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Abstract: 
 
There is increasing evidence that glial cells, in particular astrocytes, interact 
dynamically with neurons. The well-known anatomo-functional organization of 
neurons in the barrel cortex offers a suitable and promising model to study such 
neuroglial interaction. This review summarizes and discusses recent in vitro as 
well as in vivo work demonstrating that astrocytes receive, integrate and respond 
to neuronal signals. In addition, they are active elements of brain metabolism and 
exhibit a certain degree of plasticity that affects neuronal activity. Altogether 
these findings indicate that the barrel cortex presents glial compartments 
overlapping and interacting with neuronal compartments and that these 
properties help define barrels as functional and independent units. Finally, this 
review outlines how the use of the barrel cortex as a model might in the future 
help to address important questions related to dynamic neuroglia interaction. 



  3

1/ Introduction 
During the last decade our understanding of the contribution of glial cells to the 

integration and processing of neuronal information has advanced significantly mostly 

thanks to the discovery of active interactions between astrocytes and neurons. This 

dialog has now been demonstrated under physiological conditions for in vitro as well as 

in vivo models in which astrocytes were shown contributing to modulate neuronal 

excitability, activity and plasticity (Haydon and Carmignoto 2006; Verkhratsky and 

Toescu 2006; Volterra and Meldolesi 2005). These findings have even generated new 

and provocative concepts such as those of “tripartite synapse” and “gliotransmission” 

(Araque and others 1999; Volterra A 2002). Moreover, this interaction seems to play a 

role in several brain pathologies or psychiatric disorders, such as epilepsy and 

schizophrenia (Giaume and others 2007; Halassa and others 2007). However, to make 

further progress in this emerging field of neuroscience there is a clear need for models in 

which neuronal organization and physiology exhibit particular properties. An ideal model 

would be a brain area in which neuronal anatomy and circuitry are widely documented, 

which is easily accessible for in vitro (acute brain slices) as well as for non-invasive in 

vivo (two-photon microscopy) approaches and where functional units can be specifically 

activated or silenced. One model that fulfils these requirements is the region of the 

rodent somatosensory cortex that contains the whiskers’ representation. In layer IV of 

this cortical area neurons are arranged in discrete clusters, called “barrels”, which 

receive topographically organized inputs from their respective principal whiskers on the 

contralateral side of the face (Woolsey and Van der Loos 1970). Indeed, in a given 

barrel the majority of neurons preferentially respond to the stimulation of a single 

whisker, although they also integrate information from adjacent whiskers (Armstrong-

James and Fox 1987). Each barrel is an element of a functional column that spreads 

from layer II/III to layer VI (Petersen and Sakmann 2001). 

 

Whiskers allow rodents to discriminate different roughnesses and texture identities 

(Carvell and Simons 1990; Guic-Robles and others 1989), to detect the width of an 

aperture (Krupa and others 2001), to locate objects (Knutsen and others 2006; Mehta 

and others 2007) and to evaluate gap-width (Hutson and Masterton 1986). This 
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information is collected mainly by active sensing, i.e. by whisker motion that is actively 

controlled, often with fine resolution in space and time (Kleinfeld and others 2006). The 

barrel cortex mediates whisker-based tactile perception: ablating the barrel cortex can 

destroy an animal’s ability to carry out a tactile location task (Guic-Robles and others 

1989; Hutson and Masterton 1986).  

 

The present review provides a small introduction to the neuronal organization of the 

barrel cortex and summarizes what is already known about the properties of astrocytes 

in the barrel cortex and how these glial cells interact actively with their neighboring 

neurons. However, many aspects of this interaction remain to be resolved: thus, we also 

outline how the barrel cortex model can help address key questions regarding dynamic 

neuroglia interactions. 

 

2/ Micro-organization of neuronal circuits in the barrel cortex 
Counting cell numbers suggests that, in addition to somatotopy, additional principles 

must govern the organization of barrel columns: as in other sensory systems, there is 

considerable magnification in the number of cortical neurons per receptor axon, with 

most of the roughly 50-fold increase (Lee and Woolsey 1975; Welker and Van der Loos 

1986) occurring in the step from thalamic nucleus to cortex (Land and others 1995). This 

enormous increase allows an exquisitely intricate organization of neuronal circuits, which 

is likely to underlie sensory-motor integration. Several excellent reviews have recently 

focused on the organization and function of the barrel cortex and whisker system 

(Alloway 2008; Brecht 2007; Diamond and others 2008; Petersen 2007). Here we 

concentrate on specific aspects of barrel cortex organization where the importance of 

neuroglial interaction may be best observed.  

 

Loops and parallel pathways for active sensing 

In common with other tactile pathways, the whisker-to-barrel system has a simple feed-

forward structure, with cortical processing stages located just three synapses away from 

the sensory receptors. A great deal of the system’s complexity is due to the existence of 

feedback loops and parallel pathways: these loops serve sensory-motor interaction 
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necessary for active whisking exploration. A major stream is the “classical” lemniscal 

pathway that arises at the principal trigeminal nucleus and runs through the dorsomedial 

section of the ventral posterior medial (VPM) thalamic nucleus before innervating 

individual barrels in layer IV and providing weaker inputs to deep layer V, layer VI and 

layer III. This is thought to be the main pathway involved in encoding of sensory signals 

related to texture and shape discrimination (Alloway 2008; Diamond and others 2008). 

However, at least three other pathways are known to exist: the paralemniscal pathway 

that runs through the rostral part of the interpolaris trigeminal nucleus and posterior 

medial thalamic nucleus (Diamond and others 1992), the extralemniscal pathway 

through the caudal part of the interpolaris nucleus and ventrolateral section of the VPM 

nucleus (Pierret and others 2000; Yu and others 2006), and a recently discovered 

pathway that projects from the principal trigeminal nucleus and runs through a strip of 

the VPM and through the zona incerta, and mediates the merging of sensory and motor 

signals (Urbain and Deschenes 2007). 

 

Intricate cortical microcircuits implement precise timing and interdigitated processing of 

whisking and touch 

Does the segregation into separate pathways persist in the cortex? Circuits do remain 

separated within the barrel cortex, at least to some degree: in layer IV, barrels are the 

cortical targets of the lemniscal pathway, while the other pathways pass through inter-

barrel regions with lower cell densities – i.e. the so-called “septa”; projections from the 

other pathways reach other layers as well (Bureau and others 2006; Kim and Ebner 

1999; Shepherd and Svoboda 2005). 

 

The lemniscal pathway enters the cortex via thalamocortical synapses onto layer IV 

neurons (Agmon and Connors 1991; Simons 1978). This projection forms the strongest, 

most efficacious whisker input to the cortical circuit (Bruno and Sakmann 2006; Gil and 

others 1999). Substantial disynaptic inhibition is evoked by the same thalamocortical 

afferents that provide excitation (Gabernet and others 2005; Gil and Amitai 1996; Porter 

and others 2001; Swadlow and Gusev 2000). This endows the layer IV postsynaptic 

response to a whisker stimulus with a characteristic pattern of excitation followed by 
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inhibition: the resulting short time window for spike generation (Gabernet and others 

2005; Wilent and Contreras 2005) gives rise to brief, transient, temporally precise 

spiking responses (Simons 1978; Simons and Carvell 1989). Consequently, barrel 

cortex responses to whisker stimulation carry substantial stimulus information in their 

timing, and their high precision is important for object localization and texture encoding 

(Arabzadeh and others 2006; Arabzadeh and others 2005). 

 

The cortical circuits underlying these strong and precise responses mature within a short 

time window in the first postnatal week, during which fast postsynaptic excitation and 

powerful postsynaptic inhibition emerge. Activation of layer IV neurons switches from an 

“integrating” response mode with slow depolarizations and large receptive fields, to the 

precise response mode characterized by larger, sharper postsynaptic responses (Daw 

and others 2007). Note that these changes occur a few days before the onset of 

whisking, coincide with the restriction of the metabolic activation to single barrels (Melzer 

et al., 1985) and happen in conjunction with large developmental changes at P5-P10 in 

glutamate transporter expression in astrocytes (see chapter 5). 

 

Excitatory neurons in barrels have dendritic arbors that sample the home barrel densely 

but do not explore layer IV beyond the limits of the barrel (Feldmeyer and others 1999; 

Petersen and Sakmann 2001; Schubert and others 2003). The high density of neurons 

and connections, interrupted at barrel borders, is mirrored by gap junction-mediated 

networks of astrocytes that form glial compartments (see chapter 4). Beyond layer IV, 

vertical projections to supragranular and infragranular layers make up a “canonical” 

barrel-related excitatory circuit (Lubke and Feldmeyer 2007). As illustrated in figure 1, 

horizontal integration between these barrel microcircuits occurs mainly at the level of 

layers II/III. Information flows from layer IV through to layers II/III and then to 

infragranular neurons where the output of the lemniscal pathway is generated. 

Astrocytes respond to activation of layer IV but not layers II/III, consistent with a 

systematic position in the overall flow of activity (see chapter 5). Meanwhile, thalamic 

inputs associated with the extralemniscal and paralemniscal pathways are not 

processed within barrels, but are instead processed by neurons located outside the 
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barrels (see above); finally, lemniscal and paralemniscal information converge in layer 

Va (Feldmeyer and others 2005; Manns and others 2004; Schubert and others 2006). 

Accordingly, an important issue concerns how astrocytes are distributed relative to these 

pathways (see chapter 3). 

 

3/ Spatial distribution of astrocytes in the barrel cortex  

Considering the spatial organization of layer IV neurons into individual barrels, an 

intriguing issue arose how astrocytes are organized relative to neuronal pathways. 

Furthermore, is the spatial organization of astrocytes different between barrels and 

septa? Immunohistological studies indicate that the proportion of astrocytes versus 

neurons is about 0.8 based on S100 and NeuN stainings, respectively (Irintchev and 

others 2005). During barrel development, the analysis of astrocyte density has reported 

that GFAP-positive cells are radially oriented with a preferential location along the septa, 

thus sharply delineating individual barrels. In more mature mice GFAP-positive cells are 

present throughout the barrel field and are no longer confined to barrel sides (Cooper 

and Steindler 1986). Similar observation of a uniform distribution of astrocytes was also 

reported for 10 to 20 day-old mice based on sulforhodamine 101 or S100 stainings 

(Houades and others 2008; Schipke and others 2008). Using sulforhodamine B and 

biocytin injection of astrocytes it was shown that the size and shape of individual 

astrocytes are the same between those inside the barrel and those in the septum 

(Houades and others 2008) – invariably of the protoplasmic type. These observations 

point to a homogenous distribution of astrocytes characterized by a morphological 

pattern that is independent of the barrel compartment in which they occur. This 

morphological differentiation is accomplished around postnatal day 10. However, despite 

the homogeneous morphology, the expression of some functional astrocyte-specific 

markers, such as the glutamate transporters GLAST and GLT-1 and the glutamine 

synthetase, all highly expressed early during cortical development, is confined to the 

barrel hollows. In tangential sections their expression demonstrate barrel-like patterns at 

least until the end of the second week post-natal (Voutsinos-Porche, 2003b; (Takasaki 

and others 2008). So, despite a rather uniform morphology and spatial distribution, 

different astrocyte sub-populations (in terms of expression of specific markers and 
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specific function) could cohabit in layer IV of the barrel cortex, as neurons do (see also 

chapter 4). These sub-populations could modulate in a distinct manner the neuronal 

activity in the leminiscal pathway (within the hollow of the barrel) and the pathways 

passing through the septal regions. 

 

4/ Network organization of astrocytes in the barrel cortex 
In the central nervous system, neurons communicate via electrical synapses comprising 

gap junction channels, as well as via the more widespread chemical synapses. Gap 

junctions occur throughout the mammalian brain and are made of proteins called 

connexins (Cxs) that allow ionic currents and small organic molecules to pass directly 

between cells. In the barrel cortex, neurons were shown to express the neuronal specific 

Cx, Cx36, at a significantly higher level compared to most other regions (Liu and Jones 

2003), consistent with the electrical transmission reported to occur between GABAergic 

inhibitory interneurons (Galarreta and Hestrin 1999; Gibson and others 1999). However, 

although Cx expression was first studied between neurons at electrical synapses, glial 

cells, and in particular astrocytes are the cell population that expresses the highest 

amount of Cxs in the brain (Giaume and McCarthy 1996). 

 

In astrocytes, two main Cxs prevail, Cx43 and Cx30 (Nagy and Rash 2000) which 

underlie a network organization of communicating cells (Houades and others 2006). 

Interestingly, in the somatosensory cortex their expression is up-regulated within the 

barrels compared to septa and other cortical layers (Houades and others 2008). In this 

study, the functional status of gap junctions was also tested in astrocytes by patch-

clamp injections of biocytin and sulforhodamine B. Results indicated that gap junction-

mediated communication (indexed by biocytin intercellular diffusion) is restricted in the 

barrel-to-barrel direction (Fig. 2A). In addition, the enrichment of Cx expression and the 

transversal restriction of the gap junction-mediated dye-coupling are not observed in a 

transgenic mouse (MAOA knock-out) lacking the barrel organization (Cases and others 

1995) while both are restored in a double knock-out (MAOA/5HT1b knock-out) 

characterized by a normal barrel field (Rebsam and others 2002). Analysis of 

sulforhodamine B dye coupling properties indicated that astrocytes located between two 
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barrels are either weakly or not coupled whereas its diffusion within a barrel is favored 

towards its center (Fig. 2B) (Houades and others 2008). Taken together, these 

observations indicate that the occurrence of gap junctional communication confined 

within a barrel and oriented toward its center results from combination of subpopulations 

of astrocytes with different Cxs expression levels. The functional consequence is the 

restriction of glial communication within each barrel comparable to the organization of 

the excitatory neuronal circuits (chapter 2). 

 
5/ Neuroglial interaction and calcium signaling properties of astrocytes 
Although astrocytes are defined as non-excitable cells, they play an active role in 

information processing by establishing dynamic interaction with neurons (Haydon and 

Carmignoto 2006; Volterra and Meldolesi 2005). The calcium signaling properties of 

astrocytes confer a form of excitability and represent the molecular basis for their dialog 

with neighboring neurons. To achieve this task astrocytes have developed a phenotype 

that allows them not only to receive and respond to neuronal signal, but also to integrate 

and propagate neuronal signals. 

 

Much evidence indicates that astrocytes, studied in ex vivo as well as in vivo 

preparations, express membrane receptors for most neurotransmitters and endogenous 

compounds (peptides, cytokines, hormones, bioactive lipids …) allowing them to sense 

neuronal signals (Kettenmann and Steinhauser 2005).  While it is argued that astrocytes 

“talk to” neurons by releasing “gliotransmitters“, the cellular mechanism by which this 

communication occurs is still under debate (Agulhon and others 2008). There are 

reports of calcium-dependent release of glutamate, ATP and D-serine by astrocytes, and 

several mechanisms have been proposed to be involved in this process (vesicules, Cx 

hemichannels, lysosomes, ionotropic purinergic receptors…) (Deitmer and others 2006). 

When a signal received by an astrocyte leads to an increase in intracellular calcium 

concentration ([Ca2+]i), the information contained in the signal can be encoded 

temporally, by monophasic or oscillatory responses, and spatially through the generation 

of intracellular and intercellular calcium waves (Cotrina and Nedergaard 2002). 

Interestingly, intercellular astrocytic calcium waves (that spread at a velocity of about 15 
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μm/s) have been proposed to provide “an extraneuronal pathway for rapid long-range 

signal transmission within the CNS” (Cornell-Bell and others 1990). While they can 

trigger neuronal responses in vitro (Dani and others 1992), their occurrence and their 

extent in vivo is still under debate (Agulhon and others 2008; Fiacco and McCarthy 

2006; Scemes and Giaume 2006).  

 

The barrel cortex is a well-adapted model to study calcium signaling in astrocytes and its 

incidence on neuronal activity. Indeed, an exemplification of the practical advantages of 

barrel cortex for in vivo imaging was the observation of spontaneous coordinated [Ca2+]I 
events in single astrocytes imaged within barrel columns of the anesthetized rat (Hirase 

and others 2004). Interestingly, increased neuronal discharges evoked by local 

application of bicuculline were associated with increased [Ca2+]I activity in individual 

astrocytes and with strongly coordinated [Ca2+]I signals among neighboring astrocytes, 

thus demonstrating the occurrence of dynamic neuron-glia communication in the intact 

brain (Hirase and others 2004). More recently, several in vivo studies have taken 

advantage of the functional organization of the barrel cortex. These experiments were 

undertaken using two properties of in situ astrocytes: their ability to be identified by 

staining with sulforhodamine 101 and their specific loading with certain membrane-

permeant calcium sensitive dyes (Nimmerjahn and others 2004). By combining these 

two types of loading, two-photon imaging allowed specific recording of [Ca2+]i increases 

in astrocytes following whisker stimulation triggered by air puffs (Wang and others 

2006). This approach demonstrated that [Ca2+]I increases are a function of the frequency 

of stimulation and occur several seconds (3 sec delay; peak at 6 sec) after whisker 

responses (Fig. 3). In addition, these astrocytic responses are inhibited by metabotropic 

glutamate receptor antagonists but are not affected by AMPA and NMDA receptor 

antagonists. These observations suggest that in vivo astrocytes are activated by 

glutamate input independently from the postsynaptic response. However, their long 

latency excludes that astrocytes could play a role in modulating microcirculation in 

response to neuronal activity as proposed from recent studies performed in brain slices 

(Mulligan and MacVicar 2004; Zonta and others 2003). Indeed, in vivo imaging of 

intrinsic optical signals and two-photon imaging of local blood flow in layer II through IV 



  11

of the barrel cortex indicate that an increase of blood flow is recorded within <1 sec after 

the stimulation of multiple vibrissae (Kleinfeld and others 1998). However, this role of 

astrocytes in hyperemia could be challenged based on the recent identification of a 

subset of astrocytes (5%) that, in the somatosensory cortex, exhibit short-latency (≈0.5 

sec) Ca2+ responses to sensory stimulation (Winship and others 2007). Altogether, these 

studies establish that in the barrel cortex sensory stimuli evoke astrocytic [Ca2+]I 
responses in vivo with various latencies that could account for neuroglial and 

gliovascular interaction. 

 

The mapping of astrocytic responses within the barrel cortex and their temporal relation 

with neuronal responses was recently achieved by performing calcium imaging in acute 

slices of the barrel cortex (Schipke and others 2008). In this study, [Ca2+]I responses in 

neurons and astrocytes were recorded after Fluo-4 loading: astrocytes were 

distinguished from neurons by loading with sulforhodamine 101 (as in the in vivo studies 

mentioned above). Direct electrical stimulation in layer IV evoked neuronal and 

astrocytic [Ca2+]I responses that could be discriminated by their spatial distribution and 

their kinetics (Fig. 4). Responding neurons were found to be located within the 

stimulated barrel in layer IV, but also beyond barrel column borders in layers II/III and V. 

One second later, a second cell population, identified as astrocytes and restricted to the 

stimulated barrel (Fig. 4), responded with a slower rise in [Ca2+]I. [Ca2+]I transients in 

astrocytes peaked with a delay of 1-2 seconds after stimulation. These observations 

demonstrate that astrocytes selectively respond to neuronal activity emerging from layer 

IV and that their [Ca2+]I response is restricted to a single “innervation barrel” of layer IV 

(Schipke and others 2008). 

 

6/ Metabolic interactions between neurons and astrocytes 
An adequate and timely production of ATP by brain cells is necessary to support the 

major energetic costs inherent to the rapid information processing that occurs within the 

somatosensory cortex during whisker-mediated exploration. As somatosensory whisker-

related processing is organized into stereotypical spatio-temporal patterns, one can 

design stimulation protocols with the aim of evoking differential energy use across 
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barrels. The barrel cortex therefore provides an attractive model for investigating the 

molecular mechanisms that ensure a tight coupling between synaptic activity and energy 

expenditure. This is of critical importance since neuronal processing power is limited by 

the energy supply available (Attwell and Gibb 2005) and the finite energy budgets of 

animals could account for many of the morphological features of sensory systems and 

also for their evolution (Niven and Laughlin 2008).  

 

The brain has a high rate of aerobic metabolism and a respiratory quotient of nearly 1, 

indicating that oxidative metabolism of glucose is the major pathway for energy 

production. This implies that spatially localized and temporally restricted increases over 

basal glucose use should occur in register with neuronal activity in brain areas 

subserving specific modalities. The 2-deoxyglucose technique developed by Sokoloff 

and colleagues (1977) provided experimental validation of this principle (Sokoloff and 

others 1977). As an example, a tight spatial correlation between blood flow increases 

and glucose utilization restricted to the activated barrel has been established (Fig. 5). 

 

A continuous supply of glucose and oxygen is mandatory to sustain neuronal activity. An 

important issue to be addressed is the nature of the neuronal processes that require 

energy during functional activation. The prevailing hypothesis is that most of the energy 

is used to restore ionic gradients and resting membrane potentials that are modified 

during the excitation phase (Sokoloff 1992). This restoration is mainly provided by the 

Na+/K+ ATPase that consumes ATP to re-establish Na+ and K+ gradients. Elegant 

theoretical calculations of the cost of synaptic transmission have shown that 87% of total 

energy consumed reflects the activity of glutamate-mediated neurotransmission while 

the rest reflects the energy requirements of resting potential maintenance in neurons 

and glia (Attwell and Laughlin 2001). With the advent of in vivo Magnetic Resonance 

Spectroscopy, it has been possible to show that energy consumption is indeed mainly 

devoted to glutamatergic neurotransmission (Escartin and others 2006; Rothman and 

others 2003). Although these studies demonstrated a quantitative relationship between 

cortical energy expenditure and glutamate-mediated neurotransmission, they did not 

relate glucose consumption to specific processes directly. In other words, it is not known 
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which signaling pathway enables tight adjustment of glucose use to the increasing 

needs of the glutamatergic synapses. In the barrel cortex, it was then realized that 

astrocytes, via their privileged anatomical relationships among brain capillaries (Kacem 

and others 1998) and synapses. Figure 6 gives a few examples of astrocytic processes 

in the vicinity of synapses, excitatory as well as inhibitory (Fig. 6 A and B, respectively), 

in the barrel cortex of the mouse This spatially relationship places astrocytes in an 

ideally position to sense synaptic activity and to couple it with uptake and metabolism of 

energy substrates originating from the circulation. 

 

How can astrocytes sense synaptic activity? One likely possibility is via detection of 

changes in the concentration of particular ions or neurotransmitters. Neuronal excitation 

generates action potentials produced by a depolarization-induced rapid inward Na+ 

current and K+ efflux. Numerous experiments have been conducted in cultured 

astrocytes to determine the effects of elevated extracellular K+ and/or intracellular Na+ 

on glucose metabolism. Astrocytic glucose metabolism is stimulated by increased 

intracellular Na+ (Escartin and others 2006) but insensitive to high extracellular K+. As for 

detection of neurotransmitters, experiments performed on cultures have shown that 

glutamate stimulates 2-DG uptake and phosphorylation by astrocytes in a concentration-

dependent manner (Pellerin and Magistretti 1994; Takahashi and others 1995). The 

effect of glutamate is mediated by Na+-dependent glutamate uptake, which is performed 

in astrocytes by two glutamate transporters, GLAST and GLT-1, independently of 

glutamate receptors. These transporters were demonstrated to be inserted in the 

membrane of astrocytic processes close to excitatory synapses (see Fig. 6C for an 

example). Glutamate uptake is powered by the cotransport of three Na+ ions and one H+ 

while one K+ is counter-transported. Experiments have confirmed that it is indeed the 

intracellular concentration of Na+ and not glutamate itself that activates the Na+/K+ 

ATPase pump, decreases ATP levels and activates glycolysis in astrocytes (Chatton 

and others 2000). Until recently, no information was available on the putative role of 

these transporters in vivo. Interestingly, a specific enrichment of GLT-1/GLAST 

expression observed in the barrel hollows (Fig. 7) during development provides a useful 

model to study the role of these glial glutamate transporters in the regulation of brain 
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energy metabolism in vivo. Indeed, it was shown that the metabolic response, as 

observed by 2-DG autoradiography in living animals of different ages, was altered in 

knockout mice for each of these glutamate transporters (Voutsinos-Porche and others 

2003a; Voutsinos-Porche and others 2003b). The metabolic response to whisker 

stimulation was halved in P9–P10 GLT-1 and GLAST –/– mice. However, the role of 

GLAST is transient since the metabolic response is restored in P11–P12 GLAST –/– 

mice and unchanged in adult GLAST –/– mice, while deletion of GLT-1 continuously 

impaired the functional response until adulthood (Fig. 2 GB). 

 

These results are in agreement with the observation that the development of the total 

glutamate uptake activity in the cortex parallels that of GLT-1, so that GLT-1 accounts 

for ~90% of the total transport activity in adult (Ullensvang and others 1997). Therefore, 

a correlation exists between the capacity of glutamate uptake and the uptake of glucose 

during whisker activation for both glutamate transporters during development. These 

data provided evidence that astroglial glutamate transporters are key components of a 

metabolic signaling pathway that leads to the transfer of energy substrates to activated 

glutamatergic neurons in the mouse somatosensory cortex. A tight dialogue (initiated by 

the uptake of glutamate) between neurons and astrocytes is therefore of critical 

importance to support the rapid processing of information (mediated by glutamate) that 

occurs within the somatosensory cortex. 

 

7/ Integrated role of astrocytes in barrel plasticity 
Due to its morphological characteristics, the whisker-to-barrel system has been 

extensively used to investigate brain plasticity (Petersen 2007). These studies can be 

subdivided roughly into those that identified the factors underlying the development of 

the pathway and those that tested the factors that maintain the integrity of the ascending 

pathway during adulthood. As in other sensory pathways, most of the studies on 

plasticity in the whisker-to-barrel pathways use sensory deprivation as an experimental 

protocol. Since the initial study of Van der Loos and Woolsey (1973), whisker follicles 

have been lesioned or de-afferented, whiskers have been clipped or plucked in 

laboratories around the world. These different peripheral manipulations lead to a 
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decrease in sensory input into the pathway and affect the morphological and/or 

physiological organization of representations. Sensory deprivation studies have led to 

the concept of a “critical period” based on the observations that the structural pattern of 

the whisker representations can be altered if applied before the fourth postnatal day. 

The exact timing of the critical period is different for the stations within the ascending 

pathway: earliest for the representation in the brainstem; latest, in the cerebral cortex 

(Durham and Woolsey 1984). Beyond the critical period, sensory deprivation has been 

shown to alter response properties of neurons within the central representations, as well 

as synaptic connectivity (Frostig 2006). As a counterpart of sensory deprivation, two 

other protocols have been used to induce plasticity by increasing sensory input into the 

pathway: exposing animals to enriched environments (Polley and others 1999) and 

selective whisker stimulation (Melzer and others 1985). 

 

Astrocytes have been identified to contribute to plasticity in the barrel cortex induced by 

altered sensory input. A first set of observations is related to the high level of expression 

of the astrocyte-derived extracellular matrix glycoprotein tenascin-C during the period of 

barrel formation (Crossin and others 1989; Jhaveri and others 1991; Laywell and 

Steindler 1991; Mitrovic and others 1994; Mitrovic and others 1996). This glycoprotein is 

initially uniformly present in layer IV, but its expression is reduced in the center of the 

barrel where thalamo-cortical axons segregate (Mitrovic and others 1994). Blockade of 

NMDA-receptors during barrel formation prevents the down-regulation of tenascin-C 

within the developing barrel (Mitrovic and others 1996), indicating that the level of 

tenascin-C is regulated by neuronal activity and could therefore play a role in sensory-

activity dependent plasticity during barrel development. Interestingly, in tenascin-C 

deficient mice the cytoarchitectonic differentiation into barrels is normal (Steindler and 

others 1995) although the whisker-evoked responses are abnormal (Irintchev and others 

2005). Removing all mystacial whisker follicles in the adult wild-type mouse except those 

of row C leads to an expansion of the functional representation of the spared whiskers. 

In the tenascin-C deficient mouse this functional expansion is reduced (Cybulska-

Klosowicz and others 2004), which is not due to a difference in (re)innervation pattern of 

the remaining follicles between the mutant and wild-type mice. Alternatively, it has been 
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proposed that this could be the consequence of the altered ratio between 

excitatory/inhibitory neurons in the mutant mouse (Irintchev and others 2005).  

 

Another remarkable observation indicating an important role of astrocytes in barrel 

formation and plasticity is the high level of expression of astrocytic glutamate 

transporters within the developing barrel. GLAST or GLT-1 deficient mice develop 

barrels normally although the level of whisker-stimulation induced deoxyglucose uptake 

is transiently reduced in these mice during postnatal development (see chapter 6). 

Recently, in GLT-1 deficient mouse the level of extra-cellular glutamate was found to be 

increased during the same period in which whisker-evoked metabolic activity is reduced 

(Takasaki and others 2008). These authors further demonstrated a role of glutamate 

transporters in regulating the extent of lesion-induced plasticity in the barrel cortex. In 

wild-type mice, postnatal lesions of the follicles of row C perturbs the formation of the 

corresponding barrels and induces the expansion of the barrels of the neighboring rows 

(Van der Loos and Woolsey, 1973). However, Takasaki et al. (2008) demonstrated that 

in both GLT-1 and GLAST deficient mice the expansion of the neighboring barrels is 

reduced while a representation of the row C follicles is present in mice two weeks after 

the peripheral intervention. Taken together these observations identify a role for 

astrocytes in controlling morphological plasticity during barrel development by regulating 

the level of glutamate in the extra-cellular space. This function is, obviously, not only of 

importance during cortical development. Indeed, the question was raised how the level 

of GLT-1 and GLAST is regulated by sensory activity within the whisker-to-barrel 

pathway. Using the Lausanne-whisker stimulator, Genoud et al. (2006) showed that the 

protein-levels of both glutamate transporters are up-regulated after 24 hours of 

continuous sensory stimulation. This biochemical observation was paralleled with the 

ultrastructural observation of an increased astrocytic coverage of excitatory synapses 

within the stimulated barrels. Two other observations are useful in the interpretation of 

these results: this stimulation paradigm leads to an increase in the ratio between 

inhibitory and excitatory synapses within the stimulated barrel (Knott and others 2002) 

and, on a functional level, leads to habituation of the cortical neurons to sensory input 

from the stimulated whisker (Quairiaux and others 2007; Welker and others 1992). It is 
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therefore proposed that the levels of GLT-1 and GLAST expression in astrocytes 

contribute to a homeostatic mechanism through which the overall level of neuronal 

activity within the barrel is kept within a physiological range. This unique example 

nderscores the partnership between neurons and astrocytes in sensory processing. u

 

8/ Conclusions and perspectives 
As indicated throughout this review, there are several lines of evidence for dynamic 

interaction between neurons and astrocytes in the barrel cortex. The occurrence of this 

dialog between two major cell types of the nervous system is likely favored by the tight 

contact of astrocytic processes with excitatory and inhibitory synaptic sites observed at 

the ultrastructural level. Indeed, released neurotransmitters activate receptors and are 

taken up by transporters in astrocytes, evoking Ca2+ and Na+ increases that might 

propagate as intra- and intercellular waves (Bernardinelli and others 2004; Scemes and 

Giaume 2006) (Fig. 8). Such a mechanism could account for the findings observed in 

vivo that whisker stimulation is able to trigger calcium responses in astrocytes of the 

somatosensory cortex (Wang et al., 2006). Interestingly, brain slice experiments indicate 

that calcium increases in astrocytes are even restricted to the barrel unit whereas 

neuronal activation secondarily diffuses to other barrel columns at the level of layer II/III. 

In addition, these neuroglial interactions are plastic since prolonged whisker stimulation 

induced notable changes in both the astrocytic coverage of synapses and the 

expression of glutamate transporters (Fig. 8). Previously, in the hypothalamus such 

changes have been reported to have a marked consequence on neuronal activity 

(Theodosis and others 2008). Accordingly, it is tempting to hypothesize that in the barrel 

cortex also, changes in the properties of glia may also affect neuronal behavior. The 

study of astrocytes in the barrel cortex has also contributed to establish the emerging 

notion that these glial cells represent a heterogeneous cell population, as already 

observed by gene profiling (Barres 2008) and functional studies (Kettenmann and 

Verkhratsky 2008). Even if the distribution of astrocytes is homogenous within the barrel 

field, immunolabeling of proteins known to be highly expressed by astrocytes (GLT-1 

and GLAST, Cx43 and Cx30, glutamine synthetase) indicated that in layer IV, astrocytes 

located within or between the barrels do not share the same level of expression. Such 
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difference can be either transitory (until P10 for GLT1 and GLAST) or permanent (Cx43 

and Cx30). However, so far this heterogeneity has only been investigated at the 

functional level for connexins (Houades et al., 2008). Finally, when comparing astroglial 

and neuronal networks, it is noteworthy that both follow similar rules for the direction and 

strength of spatial organization (Fig. 9). As a general feature, gap junction-mediated 

coupling in cortical layers I and II/III, and in layer V to a lesser extent, is oriented 

transversally (Houades et al., 2006); in contrast this coupling is restricted between two 

barrels in layer 4 (Houades et al., 2008). Similarly, neuronal connections across barrel 

columns occur in layer II/III and V while in layer IV neurons do not connect across 

barrels (Fig. 9). In addition, within each barrel, gap junctional communication is oriented 

toward its center, where neuronal dendrites also tend to cluster in the rat (although not in 

the mouse). 

 

As discussed above, the barrel cortex offers many useful properties allowing further 

progress in the analysis and the understanding of the contribution of astrocytes to 

dynamic neuroglial interaction. In the near future, these approaches should help to 

address questions related to basic central functions. Regarding circuit function, one 

question that needs to be explored is: how sharply tuned to whisker identity or direction 

are astrocytic responses? In visual cortex, astrocytes are very sharply tuned to sensory 

stimuli (Schummers and others 2008). Response tuning would give important hints as to 

the nature of the wiring of astrocytes with respect to neurons. For example, if astrocytic 

circuitry is functionally dominated by gap junction-mediated coupling within a barrel, one 

should expect each astrocyte in the barrel to respond non-specifically: all should 

respond similarly to the principal whisker, and also share directional tuning. Thus, similar 

responses of neighboring astrocytes to different whiskers would be evidence in favor of 

the functional importance of cell-to-cell coupling; conversely, changes in whisker 

selectivity on a cell-to-cell basis, as observed for neurons (Sato and others 2007), would 

suggest that the key determinant of astrocytic activation is the intimate connection with 

nearby neurons, rather than network coupling. 
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Regarding how the circuit structure is set up, it would be instructive to study the role of 

neuronal activity in shaping the spatial organization and the differentiation of astrocytes 

at the single cell as well as at the network level. This could help determine whether a 

critical period occurs for glial organization, as is the case for neurons. Conversely, the 

contribution of astrocytes and neuroglial interactions to the maturation of neuronal 

intrinsic properties and circuitry could also be addressed. To answer these questions it is 

crucial to identify the mechanisms involved in calcium signaling within and between 

astrocytes. Indeed, while it is now well admitted that calcium signaling provides a basis 

for glial excitability (Scemes and Giaume 2006), the existence of, and mechanisms 

involved in the calcium-dependent release of gliotransmitters are still debated (Agulhon 

and others 2008; Barres 2008). Here also, the barrel cortex could provide a well-adapted 

model to address this question in vivo by using transgenic animals in which genes 

encoding for essential elements involved in the release process (SNARE, P2X 

receptors, Cxs..) have been invalidated. Finally, the availability of several “barrel-less” 

models (Inan and Crair 2007) offers the opportunity to dissociate neuronal architecture 

from function. The use of these transgenic animals to search for changes in astrocytic 

properties and neuroglial interaction could help to explain the observed changes of 

neuronal architecture and/or functional responses , and will provide a basic 

understanding of how neurons and glial cells construct in close collaboration the 

columnar organization of the cerebral cortex during development. 
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Legends: 
 
Figure 1: Flow of lemniscal information within neurons in a barrel column. Arrows depict 

the main information streams: lemniscal input from the VPM thalamic nucleus to layer 

IV, feedforward input from layer IV to supragranular layers, interlaminar connections 

between supragranular to infragranular layers, and cross-columnar interactions within 

supragranular and infragranular layers. The relatively strong recurrent connectivity within 

a barrel is shown as a spreading red cloud. Corticocortical outputs are mainly from the 

supragranular layers. Extracortical outputs are depicted in different colors: green for 

subcortical outputs from layer Va, pink for subcortical outputs from Vb, gray for 

corticothalamic outputs from layer VI. 

 

Figure 2: A: Example of dye coupling observed after the injection of biocytin in an 

astrocytes, identifed by its morphology and electrophysiological properties, located 

within a barrel of the mouse somatosensory cortex. The green arrows, perpendicular 

and parallel to the surface of the cortex, indicate the limits of the coupling area after 20 

minutes of injection. Note that the intercellular diffusion of biocytin is restricted in the 

transversal direction. Scale bar: 300 μm. B: Drawing of the distribution of astrocytes in 

three adjacent barrels. The green arrows indicate the magnitude of gap junction-

mediated communication in the parallel and perpendicular directions. The intensity of 

blue color of astrocytes indicates the level of Cx43 and Cx30 expression. Note that the 

distribution of astrocytes in the barrel field is considered to be homogenous (see 

paragraph 3). (see also Houades et al., 2008) 

 

Figure 3: In vivo whiskers stimulation evokes calcium responses in astrocytes from the 

barrel cortex. A: Diagram of the experimental set-up. B: Example of a dual loading of 

the barrel cortex with sulforhodamine 101 (left) and fluo-4 AM (right). Note that only 

astrocytes are loaded with the calcium indicator. Scale bar: 30 μm. C: Upper trace, local 

field potential. Lower trace, [Ca2+]i activity monitored in astrocyte number 2 during the 

whisker stimulation(WS). Lower images illustrate the calcium activity in several 
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astrocytes before and during the wisker stimulation. (Modified from Wang and others 

2006). 

 
Figure 4: Astrocytes selectively respond to stimulation into a barrel column. A: Focal 

electrical stimulation of in layer IV leads to an increase in [Ca2+]i in neurons along the 

barrel and horizontally across barrel structures in layer II/III. In contrast, the delayed 

responses monitored in astrocytes are restricted to the barrel itself in layer IV. B: 
Overlay of the regions indicated in A. The neuronal signal during stimulation (blue) does 

not overlap with the astrocytic calxium signal that appears 1 second latter (violet). Note 

that calcium responses in astrocytes stop at the barrel border. C: A spontaneous [Ca2+]i 
increase in neurons from layer II/III is not followed by responses in astrocytes. Scale 

bar : 30 μm. D: Cartoon of the experimental protocol. (From Schipke and others 2008) 

 

Figure 5: Gilles please complete 
 
Figure 6: Gilles please complete 
 
Figure 7: Electron microscopic images to illustrate the spatial proximity of astrocytic 

processes to synapses in the barrel hollow of the mouse. Synapses are identified by 

black arrowheads placed in the postsynaptic element. IA and B: Astrocytic processes 

are highlighted in green to demonstrate their presence close to an excitatory synapse on 

a dendritic spine(A) and to an inhibitory synapse on a dendritic shaft (B). C: GLAST-

immunoreactivity revealed with electron-dense DAB reaction product (white arrowheads) 

in an astrocytic process surrounding an excitatory synapse on a spine. Scale bar in C 

correspond to 50 nm and pertains to all images. The images were kindly provided by 

Christel Genoud (FMI, Basel, CH) and Graham Knott (EPFL, Lausanne, CH).  

 
Figure 8: Bidirectional dialog between neurons and astrocytes. Drawing illustration the 

dynamic signaling between the two brain cell types. Left part: neurotransmitter release at 

a synapse stimulates astrocytic receptors that can trigger intra- and intercellular calcium 

waves, while glutamate up-take through glutamate transporters can generate 
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intercellular sodium waves. Right part: astrocytes can release gliotransmitters in a 

calcium-dependent or independent manner, these compounds activate synaptic and 

particularly extrasynaptic receptors. The astrocytic processes that contact synapses are 

also plastic and their coverage of neuronal membranes can be modified in an activity-

dependent manner. 
 
Figure 9: Astrocytic and neuronal networking between and within barrel columns. Upper 

drawing: the green arrows indicate the preferential direct intercellular exchanges that 

occurs between astrocytes of two adjacent barrel columns through gap junctions. Note 

that the strength of coupling is different depending on the cortical layer as indicated by 

the thickness of the green arrows. Within a barrel, gap junctional communication is 

favored towards its center (see Houades and others, 2006; 2008). Lower drawing: 

across barrel columns, neuronal information flow (red arrows) occurs preferentially 

within the same layers as astrocytic information flow. Arrow thickness indicates strength 

of coupling, as above. Within barrels, strong neuronal connectivity parallels astrocytic 

connectivity.  


