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Low-Cost Digital Detection of Parametric Faults in
Cascaded Σ∆ Modulators

Gildas Léger, and Adoración Rueda, Member, IEEE

Abstract—The test of Σ∆ modulators is cumbersome due to
the high performance they reach. Moreover, technology scaling
trends raise serious doubts on the intra-die repeatability of
devices. Increase of variability will lead to an increase in
parametric faults difficult to detect. In this paper, a design-
oriented testing approach is proposed to perform simple and
low-cost detection of variations in important design variables of
cascaded Σ∆ modulators. The digital tests could be integrated
in a production test flow to improve fault coverage and bring
data for silicon debug. A study is presented to tailor signature
generation, with test time minimization in mind, as function of the
desired measurement precision. The developments are supported
by experimental results that validate the proposal.

Index Terms—Σ∆ modulation, Design for testability, testing,
fault diagnosis.

I. INTRODUCTION

IN the field of analog to digital conversion, Σ∆ converters
manage to push much of the hardware to the digital domain.

As a result, this type of converter benefits of technology
scaling in a major amount than other architecture. The vast
success of Σ∆ converters has motivated extensive research
which has driven Σ∆ modulators to their limits.

As technology shrinks to the nanometer scale, the scientific
community agrees to state that intra-die variability (i.e. device
mismatch) will become a major bottleneck if it is not properly
handled [1]. From a test viewpoint, an important increase of
parametric faults can thus be expected. For Σ∆ modulators,
that have gained much interest because of their low sensitivity
to the performance of their analog parts, such an evolution
might be critical. Indeed, ADC black-box functional tests
may fail to detect parametric deviations that could evolve as
reliability issues.

Interesting functional Built-In Self-Test (BIST) techniques
can be found in the literature. In [2] is shown how to compute
in a simple manner the gain error, offset and 3rd order
distortion of the ADC transfer function. On the other hand, [3]
implements an on-chip histogram test, and [4] uses digitally
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encoded sine-waves to perform FFT tests. In the original work,
a filter is used to remove the quantization noise. However,
several works have proposed to directly use the Σ∆ encoded
sine-wave as a test stimulus for Σ∆ modulators. In [5], the
authors propose to use a sine-wave encoded at the same order
as the modulator under test but to scale down the resulting
stimulus with respect to the full-scale. In this way, they ensure
that the quantization noise of the test stimulus remains below
that of the modulator. In [6] and [7], the authors propose to
use a sine-wave encoded at a higher order, so that the portion
of the test stimulus quantization noise that lays in the base-
band of the test stimulus is lower than that of the modulator
under test. These techniques have proven useful to evaluate
functional metrics at reasonable cost but with, at best, the same
precision as the standard functional test they are based on. In
particular, it is shown in [7] that the test accuracy is limited
for signals close to full-scale. Similarly a fault simulation
in [6] demonstrates that the proposed test underestimates the
distortion in some cases. In that sense, they can help reducing
the cost of a functional test flow but do not provide added
value in terms of fault coverage.

On the other hand, purely defect-oriented approaches usu-
ally lack of faithful validation. Indeed, it is not possible to
physically model and simulate all the possible defects (in-
cluding electrical deviations) and to estimate their probability
of occurrence. The validation of defect-oriented approach is
thus limited to fault coverage [8], where accuracy has to be
sacrificed for computability. In switched capacitors circuits,
only shorts, opens and deviations in the capacitor ratios are
often considered [9], [10].

In previous papers [11] and [12], the authors have proposed
a fully digital BIST scheme that allows to measure important
design variables of the main building block of Σ∆ modulators:
namely, the integrator pole error and its settling error. In this
paper, we show how the digital tests could be integrated in
a production test flow to improve fault coverage and bring
data for silicon debug. Indeed the requirement of hardware
simplicity can be relaxed if the target is not a full-BIST
scheme, and better test signature can be built.

Relying on experimental results from an integrated pro-
totype, it is shown how the signature generation can be
tailored to reach an adequate precision on the measurement
of integrators leakage and settling errors. The fully digital
nature of the test allows the use of a low-cost digital tester
and enables parallel test, while test time remains greatly lower
than conventional FFT-based functional test.

The test scheme is a good complement to functional test,
as it brings important information on building blocks. In that
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sense, it could be compatible with the functional BIST scheme
proposed in [6] that performs an SNDR test using a 1-bit
digital stimulus like in [4], leading to noticeable agreement
with standard SNDR test for small amplitudes. The injection
of this digital stimulus relies on the same principle as for our
method. As was said previously, one drawback of the approach
in [6] is that it cannot detect small THD induced by near full-
scale signals. Our approach would not only improve the defect
coverage for this case, due to the good sensitivity to integrator
settling error, but also enhance diagnosing capability.

The paper is organized as follows: Section 1 reviews
the digital tests and presents the Σ∆ modulator prototype
fabricated to prove their feasibility. Section 2 demonstrates
how test signature can be effectively generated to provide
diagnosis capability in a reduced time. Section 3 addresses
the possibility to use the decimation filter for test purpose
if the bit-stream is not accessible, and provides interesting
comparison with functional test results. Section 4 discusses
possible improvements of the method, and Section 5 draws
the conclusions of the paper.

II. THE DIGITAL TESTS

A. Test concept and prototype

The idea behind the proposed tests is to evaluate the non-
idealities of the building blocks that compose a cascaded Σ∆
modulator. Principally, tests have been developed to evaluate
the pole error and the settling error in the different integrators,
because these design variables are key to the overall perfor-
mance of Σ∆ modulators. This approach can be applied to
any cascaded combination of 1st and 2nd order stages. Work
is still necessary to extend the proposal to higher order single-
loop architectures. While 1st and 2nd order modulators are
inherently stables, higher order modulators can have bounded
states only for a limitted range of inputs [13]. The digital
stimuli used for test purpose in our proposal induce higher
internal states than DC levels [14]. Stability during test mode
may thus be a concern for modulators of order higher than 2.

Multibit quantizers are usually used only in the last (and
less critical) stage of cascaded modulators. We will thus limit
the scope of this paper to single-bit quantizer, but the reader
can refer to [11] and [14] for multi-bit tests.

The procedure is common to all the tests, and the generic
setup is shown in Fig.1 for a cascaded modulator. Under
test mode, the modulator operating conditions are set such
that the DC component of the response deviates from the
DC component of the test stimulus in an amount that is
proportional to the non-ideality under test.

The test stimulus is a digital sequence that can be periodic
(with a short period of less than 10 samples) or pseudo-
random. The output bit-stream (Yi) is acquired by the test
equipment (i.e. a simple digital ATE) and the signature com-
puted off-chip.

The modifications of the modulator operating conditions
affect exclusively control signals of the switches. As a result,
a configuration register has to be introduced to control the
different test modes. It is important to notice that no additional
switch is introduced, so that the signal path remains unaffected
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Fig. 1. Generic setup for cascaded Σ∆ modulator digital test with two
dedicated test inputs: one for configuration and another for the digital stimulus

by the DfT modifications and no particular optimization is
needed for the building blocks. The switch control modifica-
tions require some clock gating, in a way similar to what is
proposed in [7]. In any case, this is not a critical point from
a jitter perspective, because the gated switches are not those
that define the sampling instant. More details can be found
in [12] and [14] about practical implementation. Among other
modifications, each summing node is modified such that the
direct input (i.e. the positive input in Fig.1) can be disabled and
the feedback DAC can be re-used to send the test sequence.
In this way, the different stages of the cascaded modulator can
be considered individually.

In order to give experimental support to our approach, a
prototype has been integrated in a CMOS 0.35 µm technology.
This prototype is the 2-1 cascaded modulator shown in Fig.2.
The three integrators are driven by the same sampling and
feedback phases (Φ1 and Φ2, respectively) at a nominal fre-
quency of 2MHz. On the left side, the z-domain and switched
capacitor implementation is presented for nominal operation.
It can be noticed that the switches that form the feedback
DACs are driven by the stage output. On the right side an
example of test configuration has been illustrated. The 2nd

and the 3rd integrators are tested in parallel. The switch of
the direct path of the integrator under test is maintained open
while the feedback DAC is re-used during the sampling phase
(Φ1) to send the test stimulus. It can be appreciated how the
test configuration for the 2nd integrator actually reconfigures
the stage as a first order for test purpose. In order to test the
first integrator, the digital stimulus would be fed through the
first DAC, and the nominal input switches dsiconnected. The
rest of the modulator could remain unchanged with respect
to nominal operation, though the second stage (i.e. the 3rd

integrator) could also be disconnected and tested in parallel.
It is known that the performance of a Σ∆ modulator is more

sensitive to the first integrator than to those located further in
the loop which can be simplified. However, for the sake of
design time reduction, the same integrator has been re-used in
our prototype. This also brings us the possibility to directly
compare the results obtained for the 3 integrators.
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Fig. 2. Σ∆ modulator prototype: a) in nominal configuration; b) in leakage test mode for the 2nd and 3rd integrators, the nominal integrator input switch
remains open and the feedback DAC is re-used to input the test sequence during phase Φ1

The prototype includes all the DfT modifications required to
perform the proposed tests: few logic gates and a configuration
register to properly control the switches and the feedback
DAC. The test sequence and the master clock are generated
externally. Similarly, the output bit-streams of the two stages
are shifted off-chip, which means that both the reconstruction
and decimation filters have to be emulated in software. This
option has been preferred in order to get a major flexibility on
the post-processing.

Apart from these necessary test-purpose modifications, the
prototype also includes a simple mechanism to induce para-
metric deviations in the behaviour of the integrators. Namely,
an external tuning voltage has been considered to control the
bias currents of the 3 amplifiers. Though such a mechanism
cannot model all the possible parametric defects that may
arise in an integrator, a similar effect would be obtained, for
instance, from a mismatch in a current mirror. In any case,
there is no doubt that varying the bias current modifies the
performance parameters of the amplifier. This is illustrated in
Fig.3 that displays electrical simulation results of the amplifier
DC gain, Slew-rate and Gain-Bandwidth product versus the
included tuning voltage [12].

B. Integrator leakage test
An integrator pole error causes the leakage in the modulator

base-band of a portion of the quantization noise shaped at an
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Fig. 3. Amplifier characteristics versus tuning voltage

order lower than the modulator order. As a consequence, the
modulator SNR is reduced. This phenomenon is more severe
for cascaded modulators than for single-loop modulators, due
to improper noise cancellation in the reconstruction filter. We
have proposed tests to measure the amplifier DC gain (i.e. the
integrator pole error) in 1st and 2nd order modulators [11] and
we present here a brief summary.
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For the 1st integrator of a 2nd order modulator, the proposed
test is very simple. It consists in sending a digital sequence
(SEQ) of mean value Q different from 0 to the modulator and
checking how the mean value of the output bit-stream (Y )
deviates from the input sequence mean value.

To get rid of an eventual input-referred offset, another
acquisition (quoted with a star symbol in (1)) has to be
performed with an input sequence of mean value −Q. A z-
domain analysis shows that the obtained signature is equal to,

s1 =
1

N

[
N∑
i=1

seqi − yi

]
− 1

N

[
N∑
i=1

seqi − yi

]∗
(1)

= 4Q∆p± 4

N

where ∆p is the integrator pole error and N the number of
averaged samples.

The behaviour of a 1st order modulator is strongly driven
by non-linear dynamics. This implies that a z-domain analysis
using the approximation of a linearized quantizer cannot be
performed. It has been shown in [15] that the 1st order mod-
ulator output bit-stream follows exactly the input, when that
input is a digital sequence. This behaviour is even strengthened
by integrator pole error. Hence, a slightly different test was
necessary for 1st order modulators. The proposed test consists
in adding an extra delay in the feedback loop of the modulator
(in the digital part of the loop), and using as a test stimulus a
digital periodic sequence formed by a number M−1 of 1s and
a single -1. The sequence period M has to be strictly higher
than 5. For instance, a sequence of period [1 1 1 1 1 −1]
could be used. Notice that the extra delay is introduced only
during test mode and does not impact the modulator nominal
behavior. Under these conditions, it can be shown that the
integrator output follows a fixed pattern. An integrator pole
error manifests as a slow exponential-like decay of the pattern.
It can be shown that such decay causes periodic transitions
in the integrator pattern and that such transitions cause a
deviation in the mean value of the modulator output. Hence,
the test signature is computed in the same way as for the 2nd

order modulator, giving in this case,

s2 =
1

N

[
N∑
i=1

seqi − yi

]
− 1

N

[
N∑
i=1

seqi − yi

]∗
(2)

=
4∆p

ln
(

3M−5
M−5

) ± 4

N

C. Integrator settling error test

For the proper behavior of a Σ∆ modulator, the dynamics of
the amplifiers are also of utmost importance. Indeed, improper
settling will cause a noise increase in the base-band and
also harmonic distortion. In [16], a test has been proposed
to measure such settling errors. However, such test required
some slow arithmetic operation to build the signature. A
modification was later introduced [12] such that the same
signature elaboration as for the leakage test can be used.

A digital sequence, preferably of mean value 0, is sent to the
integrator under test. Moreover, the modulator master clock is
modified such that the clock period is doubled when a logic
0 is sent and remains nominal when a logic 1 is sent. In this
way, it can be shown that the integrator settling error that
occurs for a step corresponding to a logic 1 input sample and
a logic 0 feedback sample can be referred as a DC level at the
modulator input. To get rid of possible offset contributions,
another acquisition has to be performed with the same test
sequence but inverting the clock period modification (double
for a logic 1 and nominal for a logic 0). As demonstrated in
[12] the signature can be written as,

s3 =
(
P2 + P ∗

−2

)
× er2 ±

4

N
(3)

where er2 is the settling error under test (normalized to the
modulator full-scale) and P2 and P ∗

−2 are the probability of
occurrence of having a 1 input sample and a 0 feedback sample
(for the 1st acquisition) or a 0 input sample and a 1 feedback
sample (for the 2nd acquisition), respectively. Using a random
digital sequence as an input allows to estimate a-priori the
term

(
P2 + P ∗

−2

)
as being equal to 1/2. The signature thus

simplifies to,

s3 =
1

2
× er2 ±

(
4

N
+ 3er2

√
N

2

)
(4)

The error term in the expression of the signature is increased
with respect to (3) by the 3σ contribution of the approximation
of the actual value of the term

(
P2 + P ∗

−2

)
to 1/2.

III. TIME-PRECISION TRADE-OFF

For the digital tests summarized above, the signatures repre-
sent a measurement of the DC level deviation of the modulator
output bit-stream from the expected value. This measurement
can be performed by simple counters for the sake of hardware
simplicity in a BIST focus. However, a simple counter is a
1st order filter, which is obviously not optimum to remove
the shaped quantization noise of a Σ∆ modulator. Actually,
according to (1), (2) and (4), the precision on the different
signatures is always in the order of ±4/N , where N is the
number of averaged samples.

As our purpose is to retrieve the DC component of the
output bit-stream, we should ideally select the sharpest fil-
ter with the lowest cut-off frequency. One drawback is the
increased complexity, which may not be a limiting factor if
the filter is implemented in an ATE. But a major concern is
test time. Indeed, the filter order (and thus sharpness) and cut-
off frequency are closely linked to the filter settling time. As
a matter of fact, it is usually considered that an order L+ 1 is
sufficient to properly filter a modulator of order L [13]. The
proposed tests apply to 1st and 2nd order sections, so filters of
order greater than 2 and 3 respectively would be more suitable
to build the signature than simple counters. For the sake of
simplicity, we will limit our study to comb filters, which are
widely used to remove quantization noise in Σ∆ modulators
[17]. The transfer function of a comb filter of order L+ 1 is,
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H(z) =

(
1− z−

fs
2fc

1− z−1

)L+1

(5)

where fs is the modulator sampling frequency and fc is
the filter cut-off frequency. The oversampling ratio (OSR) is
related to the filter cut-off frequency by,

OSR =
fs
2fc

(6)

For such a filter, the number of samples required for proper
settling is,

Nset = (L+ 1)× fs
2fc

(7)

For an ideal modulator of order L, under the assumption that
Bennetts conditions [18] are fulfilled, the transfer function can
be written as,

Y = z−LX +
(
1− z−1

)L
E (8)

where Y is the output bit-stream, X the input signal, and
E is a random variable that represents the linearized quantizer
error. Its variance is,

σ2
E =

∆2

12
(9)

where ∆ is the quantizer step (∆ = 2 for one-bit quantizer).
For an ideal filtering, the quantization noise in the baseband
can be calculated as,

σ2
noise =

π2Lσ2
E

(2L+ 1)
(

fs
2fc

)2L+1
(10)

Provided that two acquisitions have to be performed to get
rid of the offset, the variance of the test signature should be
twice that of a single acquisition.

A. The first order Σ∆ case

In what has been exposed previously, it has been assumed
that the quantization noise is a random variable, shaped to high
frequency. While this is a common assumption to describe Σ∆
modulators under normal operation, its validity range may not
extend to the proposed tests. Indeed, the stimuli are not low-
frequency continuous waves but digital sequences with short
periods.

It is demonstrated in [15] that the response of an ideal
1st order modulator to a digital sequence is the same digital
sequence: in other words, there is no noise-shaping. Moreover,
it has been shown in [11] that, during the leakage test, the
output bit-stream follows a fixed pattern of the same mean
value as the test sequence but twice the period. Integrator leak-
age perturbs this pattern and introduces periodic transitions
that modify the overall DC level. Fig.4 shows the integrator
output for a simulation of a leakage test for a 1st order Σ∆
modulator with a pole error ∆p = 5.10−3. Notice that the
modulator output bit-stream is actually the quantized version
of the integrator output (i.e. its sign), but the effect of leakage
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Fig. 4. Integrator output during a leakage test: a) over 1000 samples, the
exponential decay of the envelope can be appreciated; b) the zoom on a
transition shows how the repeating pattern is broken when the central level
crosses 0

is best appreciated at the integrator output. The exponential
decay of the envelope that can be seen in Fig.4-a) is due to
leakage. When the central markers cross 0 a sharp transitions
occurs. It can be seen in Fig.4-b) how the integrator output
pattern is locally modified for a transition. The number of
samples between two transitions has been shown to be,

Ns =
ln
(

3M−5
M−5

)
∆p

(11)

where M is the period length of the test sequence and
∆p is the integrator pole error. In our case, for M=8 and
∆p = 5.10−3, we obtain Ns = 369, which is verified by the
simulation. The filter has to sense more than one transition to
retrieve the information of interest.

In order to illustrate this with experimental results, we
performed a leakage test for the second stage of the prototype
(which is a 1st order modulator), with a test sequence of period
[1 1 1 1 1 0] and mean value 2/3 (taking into account that the
logic 0 is converted to an analog -1, normalized to the Full-
Scale). A total number of 40000 samples were acquired for
this sequence and its opposite. Then the output bit-streams
have been post-processed using Matlab to study the use of
several filters.

Fig.5 shows the evolution in time of the signatures obtained
with a 2nd order filter for 3 different values of the cut-off
frequency: fs/288, fs/720 and fs/3240. For the highest cut-
off frequency, the filtering is not sufficient to average several
transitions. Periodic peaks can be appreciated that correspond
to the train of transitions (which is approximately a train of
Dirac pulses) convoluted by the filter impulse response. For
a cut-off frequency of fs/720, the impulse response of the
filter is of a length similar to the transition period and for
the smallest cut-off frequency, the filtering is sufficient to
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Fig. 5. Filter output for a 1st order modulator leakage test at 3 different
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effectively remove the tonal contribution and isolate the DC
component (i.e. the pole error information).

Fig.6 also illustrates the above effects, showing the nor-
malized bit-stream spectrum together with the 3 filter cut-off
frequencies. First of all, it can be verified from it that the base
quantization noise is shaped, but is well under the tonal contri-
bution that is due to the leakage-induced periodic transitions.
Secondly, it can be verified that for fc = fs/288, some tones
fall in the pass-band. The cut-off frequency fc = fs/720 is
located close to the fundamental tone of the transitions and for
fc = fs/3240, all the tones are filtered out. This is coherent
with the time-domain observations commented above.

Finally, Fig.7 shows the signature standard deviation versus
the filter impulse response length, for both a simple counter
(case a) and a second order filter (case b). The 3 cases
mentioned above are quoted on the figure with cross markers.
It can be seen that for low filtering, the results of the simple
counter and the 2nd order filter are similar. Notice that the
dashed line corresponds to the expected 4/N scaling for the
simple counter. The standard deviation scaling significantly
improves for the 2nd order filter if the cut-off frequency of the
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Fig. 7. Standard deviation of 1st order modulator leakage test signature
versus filter length: a) for a simple counter; b) for a 2nd order filter

10
-3

10
-2

10
-1

-60

-50

-40

-30

-20

-10

0

normalized frequency

po
w

er
 d

en
si

ty

b) 

a) 

sigma2=3.5

sigma2=0.33

Fig. 8. Spectrum of the quantizer error E in a 2nd order modulator: a) for
a small DC input; b) for a digital sequence of mean value Q = 2/3

filter is smaller than the transition frequency. As a conclusion
of the above study, it can be said that, in order to design an
efficient filter for the test signature, the procedure should be
the following: i) estimate the minimum pole error that must
be detected, ii) use (11) to evaluate the transition periodicity,
iii) select a filter OSR higher than the transition period (for
instance, the double).

B. The second-order Σ∆ case

In principle, the higher the modulator order, the more de-
correlated is the quantization error from its input, which
implies that the validity conditions for the linearization of the
quantizer are fulfilled. Hence, it can be expected that the test
signature improvement due to better filtering be noticeable for
a 2nd order modulator. In order to verify this assumption, we
performed two high level simulations in Matlab: the first one
for a 2nd order modulator with a small DC input and the
second one with a digital sequence input.

Fig.8 shows the spectrum of the quantizer error in the two
cases. The linear model assumes that this error is a white noise
of variance expressed as (9). It can be seen that the spectrum
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Fig. 9. Standard deviation of 2nd order modulator leakage test signature
versus filter length: a) for a simple counter; b) for a 3rd order filter

is truly white in none of the two cases but is reasonably
random. What is more important is the value of the variance.
For a small DC input, the simulation gives a variance of 0.33,
which is very close to the expected value, while for the digital
sequence, the quantizer is clearly overloading and the variance
increases by an order of magnitude. As a result, this increased
error should be taken into account in the linearized model
during test and we should write it as,

σ2
E ≈ 10

∆2

12
(12)

Fig.9 shows experimental results obtained for a leakage
test of a second order modulator. Two acquisitions were
performed over 40000 samples, with an test sequence of period
[1 1 1 1 1 0] and mean value Q = 2/3 (taking into account that
the logic 0 is converted to an analog -1, normalized to the
Full-Scale). On these two acquisitions, we varied the filtering
options. First, we considered a simple counter (case a) and
we varied the number of averaged samples. Next we applied
a 3rd order filter (case b) and varied the cut-off frequency
(i.e. the OSR) and thus the impulse response of the filter.
In both cases, the signature standard deviation can be derived
once the filter has properly settled. The graph represents the
obtained standard deviation versus the filter length (i.e. the
settling time). The dashed lines correspond to the expected
value. For a simple counter, the agreement is almost perfect.
For the 3rd order filter, the trend is the expected. The lowest
dashed line corresponds to limit given by the ideal expression
with (9), while the upper one corresponds to the increased
variance due to quantizer overloading derived by simulation
(12).

Finally, for filters of high length (i.e. low cut-off frequency),
it can be seen in Fig.9 that the rate of the signature standard
deviation scaling with filter length is lower than expected.
Indeed, at some point that depends on the actual performance
of the modulator under test, white thermal noise dominates
over quantization noise. In any case, it can be seen how
the signature standard deviation for a 3rd order filter is
significantly lower than that of the signature with a simple
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Fig. 10. a) Pole error versus amplifier tuning voltage; b) measurement 3σ
dispersion and process corner variability

counter of same length.

C. Diagnosis capability

The proposed tests allow to digitally measure important
design variables of all the integrators in a 2nd order and a 1st

order modulator, or any cascaded combination of such stages.
Moreover, adequate filtering leads to a signature precision that
enables the localization of the modulator in the design space,
which can be very valuable for diagnosis and silicon-debug,
and thus for yield learning.

This subsection tries to demonstrate it with our prototype.
We vary the tuning voltage of the amplifiers in order to induce
parametric deviations and perform the proposed tests on the
three integrators. In order to validate the measurements against
a reference, we also performed electrical simulations of the
integrator to determine the expected leakage and settling error
as function of the tuning voltage. Furthermore, we repeat these
simulations for the different process corners.

Fig.10-a) shows the evolution of the integrator pole error as
a function of the tuning voltage. The solid line corresponds
to the electrical simulation of the typical mean corner, while
the dashed lines represent the maximum and minimum values
reached by the different process corners. The round markers
stand for the pole error measured for the 1st integrator (in a
2nd order modulator configuration), while the square markers
stand for the pole error measured for the 2nd and the 3rd

integrators. Indeed, these integrators are identical and are both
measured in a 1st order modulator configuration and hence
produce the same results.

The dashed line on Fig.10 b) represents the process vari-
ability (i.e. it corresponds to the difference between the two
dashed lines in Fig.10 a). The markers show the measurements
3σ precision. The square markers are obtained for the 2nd and
the 3rd integrators with a 2nd order filter of cut-off frequency
fs/9000. The round markers are obtained for the 1st integrator
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Fig. 11. a) Settling error versus amplifier tuning voltage; b) measurement
3σ dispersion and process corner variability

with a 3rd order filter of cut-off frequency fs/2000. It can
be seen how in both cases the measurement 3σ dispersion
is between 1 and 2 orders of magnitude below the process
variability, even in the worst case (i.e. for the smallest pole
error).

Fig.11 shows the same graphs obtained for the settling error.
The cut-off frequencies are the same as for the leakage tests.
Here again, it can be seen how the settling error tests reach a
precision that is close to 2 orders of magnitude below process
variability, even for the small settling error obtained for a
tuning voltage of 2.4V.

Let us study how much test time is necessary to obtain
this diagnosis capability. Four acquisitions are necessary for
each integrator (two for leakage test and two for settling test).
However, we can consider that the test of the 2nd and the 3rd

integrators can be performed in parallel because they involve
different Σ∆ stages (see Fig.2). Taking into account that the
filter settling time is related to the cut-off frequency though (7),
the total number of samples required to perform the proposed
tests on the 3 integrators is thus,

Nsamples = 4× 3× 2000 + 4× 2× 9000 = 96000 (13)

Notice that the filtering is performed in real-time and there
is thus no more post-processing than the subtraction of the two
acquisitions results for each test. The time needed to load the
modulator configuration filter can be neglected with respect to
the acquisition time. Moreover, as the test stimulus is purely
digital, no additional settling time has to be considered. The
acquisition time is thus a good approximation of the total test
time by,

Ttest =
Nsamples

fs
(14)

where fs is the modulator sampling frequency. This is quite
competitive with respect to functional tests that do not offer
the same diagnosis capability. Indeed, for an OSR of 100, a
single FFT over 1024 samples would require the acquisition of
roughly 102400 samples. This number is comparable to our
result but FFT requires important post-processing and non-
negligible setup time. Indeed, as shown in [19], the test time
for FFT-based tests is not dominated by acquisition time but
by other factors like setup time, data transfer time and FFT-
processing time. In this reference, the actual test time is 93ms.
Our prototype uses a quite slow sampling frequency of 2MHz.
The test time for 96000 samples would be of the order of
50ms, which is still lower than the 93ms of an FFT test. For
the same modulator working at 20MHz, the test time would
scale down to 5ms. Finally the digital nature of the proposal
also enables massive parallel testing, which further reduces the
effective test-time.

IV. DECIMATION FILTER RE-USE

In some cases, Σ∆ modulators are sold as stand-alone
parts and the output bit-stream is directly accessible for test
purpose. An optimum filter can thus be designed for each
test, as explained in previous section. In some others, the Σ∆
modulator is integrated together with a decimation filter, and
the output bit-stream is not directly accessible. This is not
necessarily impairment, as this decimation filter can be used
to build the test signatures if two conditions are met:

i) The settling error test requires that the modulator master
clock be modified as function of the test sequence. This
modified master clock must be used to drive the decimation
filter.

ii) For cascaded modulator, the reconstruction filter must be
configurable such that it can by-pass the output of the different
stages directly to the decimation filter.

In what follows, we will study the possibility to build the
test signatures with only one valid sample of the decimation
filter for each acquisition. In such case, the test time would be
determined by the settling time of the decimation filter, and
in any case would be order(s) of magnitude below functional
(FFT-based) test time.

In order to determine whether the decimation filter provides
sufficient filtering, we will consider a functional criterion: the
tests must be able to unambiguously detect the given parameter
(pole error or settling error) even if the deviation does not
imply performance degradation. In other words, the sensitivity
of the proposed test to the targeted defect must be greater than
that of a functional test.

It is well known that the performance of a Σ∆ modulator is
much more sensitive to the performance of the 1st integrator
than to the integrators located further in the loop. The worst
case for our study is thus to consider deviations in the 1st

integrator.

A. Leakage test versus functional test

Let us consider the case of a simple 2nd order modulator.
The leakage test signature for a second order modulator is
given by (1). In order to be detectable at the output of



9

the decimation filter, the variation of the DC component
(i.e. 4Q∆p1) must be greater than the signature precision.
Moreover, the variance of the signature is twice the variance
for a single acquisition, which is given by (10). The minimum
detectable pole error can thus be determined as,

∆pmin =
3
√

2σ2
noise

4Q
(15)

Introducing (10) and (12) (with ∆ = 2) in (15), and taking
into account that the decimation filter cut-off frequency is
related to the OSR through (6), it comes,

∆pmin =
3

2Q

√
π4

3OSR5
(16)

Furthermore, the amount of quantization noise that leaks
into the baseband for a given pole error ∆p can be calculated
as,

Pnoise(dB) = 10log

(
1 + ∆p2 × OSR2

π2
× 10

3

)
(17)

Substituting ∆p by ∆pmin in (17), the minimum detectable
leakage corresponds to a noise degradation of,

Pmin(dB) = 10log

(
1 +

5

2
× π2

Q2OSR3

)
(18)

At the pole error detection limit, the noise degradation is
higher for lower values of the OSR. However, even for a low
OSR for instance 16, the decimation filter should be sufficient
to detect a leakage that would cause a 0.06dB SNR loss with
an input sequence of mean value Q = 2/3. This means that
for a stand-alone second-order modulator, the decimation filter
is sufficient to build an adequate signature with only one valid
sample for each acquisition. The leakage test time reduces to
twice the settling time of the decimation filter. For a cascaded
modulator of order L, with a 2nd order modulator as first stage,
the quantization noise leaking into the baseband due to a pole
error in the first integrator can be calculated as,

Pnoise(dB) = · · · (19)

10log

(
∆1

∆n

(
1 +

2∆p2

π2L−2
× OSR2L−2

d2
× 2L+ 1

3

))
where ∆1 and ∆n are the quantizer step of the first and

last stage, respectively; and d is a factor greater than unity
that depends on the branch coefficients of particular cascaded
architecture [20]. Substituting ∆p by ∆pmin in (19), the SNR
loss associated to the minimum detectable pole error is,

Pmin(dB) = · · · (20)

10log

(
∆1

∆n

(
1 +

2L+ 1

20d2Q2
×OSR2L−7 × π6−2L

))
Here, things are different than for a 2nd order modulator

alone. Indeed (20) shows that the SNR loss associated to the
minimum detectable pole error will increase with the OSR
if the order of the cascaded modulator is higher than 3. For
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Fig. 12. Measured pole error versus amplifier tuning voltage, with the
confidence interval corresponding to the 3σ dispersion of the signature taking
a single sample of the decimation filter.

instance, taking d = 2, Q = 0.5 and ∆1 = ∆n = 2, it
comes that the SNR loss associated to the minimum pole error
detectable with the decimation filter at OSR = 64 would
be 0.02dB for a 3rd order modulator, 6dB for a 4th order
and 32dB for a 5th order. Hence, it can be concluded that
the detection of pole errors that have a significant impact
on performance in cascaded modulator of order higher than
4 would require more filtering than the one provided by the
decimation filter.

These results can be verified, at least partially, with our
prototype. For that purpose we considered a 4th order dec-
imation filter, with an OSR of 50. The first valid sample
is thus obtained after 200 modulator samples according to
(7), which in our case corresponds to 0.1ms. Then, we have
varied the tuning voltage of the amplifiers to induce parametric
deviations. For each tuning voltage, we performed a leakage
test with an input sequence of mean value 2/3, and also a
functional test. This functional test consists in sending a low-
frequency sine-wave (1.6kHz) with an amplitude of 70% of the
modulator Full-Scale and performing an FFT on the output of
the decimation filter. Actually, the reconstruction and filtering
is emulated in software, so we can perform the functional test
on the complete 3rd order modulator but also on the 1st stage
only, which is a 2nd order modulator.

Fig.12 shows the pole error, evaluated with only one valid
sample, for the different tuning voltages. The experimental 3σ
confidence interval of the measurement is also displayed and is
around 6×10−4. It can be seen that for tuning voltages below
2.1V, the pole error is detected (because 0 is not contained in
the confidence interval).

Fig.13 shows the modulator SNR as a function of the 1st

integrator pole error for a 2nd order modulator (case a) and
for a 3rd order modulator (case b). The markers correspond
to experimental result, that is to say the measured SNR
versus the measured pole error. The curves correspond to
high level Matlab simulations. The dashed line corresponds
to a simulation without thermal noise, while the solid lines
correspond to simulations with an additive Gaussian noise
source of variance 8.3× 10−6 at the modulator input, that we
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Fig. 13. Modulator SNR versus 1st integrator pole error: a) for a 2nd order
modulator; b) for a 3rd order modulator.

introduced to emulate the unexpectedly high level of white
noise in the baseband (which may be due to quantization
noise coupling to the references). Finally, the vertical line
corresponds to the 3σ detection limit of 6 × 10−4 (the same
as in Fig.12), which marks the unambiguous detection limit
(called ∆pmin in (15)). Accordingly to the dashed line, the
maximum pole error that can be induced by the tuning voltage
(of the order of 2.5 × 10−3) should have been sufficient to
see a 10dB degradation of the 3rd order modulator SNR.
Unfortunately, the presence of thermal noise in our setup
lowers the nominal SNR and masks the expected degradation.
Despite of this, it can be seen that the vertical line that
marks the ∆pmin limit intersect the curves on the plateau
region before degradation. This means that, with only one
valid sample (for each acquisition) of the decimation filter,
our digital test is able to detect unambiguously the pole error
better than a functional test. For a cascaded modulator of order
higher than 3, additional filtering would probably be required,
as the degradation limit would be pushed toward lower pole
errors.

B. Settling error test versus functional test

The settling error of the first integrator can be referred to
the modulator input and translates into a distortion term. For
a DC input v, the first integrator is submitted to two levels as
function of the feedback sample: level v−1 which is associated
to a probability of (1+v)/2 and level v+1 which is associated
to a probability of (1− v)/2. The expression of the deviation
with respect to a straight transfer function as function of the
DC input v is thus,

d(v) =
1 + v

2
er(v − 1) +

1− v
2

er(v + 1) (21)

where er(x) is the integrator settling error for a given input
x. This expression can thus be seen as the contribution of
the integrator settling error to the modulator INL. It could be
thought that the maximum distortion should be obtained for
the maximum integrator settling error but this is not the case.
The settling error for an integrator input of 2 (obtained for an

input sample of value 1 and a feedback sample of value -1) is
the highest one, but the probability of occurrence of a level 2
at the integrator input tends to zero. Actually, experience says
that the INL curve of Σ∆ modulators is usually close to a 3rd

order polynomial. The location of its maximum and minimum
depends on the modulator but a value of 2/3 of the full-scale
is a good example. In this case, the maximum INL could be
evaluated as,

INLmax = d

(
2

3

)
(22)

=
5

6
er

(
−1

3

)
+

1

6
er

(
5

3

)
≈ 1

6
er

(
5

3

)
In a first approximation it can be considered that the

integrator settling error associated to a -1/3 integrator input
level is order(s) of magnitude smaller than the settling error
associated to a 5/3 input level.

For a settling error test performed with a random input
sequence, it has been seen that the DC component in the
signature was of the form,

s =
1

2
er (2) (23)

The higher the integrator input, the higher the settling error.
Hence, using (22) we can write,(

er(2) > er

(
5

3

))
⇔ (s > 3INLmax) (24)

For the signature to unambiguously detect a settling error it
must be greater than 2 effective LSB (Least Significant Bit) —
one for each acquisition. Similarly, if the INL is high enough
to impact the ADC it implies that the maximum INL be greater
than 1LSB effective. Hence we can write,

s > 3INLmax > 3LSB (25)

For a single loop modulator, the LSB during the test is the
same as the LSB of the overall modulator, and taking only one
valid sample of decimation filter would thus be sufficient to
build the settling error test signature. Once again, the results
are different for a cascaded modulator, as the effective LSB
obtained for the first stage alone is not the same as the overall
modulator LSB. Even though, an adequate filtering can be
calculated such that the 3σ uncertainty is smaller than one
LSB of the overall modulator.

In the same way as for the leakage test, Fig.14 shows
experimental results of the measured settling error of the first
integrator, versus the tuning voltage. Here again, the signature
is computed using only one valid sample of the 4th order
decimation filter (of OSR = 50). A zoom inset has been
added to make visible the measurement uncertainty range on
an adequate scale. It can be seen that for voltages above 2.5V,
the settling error is unambiguously detected since the 0 line
does not fall within the uncertainty range. The 3σ uncertainty
is around 2× 10−3.
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confidence interval corresponding to the signature 3σ dispersion taking a
single sample of the decimation filter
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Fig.15 shows the measured Signal to Noise and Distortion
Ratio (SNDR) for the first stage (a 2nd order modulator) and
for the complete 3rd order cascaded modulator, versus the
measured settling error.

For the SNDR measurement, an FFT was performed on
40000 samples of the output bit-stream, which corresponds
to 800 samples in the baseband for an OSR of 50. A type-
2 Rife-Vincent window was used to avoid spectral leakage.
The gray rectangles indicate the ±3σ dispersion of the SNDR
measurement.

The vertical line corresponds to the 3σ detection limit ob-
tained for a signature taking only one sample of the decimation
filter. Hence, all the settling error on the right side of the line
would be unambiguously detected.

It can be seen how, for both cases, the proposed test can
detect a settling error in the 1st amplifier even at values that do
not affect the performance, since there is a data point that falls
within the gray rectangle of the fault-free SNDR uncertainty
range but on the right side of the settling error detection limit.

So it can be concluded that for single loop-modulators, one
sample of the decimation filter should be sufficient to build
the test signature and retrieve information of any deviation
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that could affect performance, while for cascaded modulators,
further filtering may be required (specially for modulator
orders higher than 3).

A modulator of order L contains L integrators. Considering
that each integrator is tested for leakage and settling, that each
test requires two acquisitions and that the decimation filter is
of order L+1, the complete acquisition time can be evaluated
as,

Tacq =
4OSR

fs
× L× (L+ 1) (26)

In our case, the test of the three integrators would thus
require 60 decimation filter samples (i.e. 3000 modulator
samples) for a test time of 1.5ms, which is negligible with
respect to a functional test time of close to 100ms.

V. DISCUSSION

The filtering provided by the decimation filter is not pro-
grammable in the majority of cases. This means that the
signatures derived from only one valid sample will have a
given precision that may or may not be sufficient.

For single loop modulators, the decimation filter is designed
to reach a given precision and usually removes most of the
quantization noise. We have seen in previous section that this
filter should be adequate for test purpose with a functional test
criterion in mind. However, a higher precision may be desired
to improve diagnosis capability and to provide more accurate
information for silicon debug or yield learning.

High-order cascaded modulators can reach a high precision
even with a low OSR. As a consequence, it is possible
that the decimation filter designed for the complete cascaded
modulator could not be adequate to filter the quantization noise
of a single stage in test mode. The filter order (i.e. sharpness)
will be higher than strictly necessary and this is not an issue,
but the cut-off frequency is possibly too high. This is sketched
in Fig.16, which represents the power spectrums of the 1st

stage and of the cascaded modulator for our prototype for an
input sine-wave. The dashed line shows how a filter designed
to remove most of the quantization noise for the cascaded
modulator can let some quantization noise unfiltered when
applied to a single stage.
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If a higher signature precision is desired, the decimation
filter output has to be filtered further. The next question is
how. Is it sufficient to simply average some samples? Or on
the contrary is it worth implementing a higher order filter?
We can postulate that if the shaped quantization noise is not
significant with respect to other sources like thermal noise,
averaging several samples (i.e. a 1st order filter) will be more
adequate than a higher order filter, because for a given number
of samples a lower cut-off frequency can be obtained. On the
other hand, if the shaped quantization noise is the dominating
factor in the signature precision, a filter of higher order is
likely to provide better results.

In order to illustrate this fact, Fig.17 presents experimental
results obtained for the leakage test of the first stage of our
prototype. A number of 40000 samples of the output bit-stream
is acquired. Provided that the complete modulator is a 3rd

order, we then emulate in Matlab a decimation filter of order
4, for various OSRs. On the decimation filter output, we then
perform additional filtering: in one case we simply average
N samples (obtaining a signature standard deviation quoted
σ1) and in the other we use a 3rd order comb filter of length
N (obtaining a signature standard deviation quoted σ3). The
figure represents the ratio σ1/σ3 as a function of the additional
filter length. It can be appreciated how for low OSR (both 16
and 32) there is still a large amount of shaped quantization
noise in the decimation filter output. For that reason, a 3rd

order filter is more efficient than a counter and the ratio is
well above 1. On the contrary, for a larger OSR of 64, the
thermal noise is dominating and a simple counter outperforms
a 3rd order filter.

VI. CONCLUSION

It has been shown in this paper how simple digital tests
can be integrated in a production test flow for cascaded
Σ∆ modulators. These digital tests measure important design
parameters, namely the pole and settling error of all the
integrators, bringing an interesting complement to functional
test. Indeed, they can be very valuable for low-cost wafer-level
screening test, including at-speed and burn-in tests.

It has been shown how to tailor signature generation, which
relies on the measurement of a DC component in the stages
output bit-streams, in order to reach a given precision.

Hence, the proposed tests can provide valuable data for
silicon debug, locating the DUT in the block-level design
space with a precision greater than corner variability. This is a
valuable feature for the future design paradigm where device
variability is seen to be prevalent.

Moreover, the signature precision study has been carried out
with test time minimization in mind. The experimental results
show that test time is almost reduced to data acquisition time
and is much lower than traditional FFT-based functional tests.
The test cost is further reduced by the digital nature of the
proposed tests that opens the door to parallel testing on low-
cost digital testers.
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