting physical conse-

(20

guences. First we see that the singularity that originates in At= e —tl,

the axis in theH, case is not present when the evolution is 4G

dictated byE(H,); this can be interpreted as a blurring of _

the axis due to quantum corrections. Second we see that a _ 16G%n’+R;+R;
completely different kind of singularity pops up when the 7n(R1.Rp) = 2R,R,

evolution is generated b¥(Hy). From a mathematical point

of view its origin is clearly related to the fact that the energyBesides, Q_,,5(x) = 7F(3,3: 1;1/x2)/\/ﬂ [with x>1] is

is bounded from above and, hence, for large valuelstbie  the associated Legendre function of the second Kaigi We
integrand is just a product of twiy, Bessel functionswhich  recall that the functio_;,,(x) grows without bound as the
give a divergent integral if their arguments coingidehysi-  argument approaches=1 and falls off to zero asr/y2x
cally, the emergence of the singularity can be understood ifyhenx— . WhenR, = R, the singularity in Eq(20) comes
an intuitive manner by writing a state as a superposition ofst from then=0 term in the first series of the expansion,

vectors of the formAT(k)|0), which is given by
— [ o = v 2, p2 _
Je(Ry 11)]0)= V4G f dkJo(Ryk) (it e 186 o DRy [t
0 mJRiR, 2R;R; 4G
xA'(k)|0),

A series of plots of[f//(Rl,Tﬁtl),&(RQTftz)] and
(O|[ ¥e(Ry,t1), #e(Ry,t,)]|0) (both over &) is shown in
Fig. 4 for fixed values @1 andt,—t; as a function oR,,

with several choices fo&. We choosd,—t; small enough
to guarantee the rapid convergence of the series in(Z).

. g and leave a discussion of the behavior of the inte¢t8)
differ only by a constant phase for large valueskofThis —
means that, in the sector of larde these two states have whep G—0 Afor future - work. As we can see
coherent phases and therefore a constructive interference|l#e(Ru.t1).¥e(Rz.t2)][0) ~ seems  to  approach
Since each of them has an infinite norm, their scalar produdt/(R,,T1=t1),#(R,,T,=t,)] at least in a certain average

and projecting ont@e(R5,t,)|0). Theeltitt—e *¢9/(46) fac.
tor (for j=1 or 2) goes to a phase that depends onlytpas
k—o. So, if Ri=R,, the coefficients of the linear superpo-

sition defining, respectivelyye(R,t;)|0) and ye(R,t,)|0)

124006-9



BARBERO G., MENA MARUG;AN, AND VILLASEN OR

G=002t—t; =06

G=0011,t,—t; =06

0.5 1 1.5 2 2.5 3 R2 ‘ 0.5 1 1.5 2 2.5 2 R2
G=002t;—t; =1 G=0011,ts—t;1 =1
0.5 1 1.5 2 2.5 3 R2 - 0.5 1 1.5 2 2.5 E R2
G=002t:—t; =14 G=0011,t, —t; =14
R2 ' R2

0.5 1 1.5 2 2.5 3

FIG. 4. Comparison between the absolute valiee®r 8G) of
theH, commutator and the vacuum expectation value offid)

0.5 1 1.5 2 2.5 3

commutator for two different values @&, plotted forR;=1.

sense whelG is sufficiently smallthough not vanishing It

PHYSICAL REVIEW D67, 124006 (2003

Qi(Ky ko) =2G(t,—t1)E(ky) E(ky) + tE(ky) — t,E (k)
— ¢pi(ky) + di(ky).

A complete discussion of the meaning of the previous
expression is beyond the scope of this paper. Nevertheless,
some features already present in the vacuum expectation
value are also present here; in particular Bye= R, singu-
larity. This can be seen by considering the last term in Eq.
(22): the integral ink, is

Jmdk2|f(k2)|25ir[(t2—tl)E(kl)e—4Ek2],
0

which takes in general a non-vanishing constant vétles

pending ont,—t; andG) ask;—oe, thus rendering the re-
maining integral irk; divergent. As the first term in E¢21)
leads to a convergent integral, we conclude that the expecta-
tion value is singular wheR;=R,.

It is not difficult to obtain as well an explicit expression
for the expectation value of the(H,) commutator on the
coherent states of the fielgg. These diagonal matrix ele-
ments are calculated in Appendix B. For our discussion in
this work, let us only comment that the result is actually
divergent wherR; =R,. This supplies further support to the
claim that the considered singularity is indeed a generic fea-

falls off to zero quite quickly outside the light cone defined ture of the system.

by the free commutator and the auxiliary Minkowski metric,
and displays an oscillatory behavior within this light cone.
The characteristic length of this oscillation decreases @ith
as well as close to thR; =R, singularity. The approxima-
tion obtained by truncating the series expandi2®), keep-

V. CONCLUSIONS AND PERSPECTIVES

Linearly polarized cylindrical waves can be studied in
great detail both from the classical and quantum points of

the results of numerically computing expressi@g), at least

for low enough values of,—t;.

where the functiorf =|f|e'¢f satisfiesf5dk|f(k)|?=1. We

2. Expectation value on one-particle states

We consider now states of the form

|p>=fo°°dkf<k)AT(k>|0>

then have

(pl

[e(Ry,t1), ¥e(Ry,t2) 1| p)

=—i8€f dklf dkyJo(R1K1)
0 0

X {230(Roky) | f(Kky) f(ko)|SiM 2G(t; —t5)
X E(ky)E(Ky)]cog Q¢(Kq,ky)]

— Jo(Roky) | f(ky)|Sinl (t,— t) E(kp)e *S]},  (21)

where

for the study of the system. We have shown that the action
and the metric of the gauge-fixed model in linearized gravity
reproduce the results obtained by considering full cylindrical
gravity and working to the first perturbative order. We get in
this way a free Hamiltonian. The Hamiltonian governing the
dynamics of the full system, on the other hand, is different
from the free one, but turns out to be a function of it and
presents certain features with deep physical consequences,
such as, e.g., the existence of an upper bound.

We have studied the similarities and differences of these
two admissible kinds of evolution; in particular, we have
discussed how the emergence of an upper bound for the en-
ergy affects the causal structure of the model and the spread-
ing of the light cones. The field commutator for the free
Hamiltonian is ac number and shows the typical light cone
structure found in standard perturbative quantum field theo-
ries. The commutator for the physical Hamiltonian, as it usu-
ally happens for interacting theories, is no longermaimber,
so one has to consider its matrix elements. By concentrating
on the vacuum expectation value we have been able to see
several interesting phenomena: a spreading of the light cone
as a function of the gravitational constant, the disappearance
of the singularity present in the free case due to the smearing
of the symmetry axis and the appearance of a new type of
singularity associated with the fact that the energy is
bounded from above. This new singularity is also present in
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tonianH, at least in a certain average sense. However, it is

not obvious how precisely and up to what extent they actu- _

ally relate to each other. This is partly so because of the APPENDIX A: USEFUL COMMUTATORS

different smgu!anty ;tructt_;re found in both cases. Further In this appendix we compute the commutators of the cre-

research on this subject will concentrate on the properties of,. S -~ ~t
, , ) = , ation and annihilation operato’sg(k,t) and Ag(k,t), ob-

the model in the semiclassical lim@— 0. We will also pay ained from the corresponding operatdig) andAT(k) via

detailed attention to matrix elements of the field commutatOtI . ) P gop A .

other than the vacuum expectation value, with the aim ath€ unitary evolution generated bf(Ho), where Ho

discussing how the smearing of the light cones depends or dekkAT(k)A(k). Employing relationg18) and the basic

the energy. commutatorg11), it is possible to show that

[Ac(ky,t1),Ag(Ky,tp)]=A(ky) Ak exd ity E(Ho— ki — ko) +i(t,—t) E(Ho—kp) — it,E(Hg)]
—A(kp)A(ky)exd it E(Ho— kg — ko) +i(t;—to) E(Ho—kq) —it,E(Ho)],
[AL(ky,t1), ALKy, t)1=AT (k) AT(kp)expit E(Ho+ kgt ko) +i(t,—t) E(Ho+kp) —it,E(H)]
—AT(k)AT(kp)exit,E(Ho+ky+ ko) +i(ty—t))E(Ho+ ki) —it,E(Ho)],
[Ag(ky,t1), ALKy, to)1=A(k) AT (k) exd it,E(Ho+ko—ky) +i(t,—ty) E(Ho+ky) —it,E(Ho)]
— AT(kp)A(ky)exf it ,E(Ho+ko—ky) +i(ty—to) E(Ho—ky) =it E(Ho)],
[AL(Ky,t1),Ag(ka,t)]=AT(k)Akp)exd it E(Ho+ky— ko) +i(t,—t) E(Ho— ko) —it,E(Hg) ]

—A(ky)AT(ky)exit,E(Ho+ky—ky) +i(t;—ty) E(Ho+ky) =it E(Ho)].

APPENDIX B: EXPECTATION VALUES ON COHERENT STATES

We consider coherent states of the figldgiven by

|0)

» dk
|Wc)=Kcex fo ——=C(kA"(k)

V86

1 » dk
— _ - T
Kczo n! ( fo ,/Bgc(k)A (k)

n

0),

whereC(k) is a square integrable function aKg is a normalization constant satisfying

= dk
|Kc|2=exp(—Jo £|c<k>|2).

The expectation value of the(H,) commutator is
. . =dk, [ “ 14(C)
VTR ). DeRaut11¥ )= |5 [ dlodot ok 3o(Rak) 3, 7 Gk k),
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where

0 dk _
IS(C)=exr{ fo EIC(k)IZ(e*“GSK—l) :

PHYSICAL REVIEW D67, 124006 (2003

Ga(Ky,kp) =8G8(Ky ko) {[b(Ky, —kp) 15— [b(ka, — k1)1 + Cka) C(kp){[b(Ky, —kp) 15— [b( — Ky, ky) ]S e 4GSk

+C(ky) C(k){[b( — kg kp) 15— [b(ky, — k1) 15t e 48k + Cky) C(Kp){[b(Ky ko) 15— [b(ky ky) e~ 40Skaha)

+C(Kkq) C(kp){[b(—ky,—Kp)1°—[b(—kq, —k1)1%},

and we have employed the notation

b(kn akm) = E[tne“ekm(e‘lekn_ 1) +tm(e4ka_ 1)]

Note that, wherR,=R,, the delta in the expression &(k,,k,) leads to the divergent integral

- 86' 2s+1

2s+1

* 2
fo dkI(Rik) 2 51

i(t,—t,)(1—e 4Gk
4G
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