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Abstract 

The cAMP responsive element binding protein (CREB) pathway has been involved in 

two major cascades of gene expression regulating neuronal function. The first one 

presents CREB as a critical component of the molecular switch that control long-

lasting forms of neuronal plasticity and learning. The second one relates CREB to 

neuronal survival and protection. To investigate the role of CREB-dependent gene 

expression in neuronal plasticity and survival in vivo, we generated bitransgenic mice 

expressing A-CREB, an artificial peptide with strong and broad inhibitory effect on 

the CREB family, in forebrain neurons in a regulatable manner. The expression of A-

CREB in hippocampal neurons impaired L-LTP, reduced intrinsic excitability and the 

susceptibility to induced seizures, and altered both basal and activity-driven gene 

expression. In the long-term, the chronic inhibition of CREB function caused severe 

loss of neurons in the CA1 subfield as well as in other brain regions. Our experiments 

confirmed previous findings in CREB deficient mutants and revealed new aspects of 

CREB-dependent gene expression in the hippocampus supporting a dual role for 

CREB-dependent gene expression regulating intrinsic and synaptic plasticity and 

promoting neuronal survival. 

 

 

 

Keywords: CREB, neurodegeneration, synaptic plasticity, neuronal excitability, 

activity driven gene expression 
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The activation of the cAMP responsive element binding protein (CREB) pathway has 

been involved in two major cascades of gene expression regulating neuronal function. 

The first one presents CREB as a critical component of the molecular switch that 

control neuronal plasticity by regulating the expression of genes necessary for the 

formation of new synapses and the strengthening of existing synaptic connections 

(Josselyn and Nguyen, 2005; Kandel, 2001; Lonze and Ginty, 2002). However, the 

LTP and memory deficits originally reported for CREB hypomorphic mutants (mice 

homozygous for a deletion of the α and δ isoforms (Bourtchuladze et al., 1994)) has 

been found to be sensitive to gene dosage and genetic background, and the mild or 

absent phenotypes in hippocampal LTP and hippocampus-dependent memory 

observed in other CREB deficient strains have raised questions regarding the 

relevance of CREB in plasticity and memory (Balschun et al., 2003; Gass et al., 1998; 

Rammes et al., 2000). More recently, CREB has been also involved in the regulation 

of intrinsic plasticity in different neuronal types (Dong et al., 2006; Han et al., 2006; 

Huang et al., 2008; Lopez de Armentia et al., 2007). 

The second gene expression cascade relates CREB to neuronal survival and 

protection through the transcriptional control of neurotrophins and antiapoptotic genes 

(Lonze and Ginty, 2002; Papadia et al., 2005; Riccio et al., 1999). Studies on CREB
-/-

 

mice revealed massive loss of neurons in the peripheral nervous system that caused 

the death of the newborn shortly after birth, whereas most neurons in the central 

nervous system (CNS) were not affected by CREB depletion (Lonze et al., 2002; 

Parlato et al., 2006). In contrast, double mutants for CREB and CREM (cAMP 

response element modulator) exhibited a marked and progressive cell loss in specific 

CNS structures, such as cortex, hippocampus and striatum (Mantamadiotis et al., 

2002). This loss of neurons has not been observed in transgenic lines expressing 
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CREB dominant negative mutants (Kida et al., 2002; Pittenger et al., 2002; Rammes 

et al., 2000), likely because the time window and/or the level of CREB inhibition 

achieved in loss-of-function studies using gene targeting or transgenesis-based 

strategies were different.  

The comparison of different CREB-deficient mouse strains has left important 

open questions concerning the role of CREB in neuronal plasticity and survival since 

these roles have never been investigated in parallel in the same mutant strain. We 

describe here a novel bitransgenic strain in which it is possible to repress in a 

regulated manner CREB-dependent gene expression through expression of a strong 

dominant negative variant of CREB known as A-CREB. This variant, which was 

constructed by fusing an acidic amphipathic extension onto the N-terminus of the 

CREB leucine zipper region, binds with very high affinity and specificity to the 

members of the CREB family (CREB, CREM and ATF1) blocking their binding to 

CRE sites (Ahn et al., 1998; Olive et al., 1997). We found that, at early times, the 

inhibition of this genetic cascade impaired L-LTP, reduced intrinsic neuronal 

excitability and the susceptibility to induced seizures, altered basal transcription, and 

had a relatively modest effect on activity driven gene expression. In the long-term, the 

sustained expression of A-CREB caused neuronal loss in the CA1 subfield of the 

hippocampus and other brain regions.  

 

Materials and Methods 

Generation and maintenance of transgenic mice 

The DNA fragment encoding A-CREB (Ahn et al., 1998) was subcloned in the 

plasmid pMM400 (Mayford et al., 1996) and the NotI fragment containing A-CREB 

downstream of the tetO promoter was injected into mouse oocytes. We selected line 
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tetO-A-CREB-95 mice for further studies, which was backcrossed to C57BL6 F1/J 

mice more than eight times. We referred as A-CREB mice those bitransgenic animals 

that result of the crossing of pCaMKII-tTA mice (line B, (Mayford et al., 1996) and 

line tetO-A-CREB-95. A-CREB mice were usually raised without dox. Transgene 

repression was achieved by dox administration (40 mg/Kg of food) for at least one 

week. VP16-CREB
high

 mice have been described before (Barco et al., 2002). Mice 

were genotyped by PCR using the oligonucleotides pMM400-3404: 

AGCTCGTTTAGTGAACCGTCAGAT; pMM400-3548r: 

CCTCGCAGACAGCGAATTCTA; and CamKII3´end2: 

TTGTGGACTAAGTTTGTTCGCATC. The PCR reaction starts at 94ºC for 2min 

and has 35 cycles: 94ºC for 45 sec, 60.5ºC for 25 sec and 72ºC for 3min. This reaction 

allows the simultaneous identification of both the pCaMKIIα-tTA transgene (450 bp 

band) and the tetO-A-CREB transgene (150 bp band). In all our experiments, we used 

as control littermates mice carrying either no transgene or the tTA or tetO transgene 

alone. Mice were maintained and bred under standard conditions consistent with 

national guidelines and approved by the Institutional Animal Care and Use 

Committee. 

Electrophysiology 

Extracellular activity and whole cell recordings were made from acute hippocampal 

slices as described (Lopez de Armentia et al., 2007). XE 991 dihydrochloride (Tocris) 

10 µM was bath applied for 5 minutes to ensure a complete block of IM current. LTP 

experiments were performed as previously described (Barco et al., 2002).  

Kindling 

Five weeks old A-CREB and control littermates (n=6 in both groups) were 

intraperitoneally injected with subconvulsive dosage of pentylentetrazole (50mg/kg, 
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dissolved in saline) for several consecutive days. In the case of VP16-CREB
high

 mice, 

dox was removed from mouse diet one week prior to the start of the kindling 

experiment. The behavioural responses to the drug were classified according to the 

modified Racine scale (Pavlova et al., 2006): 0: no response; 1: facial automatism, 

with twitching of the ears and whiskers; 2: convulsive waves propagating along the 

axis of the trunk; 3: myoclonic convulsions with rearing; 4: clonic convulsions with 

loss of posture; and 5: repeated, forceful, clonic-tonic or lethal convulsions. All 

subjects were monitored for at least 20 minutes after the injection and scored.  

Histological techniques 

Nissl and immunohistochemistry stainings were performed as previously described 

(Lopez de Armentia et al., 2007). In cell counting experiments, cerebral cortex, CA1 

pyramidal layer and DG granular cells layer thickness were counted from 50-µm 

coronal brain sections from ≥6 months old A-CREB (n=7) and their wildtype 

littermates (n=6) in a Leica microscope. For each animal, 3 sections were Nissl-

stained and cells were counted in 5 defined regions and analyzed using Image-J 

software. α-M2-flag, α-Synaptophysin, α-MAP-2, α-Calbindin, α-GAP-43 and 

secondary antibodies were obtained from Sigma; α-CREB antibodies were purchased 

to Cell Signaling; and α-CREM antiserum was a gift from Günther Schütz’s lab. In 

situ hybridizations were performed as previously described using appropriate cRNA 

probes labelled with digoxigenin (Shumyatsky et al., 2002).  

Quantitative RT-PCR 

qPCR was carried out in an Applied Biosystems 7300 real-time PCR unit using SYBR 

mix (Invitrogen) and primers specific for Arc, BDNF, c-Fos, CREM, the N-terminus 

of CREB and GADPH. Each independent sample was assayed in duplicate and 

normalized using GAPDH levels. 
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Microarray analysis 

RNA was extracted from dissected hippocampi. Mouse Genome 430 2.0 genechips 

were hybridized, stained, washed and screened for quality according to the 

manufacturer's protocol. The Affymetrix GeneChip
® 

data were processed, normalized 

and statistically analyzed using GCOS (Affymetrix), GeneSpring GX (Agilent 

Technologies) and dChip softwares (Li and Hung Wong, 2001). This dataset will be 

accessible at the GEO database. See additional details in Supplementary Methods. 

Behavioral analysis 

For all behavioral tasks, we used adult male mutant and control littermates. The 

battery of behavioral tasks was initiated when the animals were 2 months old and 

finished when they were 4 months old. The experimenter was blind to genotypes. 

SHIRPA primary screen: Mice were evaluated using a modification of Irwin 

procedure (Irwin, 1968). Open field: Mice were placed in 50 × 50 cm
2
 open-field 

chambers and monitored throughout the test session
 
(30 min) by a video-tracking 

system (SMART, Panlab S.L., Barcelona, Spain), which records the position of each 

animal every 0.5 sec. Water Maze: The visible and hidden platform tasks were carried 

out in a 170 cm pool using SMART software (Panlab S.L.). Four training trials, 120 s 

maximum and 30-100 min ITI (inter-trial interval) were given daily. Probe trials (60 

s) were performed to assess retention of the previously acquired information. Further 

detail on procedures can be found in (Viosca et al., 2008). 

 

Results 

Regulated expression of A-CREB in forebrain neurons 

To investigate the consequences of impaired CREB-dependent gene expression in 

neuronal survival and function, we generated transgenic mice expressing the strong 
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repressor of CRE-binding activity A-CREB. We used the CamKIIα-tTA system of 

inducible transgenics to restrict the expression to forebrain neurons (Mayford et al., 

1996) (Fig. 1A). We focused our research on the role of CREB-dependent gene 

expression in hippocampal function in the bitransgenic strain CamKIIα-tTA/AC95, 

from now on referred as A-CREB mice, which showed the strongest expression in this 

brain region. The expression of A-CREB mRNA in this strain was restricted to 

specific layers of the cerebral cortex, the striatum and the hippocampus, preferentially 

in the CA1 field, although scattered positive cells were also detected in the dentate 

gyrus (Fig. 1B-C and Supplementary Fig. S1). Western-blot and 

immunohistochemistry analyses using anti-M2 Flag antibody, which recognizes A-

CREB, demonstrated the efficient translation of the transgene (Fig. 1D and 

Supplementary Fig. S1B). The expression of A-CREB did not affect the level of 

CREB mRNA (Fig. 1E). However, in agreement with recent studies in vitro 

(Mouravlev et al., 2007), dimerization with A-CREB promoted CREB degradation as 

evidenced by the decrease of CREB immunoreactivity in the CA1 subfield (Fig. 1F).  

 We assayed the efficacy of doxycycline (dox) to regulate transgene 

expression. As expected, we found that addition of dox to the mouse diet turned off 

transgene expression in less than two weeks (Fig. 1G). In contrast, the opposite 

manipulation, turning on transgene expression in mice in which it was turned off 

during embryonic and early postnatal development, failed to show efficient transgene 

induction (Fig. 1H). This result is in agreement with the recent report by Zhu and 

colleagues showing that tetO constructs, when turned off during embryonic 

development, are some times irreversibly silenced (Zhu et al., 2007).  

Chronic expression of A-CREB causes neuronal loss in hippocampus and cortex 
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A-CREB and control littermates were undistinguishable during the first postnatal 

weeks and had a normal life span. However, mutant mice did not gain as much weight 

as their control littermates suggesting some deleterious effect of A-CREB expression 

(Fig. 2A). In situ hybridization analysis of transgene expression at different ages 

revealed a progressive reduction on the level of expression of A-CREB mRNA in the 

hippocampus (Fig. 2B). The analysis of hippocampal anatomy in these sections 

suggested that this reduction on transgene expression was largely due to the death of 

neurons that expressed the transgene (Figs. 2C, 2D and Supplementary Fig. S2). The 

neurodegenerative process progressed during several weeks and halted at later times, 

in which we could not longer detect the expression of the transgene in the CA1 area. 

The thickness of both the CA1 stratum pyramidale and cortex were severely reduced 

in adult A-CREB mice (Fig. 2D). Mice that expressed the transgene for several 

months still showed strong expression in cortical layers, indicating that those neurons 

may be more resistant to the chronic inhibition of CREB function than CA1 neurons 

(Fig. 2D and Supplementary Fig. S1C). Interestingly, it was possible to stop and 

reinitiate the degenerative process by turning off and on transgene expression in adult 

animals (Fig. 2E). A-CREB animals raised in the presence of dox did not express the 

transgene and therefore did not show cell loss (results not shown). 

Severe loss of CA1 neurons has been also observed in CREB/CREM double 

knockout mice (Mantamadiotis et al., 2002). This might suggest that the disruption of 

CREB signaling in A-CREB mice was comparable to that in CREB/CREM double 

knockouts and likely more dramatic than that achieved in previous transgenic 

approaches. We then proceeded to re-evaluate in this strain some of the open 

questions concerning the role of CREB on hippocampal L-LTP and neuronal survival, 

as well as to assess novel aspects of CREB function, such as regulation of intrinsic 
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excitability in CA1 pyramidal neurons and susceptibility to seizure. Although we 

primarily focused on the early effects of CREB inhibition in hippocampal physiology 

and gene expression prior to neuronal damage (Figs. 3-6), we also explored the late 

consequences of the sustained inhibition of CREB function and the severe cell loss 

(Fig. 7). 

Inhibition of CREB activity impairs L-LTP 

Loss and gain-of-function studies have suggested a role for CREB in the late phase of 

LTP in the Schaffer collateral pathway. However, the absence of a clear phenotype in 

LTP studies on some CREB deficient strains has raised questions regarding the 

relevance of CREB in hippocampal plasticity. These discrepancies may be due to 

compensatory effects between different CRE-binding proteins. Unfortunately, L-LTP 

has not been assessed in CREB/CREM double knockout mice. To clarify this issue, 

we examined synaptic plasticity in the Schaffer collateral pathway of 3 weeks old A-

CREB mice, a time at which no neuronal damage was detected. Field recordings in 

acute hippocampal slices from A-CREB
 
mice did not reveal abnormalities in basal 

synaptic transmission (Fig. 3A and 3B) or alterations in spontaneous activity at the 

CA1 subfield (Fig. 3C). E-LTP in response to one standard 100 Hz tetanus train of 

1 sec duration was also normal (Fig. 3D). However, in agreement with previous 

studies in CREB deficient mutants (Bourtchuladze et al., 1994), L-LTP in response to 

four tetani was impaired after 2 hours (Fig. 3E, 200-240 min: A-CREB: 122±1 %, 

n=10 (8); WT: 163±1 %, n=12 (8); p<0.001).  

Inhibition of CREB activity reduces neuronal excitability and delays kindling 

Enhanced CREB activity in CA1 pyramidal neurons increased intrinsic excitability 

and the spontaneous activity of hippocampal circuits (Lopez de Armentia et al., 

Page 10 of 56Cerebral Cortex

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

CREB control of neuronal survival and plasticity  

5/1/09 11  

2007). To investigate whether opposite changes occurred after inhibition of CREB 

function, we examined the intrinsic properties of CA1 neurons in juvenile A-CREB 

mice. Intracellular recordings in CA1 pyramidal neurons of three weeks old mutant 

mice revealed that the expression of A-CREB significantly reduced the number of 

action potentials (APs) elicited by depolarizing current injections (Fig. 4A and 4B; p< 

0.001). We also observed that rehobase current to elicit an AP was bigger in A-CREB 

mice due to a reduction in membrane resistance (Supplementary Table 1 and Fig. 4C). 

Since we observed differences in the amplitude of the fast but not in the slow 

component of the AHP, we tested whether the decrease of membrane resistance was 

produced by an increase of the M potassium current (Storm, 1989). The selective M-

channel blocker XE-991 (Wang et al., 1998) reversed the membrane resistance and 

rehobase differences between A-CREB and control mice (Fig. 4D and Supplementary 

Table 1) suggesting that an enhancement in the M current may underlay the decrease 

in intrinsic excitability. The reduction of intrinsic excitability (Fig. 4B; p=0.30) and 

the differences in resistance and rehobase (Fig. 4E, Supplementary Table 1) were also 

reversed when transgene expression was repressed for 10 days with dox. 

 We recently reported that strong chronic increase of CREB activity, when 

sustained for several weeks, triggered the occurrence of sporadic seizures that often 

caused the animal death (Lopez de Armentia et al., 2007). In contrast, A-CREB mice 

had a normal life span and we never observed spontaneous epileptic seizures. In fact, 

our findings in CA1 neurons physiology suggested that A-CREB mice could be 

resistant to induced epilepsy. To assess this hypothesis, we repeatedly injected mice 

with the pro-epileptic drug pentylenetetrazol (PTZ) at subconvulsive concentration. In 

control mice, daily injection for 10 days was sufficient to induce kindling in all 

individuals. In contrast, A-CREB mice exhibited delayed kindling and needed several 
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additional subconvulsive injections of PTZ to show seizure (Fig. 5A). Interestingly, 

we carried out the same experiment in the transgenic strain with chronic enhancement 

of CREB function (VP16-CREB
high

 mice) and obtained the opposite result: whereas 

reduced CREB activity delayed kindling, enhanced CREB activity accelerated it (Fig. 

5B). These results indicate that CREB can control neuronal responsiveness in both 

directions promoting and attenuating intrinsic excitability and plasticity. 

A-CREB expression causes transcriptional alterations 

To evaluate the early transcriptional effects of CREB inhibition by A-CREB, we 

compared the profiles of gene expression in the hippocampus of three weeks old 

transgenic and control mice using Affymetrix microarrays MouseArray 430 2.0. Since 

we were interested in activity driven gene expression, we compared both genotypes in 

the basal condition and 2 hours after kainate-induced seizures. We observed that, in 

agreement with previous observations during kindling experiments, A-CREB mice 

were more resistant to seizures than their control siblings. The same dose of kainate 

elicited less severe seizures in mutant mice, as determined by forelimbs clonus, 

rearing and falling, and death (Fig. 6A). The reduced susceptibility to KA can 

obviously interfere with our analysis of activity driven gene expression. For this 

reason, we obtained samples corresponding to five different conditions: control mice 

(WT), control mice injected with 14 mg/Kg of KA (seizure >4), A-CREB mice, A-

CREB mice injected with 14 mg/Kg of KA (seizure <4), and A-CREB mice injected 

with 18 mg/Kg of KA (seizure >4).  

The screen for genes specifically affected by A-CREB expression in the basal 

state revealed both downregulated and upregulated probe sets (Cluster 1 and 2 

respectively in Fig. 6B, see also Supplementary Table 2). The largest fold changes 

(FC) in the short list of genes consistently downregulated in A-CREB mutants, both 
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in mice injected with saline or with kainate, corresponded to scn4b and penk1 probe 

sets. Scn4b encodes the sodium channel subunit β4, which has been recently 

identified as significantly downregulated in Huntington’s disease patients and in pre- 

and post symptomatic mouse model for this condition (Oyama et al., 2006). Penk1 

encodes proenkephalin, an important neuropeptide previously identified as a direct 

target of CREB in striatal neurons in vivo (Konradi et al., 1993; Pittenger et al., 2002). 

For upregulated genes, the biggest change corresponded to two probe sets targeted to 

Trat1 encoding the T cell receptor associated transmembrane adaptor 1, whose role in 

neurons remains unexplored. As expected, we also observed strong increase of the 

signal of the two probes complementary to A-CREB sequence (Fig. 6C). 

The screen for genes specifically affected by seizure revealed a large number 

of strongly upregulated genes (FC>4) and a few modestly downregulated genes 

(FC<2). The group of upregulated genes included a number of previously identified 

immediate early genes (IEGs), such as those encoding the transcription factors c-Fos, 

FosB, c-Jun, Egr-1, Egr-2, Egr-3, the neurotrophin BDNF, the cytoskeletal protein 

Arc and others, which represent the initial nuclear response to the activation of 

intracellular signaling cascades by synaptic activity and may play important roles on 

neuronal survival and synaptic plasticity (Tischmeyer and Grimm, 1999). Many IEGs 

have CRE sites in their promoters and are thought to be regulated by CREB. In fact, 

many IEGs were found upregulated in mice with chronic enhancement of CREB 

function (Barco et al., 2005). Strikingly, we found that the induction of most IEGs 

was not affected by A-CREB expression (Fig. 6D-E, Table 1 and Supplementary 

Table 3), indicating that, although CREB activity is sufficient for the expression of 

many IEGs, it was not necessary for their induction in response to kainate. More 

detailed analyses revealed mild deficiencies in the basal expression of some important 
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activity-dependent genes, such as egr1, egr2, a possible isoform of Homer 1 

(C330006P03Rik) and arc (Supplementary Table 4), that were not initially detected, 

probably due to the stringency of the two-way ANOVA analysis (see Supplementary 

Methods for further details). However, these IEGs where still strongly upregulated by 

kainate in the hippocampus of A-CREB mice. The list of genes significantly altered in 

A-CREB mice and differentially upregulated in response to kainate in A-CREB mice 

was surprisingly short (Supplementary Table 2) and included penk1 and pdyn, which 

encode for two precursors of opioid neuropeptides previously identified as CREB 

targets. Interestingly, pdyn was the gene that showed the strongest upregulation after 

chronic enhancement of CREB function (Barco et al., 2005).  

 To confirm our microarray results indicating that the induction of IEGs was 

not affected by A-CREB expression, we examined the expression of four 

representative IEGs, fos, egr1, arc and bdnf, in the hippocampus of transgenic mice 

using well known paradigms that trigger activity-dependent gene expression: 

induction of epileptic seizure by kainic acid and exploration of a novel environment. 

Although we confirmed the array results, we observed larger individual differences in 

the response to seizure in A-CREB mice than in control littermates (Fig. 6A). 

Induction of these four IEGs correlated well with seizure intensity in the lower range 

of the Racine scale (1-3). As a consequence, activity-dependent upregulation of these 

genes was apparently impaired in some mutant mice (Fig. 6F). This difference was 

likely not observed in the microarray analysis because we pooled together the 

hippocampi of several mice in each sample. When we used a higher dose of kainate 

(18 mg/Kg) strong upregulation of IEGs was consistently observed in the 

hippocampus of A-CREB animals (Fig. 6F, right panels). In agreement with our 

microarray analysis, Arc mRNA was slightly but significantly reduced in the basal 

Page 14 of 56Cerebral Cortex

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

CREB control of neuronal survival and plasticity  

5/1/09 15  

condition (Fig. 6G). Similar results were obtained in response to novelty exploration 

(Fig. 6H and results not shown). These results together with the microarray analysis 

suggest that other transcription factors can compensate the inhibition of CREB 

function in the control of some forms of activity-driven gene expression. Previous 

analyses of CREB knockout mice suggested that this compensation could be caused 

by the upregulation of the cAMP response element modulator (CREM) (Blendy et al., 

1996; Hummler et al., 1994; Mantamadiotis et al., 2002). Neither microarray analysis 

(Table 2), immunostaining using an antiserum against CREM (Fig. 6I), nor qRT-PCR 

(Fig. 6J) revealed significant changes of CREM expression in the hippocampus of A-

CREB mice at the basal stage. Since A-CREB can bind and block the activity of both 

CREB and CREM (Ahn et al., 1998), these results could suggest that the upregulation 

of CREM observed in CREB knockout mice could be mediated by CREM itself. We 

did not observe either upregulation of ATF1 mRNA in the hippocampus of A-CREB 

mice (Table 2). 

Late consequences of chronic inhibition of CREB function 

The neurodegeneration observed after sustained inhibition of CREB function by A-

CREB had important consequences in neuronal physiology and brain function that 

were independent of the earlier effects of CREB inhibition described above. Thus, 

whereas 3 weeks old A-CREB
 
mice did not show abnormalities in basal synaptic 

transmission (Fig. 3A), one-year old A-CREB mice showed a significant reduction in 

the response of CA1 pyramidal neurons to stimulation of afferent CA3 axons 

reflecting the severe loss of neurons in the CA1 subfield (Fig. 7A). We also tested 

adult A-CREB mice in an extensive battery of behavioral tasks and detected 

alterations in some basal behaviors, such as touch escape o geotaxis (Supplementary 

Table 5), hyperactivity in an open field (Fig. 7B), and strong impairments in spatial 
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navigation (Fig. 7C-D). These behavioral abnormalities are consistent with the wide 

spread degeneration detected at this stage.  

 

Discussion 

The multilevel analysis of A-CREB mice has allowed to address a number of 

important open questions concerning the role of CREB in plasticity and survival, 

contributing to clarify some of controversies concerning CREB loss-of-function 

studies. Thus, we described here the consequences in neuronal gene expression, 

plasticity and survival of blocking CREB-dependent gene expression and showed for 

the first time that the inhibition of CREB reduced the intrinsic excitability of CA1 

neurons through modulation of the IM current, an alteration that can underlay the 

reduced seizure susceptibility observed in A-CREB mice. In agreement with previous 

studies on CREB deficient mutants, we found that the chronic inhibition of CREB 

function reduced synaptic plasticity in the Schaffer collateral pathway and 

compromised neuronal viability. Moreover, we demonstrated changes in both basal 

and activity-induced gene expression that, despite being milder than anticipated, 

contributed to clarify the genetic program regulated in vivo by this family of 

transcription factors.  

A novel mouse model to investigate CREB function in vivo  

The bitransgenic mouse strain described here has a number of advantages for 

investigating the role of CREB in the adult brain. First, A-CREB mice express a 

stronger repressor than those used in previous studies on transgenic strains. CREB-

M1, the point mutant (S133A) used in two previous studies (Kida et al., 2002; 

Rammes et al., 2000), cannot be phosphorylated at Ser 133 and inhibits CREB-

dependent gene expression by competing with CREB for CRE sites, although it has 
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been shown that CREB/CREB-M1 heterodimers can still exhibit significant 

transactivation capability (Loriaux et al., 1993). K-CREB, the point mutant (R287L) 

used by Pittenger and colleagues (Pittenger et al., 2002), blocks gene activation by 

binding to CREB and other CREB family members and preventing their interaction 

with CRE sites. In contrast, A-CREB is a short polypeptide specifically designed to 

form highly stable heterodimers with CREB-family members. A-CREB/CREB 

heterodimers are formed with an affinity 3.3 orders of magnitude greater than CREB 

homodimers (Ahn et al., 1998) and, likely, than CREB heterodimers with K-CREB or 

CREB-M1 since neither one of these point mutations affects dimerization. Because of 

this, A-CREB may have a stronger dominant negative effect than K-CREB or CREB-

M1. Studies in cell culture supports this view (Ching et al., 2004). Second, A-CREB 

mice are likely more adequate than CREB knockout mice to investigate the 

consequences of disrupting the CREB pathway. Since the leucine zipper domain of 

CREB has a high degree of homology with those of CREM and ATF1 and since these 

three proteins can form heterodimers with each other, A-CREB should have, in 

principle, also the capability of blocking the binding of CREM and ATF1 to DNA. 

Experiments in cultured cells have demonstrated this capability in the case of ATF1 

and CREB (Ahn et al., 1998). The reduction of endogenous CREB detected by 

immunohistochemistry indicates that A-CREB can also dimerize with CREB in the 

brain of A-CREB mice, whereas the dramatic loss of neurons observed after sustained 

transgene expression suggests that both CREB and CREM may be target of A-CREB 

inhibition. Therefore, our transgenic approach most likely does not distinguish 

between the role of CREB and that of highly related ATF1 and CREM as positive 

mediators of CRE-driven transcription. Third, we did not detect in our model the 

compensatory upregulation of other ATF/CREB family members observed in CREB 
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hypomorphic and knockout mice. And fourth, the possibility of regulating transgene 

expression with dox allowed to assess the reversal of relevant phenotypes.  

Bidirectional modulation of intrinsic and synaptic plasticity by CREB-mediated gene 

expression  

Gain-of-function approaches have demonstrated that the expression of constitutively 

active CREB facilitates the consolidation of LTP in the Schaffer collateral pathway 

(Barco et al., 2002; Marie et al., 2005), suggesting that CREB activity is sufficient to 

sustain this process. In contrast, loss-of-function studies aimed to investigate the 

requirement of CREB in L-LTP produced mixed results. Whereas CREB 

hypomorphic mutants and transgenic mice expressing the dominant negative CREB 

variant K-CREB showed deficits in some forms of L-LTP (Bourtchuladze et al., 1994; 

Huang et al., 2004; Pittenger et al., 2002), no deficits were found in mice in which 

CREB was specifically depleted in forebrain neurons and in transgenic mice 

expressing the dominant negative CREB variant CREB-M1. These negative results 

might be caused by insufficient CREB inhibition (Rammes et al., 2000) or by CREM 

compensation (Balschun et al., 2003). A possible explanation to reconcile these 

studies would be that CRE-driven gene expression, but not CREB itself, is required 

for L-LTP in the Schaffer collateral pathway. Testing this hypothesis would require 

the analysis of animals in which both CREB and CREM activities are simultaneously 

repressed (Balschun et al., 2003). This seems to be the case in A-CREB mice. 

Notably, LTP analysis of 3-weeks old A-CREB mice revealed significant deficits in 

the late phase of LTP, supporting a role for CREB-dependent gene expression in the 

consolidation of some forms of LTP.  

 This study also provided first evidence of negative regulation of intrinsic 

excitability in CA1 neurons by CREB inhibition. Our analysis suggested that 
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modulation of M potassium current, which contributes to spike frequency activation 

in CA1 pyramidal neurons (Peters et al., 2005), produced a decrement in excitability, 

a finding that would also contribute to explain the resistance to seizure observed in A-

CREB mice (this study) and ICER-overexpressing transgenics (Kojima et al., 2008). 

The increase in IM current observed in CA1 neurons expressing A-CREB resembled 

that produced by retigabine, an M channel opener that reduces both kindled and 

epileptic seizures (Rostock et al., 1996). Kindling experiments in bitransgenic mice 

with chronic inhibition or enhancement of CREB function highlighted the relevance 

of accurate regulation of neuronal excitability by CREB in epilepsy. This novel, but 

now well-established, CREB function suggests that the activation of CREB-

dependent gene expression does not only contribute to the stabilization of ongoing 

reinforcements of synaptic connections (consolidation), but can also facilitate future 

neuronal responses in a given time range (sensitization).  

CREB is sufficient, but not always necessary for activity-driven gene expression 

Biochemical and molecular studies have demonstrated the participation of CREB in 

the regulation of the expression of more than one hundred genes. The availability of 

complete genome sequences and the widespread application of genome-wide 

transcriptional profiling and binding mapping techniques have recently allowed the 

identification of even more potential targets (Euskirchen et al., 2004; Impey et al., 

2004; Tanis et al., 2008; Zhang et al., 2005). Complementary to these assays, gene 

profiling of CREB mutant mice can also contribute to our understanding of the 

complex gene programs triggered by CREB (Barco et al., 2005; McClung and 

Nestler, 2003).  

 The transcriptional response to seizure in the hippocampus of A-CREB and 

control mice was remarkably similar despite the relatively weaker limbic seizures 
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induced by the drug in A-CREB mice and the clear effects of A-CREB expression in 

neuronal survival and physiology. Our analysis revealed that the presence of CRE 

sites in a promoter was not a good predictor of CREB requirement for its seizure-

driven transcription (see Table 1 and Supplementary Tables 2-4, column ‘CRE sites’), 

although we cannot discard that these sites could bind CREB under other 

circumstances. This result is in agreement with a previous study on CREB 

hypomorphic mice (Blendy et al., 1995) and very recent microarray analyses of 

activity driven gene expression in CREB/CREM double mutants (Lemberger et al., 

2008).  

Extensive evidence identified the CREB family of transcription factors as a 

major regulator of activity-dependent gene expression (Josselyn and Nguyen, 2005; 

Lonze and Ginty, 2002). The relatively modest transcriptional alterations observed in 

A-CREB mice after kainate injection might be explained by partial or insufficient 

inhibition of CREB activity by A-CREB. However, the progressive 

neurodegeneration of CA1 neurons suggested that inhibition of CREB activity in the 

hippocampus of A-CREB mice was as robust as in CREB/CREM double deficient 

mutants, which, notably, also showed normal activity-driven gene expression in 

response to kainate (Lemberger et al., 2008). Another possible explanation would be 

the compensation by other members of the CREB family, but again the results in 

CREB/CREM double deficient mutants and the absence of changes in CREM and 

ATF1 expression in A-CREB mice (Table 2) suggested that this is not likely the case. 

However, we cannot completely discard that alternate CRE-binding factors may 

escape A-CREB inhibition. A third explanation would be that the induction of IEGs 

by kainate is not mediated solely by CREB and CREs. The promoter region of many 

IEGs contain binding site for other activity-dependent transcription factors. Mice 
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deficient in the serum response factor (SRF), the main transcription factor binding to 

the SRE sites also located in the promoter of many IEGs, showed a profound defect in 

activity-dependent IEG expression, indicating that activity-dependent gene expression 

in response to epileptic activity may be primarily regulated by this transcription factor 

rather than by CREB (Ramanan et al., 2005). This does not mean that CREB does not 

contribute to activity-driven gene expression. On the contrary, CREB/CREM activity 

seems to be required for most of the cocaine-induced expression changes in the 

striatum (Lemberger et al., 2008). Moreover, previous studies have shown that CREB 

contributes to the regulation of important IEGs, such as bdnf, c-fos, and JunB, also in 

the hippocampus. CREB can even be sufficient for their expression (Barco et al., 

2005), but it appears to be not always necessary. In contrast, CREB was not sufficient 

to trigger arc expression (Barco et al., 2005), but we found now that it is necessary to 

achieve normal levels of basal expression. Future chromatin occupancy experiments 

on prototypical IEG promoters may clarify the role of CREB in constitutive and 

activity-driven neuronal gene expression in vivo. 

The microarray analysis revealed transcriptional changes that can be highly 

relevant to explain the phenotype of A-CREB mice. Thus, genes that are known to 

play critical roles in epileptogenesis, excitability and plasticity were reduced in the 

basal condition (arc, egr1, egr2), or in response to kainate (penk, pdyn). Furthermore, 

the confluence of diverse subtle changes in gene expression may promote a cascade of 

summatory events that led to robust phenotypical effects. Further research should 

determine the precise molecular links between the altered expression patterns and the 

reduced neuronal excitability and impaired plasticity observed at early times, and the 

neuronal loss observed at later times. 

CREB-dependent gene expression is required for the survival of CA1 neurons 
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The analysis of the hippocampus of A-CREB mice revealed massive loss of neurons 

in the CA1 subfield, likely as a consequence of the dramatic and substained inhibition 

of CREB function in pyramidal neurons. The neurodegenerative process observed in 

A-CREB mice presented some similarities with that described for Creb1
Camkcre4

Crem
-

/-
 double mutants (Mantamadiotis et al., 2002), suggesting that both CREB and CREM 

function were effectively blocked by A-CREB expression. 

Gene profiling analysis of A-CREB mice did not reveal significant 

downregulation of some CREB target genes involved in promoting neuronal survival, 

such as bcl-2 and bdnf, but identified other genes whose upregulation or 

downregulation in the basal state may contribute to explain the neurodegenerative 

process, for instance, Scn4b, the cell death-related genes Cst7 and Cxcl10 and several 

genes induced by interferon. These changes may represent an early transcriptional 

signature preceding neurodegeneration. There may also exist a causal relationship 

between the early physiological alterations – reduced neuronal excitability and 

impaired plasticity – and the late pathological events. Lower than normal neuronal 

activity can, in the long-term, cause the loss of neurons in hippocampal circuits, 

especially in juvenile animals (Kaindl et al., 2006).  

The ability to pause and reactivate neurodegeneration using doxycycline 

makes the transgenic strain described here a powerful animal model to assay therapies 

aimed to compensate deficiencies in the cAMP signaling pathway, which has been 

critically involved in Hungtinton’s and Alzheimer’s disease neurodegeneration 

(Sugars et al., 2004; Vitolo et al., 2002). 
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Figure Legends 

Figure 1.  Regulated expression of A-CREB in the brain of transgenic mice: 

A.  Scheme presenting the inhibition of CREB-mediated gene expression achieved in 

our transgenic approach. B. In situ hybridization on brain sagittal sections from 

CaMKII-tTA/tetO-A-CREB-95 bitransgenic mice (A-CREB) and a wild-type 

littermate (WT) using an oligonucleotide probe specific for A-CREB. C.  Transgene 

expression detected by DIG in situ hybridization with a probe specific for A-CREB 

transgene in 2-week old mice. D.  Western-blot using anti-M2 Flag antibody detected 

A-CREB expression in hippocampal protein extracts. E. qRT-PCR quantification of 

CREB mRNA in the hippocampus of A-CREB (black bar) mice and control 

littermates (white bar) (3 mice per group, p=0.66). F. Immunostaining of brain 

sections of 14 days old A-CREB mice showed that CREB immunoreactivity was 

reduced in those areas with higher transgene expression, such as the CA1 subfield. G. 

 DIG in situ hybridization showing repression of transgene expression in 5 weeks old 

A-CREB mice fed with dox food for 2 weeks (ON/OFF). Strong expression was 

detected in 3 weeks old mice maintained off dox (ON). H.  DIG in situ hybridization 

showing defective transgene induction in A-CREB mice receiving dox during 

embryonic and postnatal development. No expression was detected in 8 weeks old 

mice maintained on dox (OFF). Transgene induction was assessed in 8 weeks old 

mice after having removed dox for four weeks (OFF/ON). Scale bar: 140 µm. 

Figure 2. Neuronal loss in the hippocampus of A-CREB mice. A.  A-CREB mice  

(�, n=7) did not gain weight in the same progression that control littermates (�, 

n=18). B.  Time course of the reduction of transgene expression detected by DIG in 

situ hybridization. Compare with the result obtained at 2 weeks (Fig. 1C, see also 

Supplementary Figure S1C). C. Nissl staining of the hippocampus of A-CREB mice 

Page 28 of 56Cerebral Cortex

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

CREB control of neuronal survival and plasticity  

5/1/09 29  

at different times after transgene induction. Hippocampus morphology in 3 weeks old 

A-CREB mice (A-CREB 3w) and control littermates are undistinguishable. However, 

seven weeks later (A-CREB 10w), massive loss of neurons was observed in the CA1 

subfield. At least two mice were analyzed per time point. The age of onset of 

neurodegeneration was between 4 and 8 weeks. Severe cell loss was reliably detected 

in mice older than 10 weeks. Scale bar: 140 µm. D. We quantified the loss of neurons 

in different brain regions in adult A-CREB mice (≥6 months old; WT: n=6; A-CREB: 

n=7): CA1: The thickness of the CA1 cellular layer was significantly reduced in A-

CREB mice (p<0.001). DG: The thickness of the dentate gyrus upper and lower 

blades was slightly reduced in A-CREB mice (p<0.001). Cortex: The thickness of the 

cortex was significantly reduced in A-CREB mice (p<0.001), but no change in cell 

density was observed (p=0.14). Layers 2 and 3, in which transgene expression is 

stronger (DIG in situ at the right panel and Fig. 1B), were particularly affected (layer 

2/3: p<0.001; layer 5: p=0.04), but still showed transgene expression. E. Neuronal 

loss was prevented by feeding the mice with dox before the onset of cellular death (A-

CREB 3w On/8w Off) and was triggered in adulthood by removing dox from the 

mouse diet (A-CREB 3w On/8w Off/3w On). 

Figure 3. Impaired plasticity in the hippocampus of A-CREB mice. A. Input-

output curve of fEPSP slope (V/s) versus stimulus (V) at the Schaffer collateral 

pathway of hippocampal slices from 3-week old A-CREB mice (�, n= 24) and 

control littermates (�, n=28) (p=0.18). B. Comparison of pair-pulse facilitation in 3-

weeks old A-CREB mice and control littermates. Data are presented as the 

mean±SEM of the facilitation of the second response relative to the first response C. 

Cumulative probability versus area of the power spectra calculated from 250 s 

recordings at the CA1 pyramidal layer in hippocampal slices from 3-weeks old 
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control (n=29) and A-CREB mice (n=26, p=0.70). D. A single 100 Hz train (1 sec) 

evoked E-LTP in hippocampal slices of 3-weeks old control and A-CREB mice. E. 

Four 100 Hz trains evoked L-LTP was impaired in 3-weeks old A-CREB mice. 

Figure 4. Neuronal excitability is reduced in CA1 neurons expressing A-CREB. 

A. Representative CA1 neuron response to 200 and 300 pA depolarizing pulses in a 3-

weeks old control (left panel) and an A-CREB mouse (right panel). B. Average of 

APs triggered in response to increasing depolarizing currents in CA1 neurons from 3-

weeks old A-CREB mice (�) and control littermates (�, upper panel p<0.001 

ANOVA). This effect was reversed ten days after turning off A-CREB expression 

with dox (lower panel, p =0.33). C. Voltage-current relationship in CA1 pyramidal 

neurons holding at -70 mV in 3-weeks old A-CREB mice and control littermates. The 

alterations in A-CREB mice were reversed in the presence of the M-current blocker 

XE-991 (10 µM) (D), and after transgene repression by dox for ten days (E). 

Figure 5. Seizure susceptibility in mice with enhanced or reduced CREB activity 

in neurons. A. Five-weeks old A-CREB mice (�) and control (�) littermates were 

intraperitoneally injected with 50 mg/Kg of PTZ every day until seizure stage 5 was 

consistently observed in both groups (n=6 for both groups). B. The same protocol was 

used in five-week old VP16-CREB
high

 mice (�) and their littermates (�) (n=6 for 

both groups). The first PTZ injection was administered one week after transgene 

induction by dox removal. Note the stronger response to the drug in mutant mice 

observed already after the first injection. The average scaling is presented as mean ± 

SEM.  

Figure 6. Gene expression analysis of early transcriptional changes in A-CREB 

mice. A. Three-weeks old A-CREB mice (n=7) showed milder seizures than their 

control littermates (n=10) in response to 14 mg/Kg of kainic acid. B. Two-

Page 30 of 56Cerebral Cortex

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

CREB control of neuronal survival and plasticity  

5/1/09 31  

dimensional hierarchical clustering of 21 probe sets significantly affected by genotype 

in the two-way ANOVA analysis and showing at least 2 fold change in the 

comparison between genotypes in animals injected either with saline or kainate. The 

right panels show the clusters obtained by K-means clustering. 1: WTSAL, wild-type 

saline; 2: WTKA14, wild-type injected with 14 mg/Kg of kainate; 3: ACSAL, A-

CREB saline; 4: ACKA14, A-CREB with 14 mg/Kg; and 5: ACKA18, A-CREB with 

18 mg/Kg kainate (see also Supplementary Table 2). C. Results of hybridization for 

perfect match (PM) oligonucleotide probes in the probe set 1452529_a_at. The direct 

observation of the hybridization signals revealed a large increase in the signal 

corresponding to the only two oligonucleotides complementary to A-CREB sequence. 

D. Hieralchical clustering of the 209 probe sets significantly affected by drug 

treatment in the two-way ANOVA analysis showing a fold change equal or bigger 

than 2 in the comparison between drug treatments for at least one of the two 

genotypes. A number of genes in this list, specially those presenting largest changes 

(bright red traces in KA samples) have been previously identified as IEGs, including 

arc, egr2, egr3, c-fos, fosB, crem and junB (see Table 1 and Supplementary Table 3 

for additional details). E. Whisker box representation of expression changes in the 

group of 209 probe sets showed in panel 6D. F. In situ hybridization using DIG-RNA 

probes specific for Arc (upper panels) and BDNF (lower panels) in sagittal brain 

sections of 3 weeks old A-CREB mice and control littermates injected with vehicle or 

with 14 or 18 mg/Kg of kainic acid. Correlating with seizure strength, some A-CREB 

mice injected with 14 mg/Kg of kainic acid showed very weak induction of IEGs (see 

example in central panels), whereas other mice showed an induction similar to that 

observed in control littermates or in A-CREB mice injected with 18 mg/Kg of kainic 

acid (right panels). Similar results were obtained by immunohistochemistry using 
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antibodies against c-Fos and Egr1 (results not shown). G. Quantitative RT-PCR of 

Arc and c-Fos levels in the hippocampus of 3-weeks old A-CREB mice and control 

siblings two hours after injection with 14 mg/Kg of kainate (KA). From left to right: 

WT saline (n=3): white bars; WT KA (n=3): light gray bars; A-CREB saline (n=3): 

black bars; A-CREB KA (n=3): dark gray bars. We observed a significant reduction 

in the basal level of Arc expression (p=0.04), but not for c-Fos (p=0.38). H. 

Quantitative RT-PCR of Arc and c-Fos levels in the hippocampus of 3-weeks old A-

CREB and control siblings after exploration of a novel environment for 1 hour. From 

left to right: WT homecage (n=5): white bars; WT novelty (n=6): light gray bars; A-

CREB homecage (n=5): black bars; A-CREB novelty (n=5): dark gray bars. There is 

a significant reduction in the basal level of Arc expression in A-CREB mice (p=0.04).  

I. CREM immunostaining of the hippocampus of a 3-weeks old A-CREB mouse did 

not reveal an increase in CREM immunoreactivity (3 mice per group). J. qRT-PCR 

quantification of CREM mRNA in the hippocampus of 3-weeks old A-CREB (black 

bar) mice and control littermates (white bar) (3 mice per group, p=0.69).  

Figure 7. Long-term consequences of chronic inhibition of CREB function by A-

CREB. A. Input/output curve of fEPSP slope (V/s) versus stimulus at the Schaffer 

collateral pathway of hippocampal slices from one year old A-CREB mice (�, n= 23) 

and control littermates (�, n=26, p=0.01). B. Ten-week old A-CREB mice (black) 

show hyperlocomotion (left panel, ambulatory distance during a 30 min period: wild 

type, n = 11; A-CREB; n=9; p=0.01) and a trend towards reduced anxiety behavior in 

an open field (right panel, percentage of time spent in the center of the arena, p=0.14). 

C. Spatial navigation in the Morris water maze in adult A-CREB mice (A-CREB: 

n=9; WT: n=11). Path length analysis revealed deficits associated with chronic A-

CREB expression in both the visible platform and the hidden platform tasks (ANOVA 
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repeated measures, genotype effect: visible platform, p=0.09; hidden platform, 

p=0.01). Similar deficits were also observed in escape latencies (ANOVA repeated 

measures, genotype effect: visible platform, p=0.01; hidden platform, p=0.001). 

Swimming speed and thigmotaxis were not significantly affected. D Spatial memory 

was assessed in two probe trials. Values represent percentage of time in the target 

quadrant compared to the average in other quadrants (grey bars). Control mice spent 

more time in the platform quadrant in the two probe trials, whereas A-CREB mice did 

not show a memory for the platform location (chance value: 25%). Asterisks indicate 

p<0.05. 
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Table 1. The induction of immediate early genes related to synaptic plasticity is largely 

unimpaired in A-CREB mice. See full list of activity-driven genes in Supplemental Table 3 

 

Gene  
Probe  

Set ID 
Gene Title Unigene ID 

FC-

WT 

FC-AC 

KA14 

FC-AC 

KA18 
P CRE  

Arc  1418687_at 
activity regulated cytoskeletal-

associated protein 
Mm.25405 3.57 6.41 5.75 0.002 2 

Atf3 1449363_at activating transcription factor 3 Mm.2706 13.24 13.50 9.80 >0.001 3 

 1422169_a_at 3.30 3.43 2.37 >0.001 
Bdnf 

 1422168_a_at 
brain derived neurotrophic factor Mm.1442 

4.50 4.57 3.59 >0.001 
1 

1448272_at 4.27 4.93 6.03 >0.001 
Btg2 

 1416250_at 
B-cell translocation gene 2 Mm.392646 

8.59 7.39 9.07 >0.001 
5 

 1449037_at 1.91 2.35 2.31 0.006 
Crem 

 1418322_at 

cAMP responsive element 

modulator 
Mm.5244 

2.33 3.51 3.02 0.002 
1 

Dusp1  1448830_at dual specificity phosphatase 1 Mm.239041 3.18 4.31 4.77 >0.001 2 

Dusp4 1428834_at dual specificity phosphatase 1 Mm.392187 2.69 2.75 1.88 0.003 6 

Egr1  1417065_at early growth response 1 Mm.181959 1.84 3.27 3.10 0.001 5 

 1427682_a_at 5.35 12.95 12.95 >0.001 
Egr2 

 1427683_at 
early growth response 2 Mm.290421 

5.60 14.70 12.50 >0.001 
3 

Egr3 1436329_at early growth response 3 Mm.103737 2.18 3.16 2.50 0.006 5 

Egr4 1449977_at early growth response 4 Mm.44137 3.99 4.64 3.64 >0.001 4 

Fos  1423100_at FBJ osteosarcoma oncogene Mm.246513 9.57 12.74 12.09 >0.001 9 

Fosb  1422134_at FBJ osteosarcoma oncogene B Mm.248335 15.37 24.59 19.02 >0.001 7 

1422931_at 1.67 2.27 2.16 0.005 
Fosl2 

1437247_at 
fos-like antigen 2 Mm.24684 

2.47 5.08 3.63 >0.001 
5 

 1449773_s_at 5.70 7.28 5.57 >0.001 Gadd45

b 
 1450971_at 

growth arrest and DNA-damage-

inducible 45 beta 
Mm.1360 

5.85 6.30 4.57 >0.001 
3 

Homer1  1425671_at homer homolog 1 (Drosophila) Mm.37533 8.82 10.34 6.15 0.002 4 

Ier2 1416442_at 
immediate early response 2 

(Etr101) 
Mm.399 4.05 5.68 6.31 0.002 4 

 1448694_at 1.60 2.12 2.03 0.001 
Jun 

 1417409_at 
Jun oncogene Mm.275071 

2.43 2.60 2.50 0.002 
4 

Junb  1415899_at Jun-B oncogene Mm.1167 4.79 5.39 4.63 >0.001 6 

1417394_at 2.50 4.58 3.94 0.001 
Klf4 

1417395_at 
Kruppel-like factor 4 (gut) Mm.4325 

3.00 5.40 5.02 >0.001 
2 

Npas4 1459372_at Neuronal PAS domain protein 4 Mm.287867 41.91 64.60 53.89 >0.001 5 

Nr4a1  1416505_at 
nuclear receptor subfamily 4, 

group A, member 1 (Nur77) 
Mm.119 3.05 3.93 3.81 0.001 6 

1450749_a_at 2.91 2.97 2.17 0.002 

1455034_at 2.98 3.52 2.82 >0.001 

1450750_a_at 3.05 3.88 3.13 0.001 
Nr4a2 

1447863_s_at 

nuclear receptor subfamily 4, 

group A, member 1 (Nurr-1) 
Mm.3507 

3.43 3.81 2.88 0.001 

6 

1435458_at 2.90 3.01 2.07 >0.001 
Pim1 

1435872_at 
proviral integration site 1 Mm.328931 

5.03 5.96 4.61 >0.001 
4 

1419248_at 3.68 4.90 4.27 >0.001 

1447830_s_at 3.98 5.58 4.82 >0.001 Rgs2 

1419247_at 

regulator of G-protein signaling 

2 
Mm.28262 

4.74 6.11 5.25 >0.001 

4 

Slc2a1 1426599_a_at 
solute carrier family 2 member 1 

(Glut-1) 
Mm.21002 1.60 2.04 1.61 0.003 1 

 

FC WT = fold change wild-type saline vs. wild-type 14 mg/Kg kainate; FC AC KA14 = fold change A-CREB saline 

vs. A-CREB 14 mg/Kg kainate; FC AC KA18 = fold change A-CREB saline vs. A-CREB 18 mg/Kg kainate. CRE = 

number of CRE predicted in murine promoters (3 Kb upstream and 200 bp downstream of the transcription start site, 

see Zhang et al. (2005), PNAS 102:4459-64, for further details). P values correspond to two-way ANOVA described in 

Supplementary Methods. Note that as a consequence of reduced basal expression, the fold change of some IEGs (arc, 

egr1, egr2) was larger in A-CREB mice (see also Supplementary Table 4). 
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Table 2. Probe sets targeted to members of the CREB family of transcription 

factors 
 

Probe Set ID FC  p-value Unigene ID 
Gene 

Symbol 
Gene Description 

1417296_at 1.03 0.80 Mm.676 Atf1  activating transcription factor 1  

1421582_a_at 1.00 0.99 

1423402_at 1.50 0.27 

1452529_a_at 
1
 1.39 0.60 

1428755_at 1.16 0.42 

1452901_at 1.09 0.48 

Mm.466618 Creb1 
cAMP responsive element 

binding protein 1 

1418322_at 
2
 -1.00 1.00 

1449037_at 
2
 1.19 0.65 

1430847_a_at 1.15 0.38 

Mm.5244 Crem 
cAMP responsive element 

modulator 

 

FC = fold change wild-type saline vs. A-CREB saline. P values correspond to unpaired t-Test analysis.  
1 

Probe set 1452529_a_at contains two probes that recognize a sequence common to A-CREB and wild 

type CREB (Figure 6C). This abnormal pattern of upregulation, affecting only two probes out of 11 

escaped conventional screening using GCOS and GeneSpring, but dChip revealed a fold change > 10 

(the largest change between wild type and A-CREB mice), when no correction for outlier probes was 

considered. 
2 

Probe sets 1418322_at and 1449037_at are targeted to the 3’UTR of CREM and can recognize the 

transcripts encoding the inducible repressor isoform ICER. The signals for both probe sets were not 

affected by transgene expression, but significantly increased in kainate treated samples (see Table 1). 

Probe set 1430847_a_at, which is targeted to the 2
nd

 Q-rich domain specific of CREMτ, showed 

changes neither by kainate nor by transgene expression. 
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SUPPLEMENTARY MATERIAL 

Supplementary Methods 

Microarray analysis 

Each sample contained total RNA from the hippocampi of a group of 3-4 three weeks 

old mice. We obtained duplicate samples for each experimental condition (in total 14 

WT and 20 A-CREB mice where used in this experiment). Mouse Genome 430 2.0 

genechips were hybridized, stained, washed and screened for quality according to the 

manufacturer's protocol. The Affymetrix GeneChip® data were processed, normalized 

and statistically analyzed using GCOS (Affymetrix), GeneSpring GX (Agilent 

Technologies) and dChip softwares (Li & Hung Wong, 2001). After the normalization 

by the median intensities of the control arrays (WT saline), linearity of the signal 

intensities between arrays was confirmed and Principal Component Analysis (PCA) 

was performed to check the similarities of the arrays. GeneSpring and dChip 

softwares were used in parallel and produced highly overlapping lists of significantly 

changed probe sets. The lists presented in Supplemental Tables 2-4 were generated 

primarily using GeneSpring software because it permitted additional graphical 

representations and further statistical analyses, such as the k-means and hierarchical 

clustering (squared euclidean) showed in Figure 6. We considered two parameters in 

our analysis: genotype (wild-type or A-CREB) and drug (three conditions, saline, 

kainate 14 mg/Kg and kainate 18 mg/Kg). Given this experimental design, a two-way 

ANOVA was performed after filtering the data by expression level (signal intensities 

>20% of the maximal expression at least in two samples). We found 2000 genes 

significantly affected by drug treatment, 816 genes significantly affected by genotype 

and 426 in the genotype-drug interaction group (See Supplementary Tables 2-3 for 

full lists of probe sets showing a fold change equal or higher than 2 in relevant 
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comparisons). We also conducted a complementary pair-wise comparison analysis in 

GCOS to retrieve additional genes in the non-stimulated condition (wild-type saline 

vs. A-CREB saline). Probe sets retrieved in both pair-wise comparison replicates were 

compared to the list generated in the GeneSpring analysis to produce Supplemental 

Table 4.  

Supplementary Tables 

Supplementary Table 1. Electrophysiological properties of CA1 pyramidal neurons 

in A-CREB mice. 

Supplementary Table 2. Genes altered in the hippocampus of A-CREB mice 

(GENOTYPE significant genes). 

Supplementary Table 3. Genes altered in the hippocampus of A-CREB mice and 

control littermates after kainate treatment (DRUG significant genes). 

Supplementary Table 4. Kainate-induced genes altered in the hippocampus of A-

CREB mice at the basal state (Pair-wise significant genes). 

Supplementary Table 5. Basal behavior analysis of A-CREB mice. 

Supplementary Figures 

Supplementary Figure S1. Pattern of transgene expression in line AC95. A. DIG 

in situ hybridization (ISH) with a probe specific for A-CREB transgene in brain 

sagittal sections from a 2-week old CaMKII-tTA/tetO-A-CREB-95 bitransgenic 

mouse (A-CREB). The lower panels show higher magnification images of striatum 

(left) and hippocampus and cortex (right). B.  Transgene expression can also be 

detected by immunohistochemistry (IHC) using an antibody that recognizes the M2-

Flag sequence in the N-terminus of A-CREB (red). As expected, the pattern of 

transgene expression using IHC and ISH was the same. C. Details of DIG-ISH using 
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a probe specific for A-CREB.  Note the dramatic reduction of transgene expression in 

16-week old A-CREB mice when compared to 2-week old mice.  

Supplementary Figure S2. Immunohistochemical analysis of the hippocampus of 

A-CREB mice. The neurodegenerative process was also visualized by 

immunostaining with a number of neuronal markers. Floating vibratome sections (50 

µM) were stained with antibodies against MAP2, GAP43, calbindin and 

synaptophysin. No significant differences were found in either hippocampus or other 

brain regions at early times (2 weeks old mice), but significant neuronal loss was 

observed after sustained CREB inhibition (28 weeks old mice).  
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Supplementary Table 1. Electrophysiological properties of CA1 pyramidal neurons in A-CREB mice 

 

Group of mice (n=neurons, mice) Rin (MΩ) Rehobase 
(pA) 

Medium IAHP 
(pA) 

slow IAHP 
(pA) 

A-CREB On (n=42, 6) 131±9.6 179±9.7 291±13.7 50±5.3 
Control On (n=40, 5) 182±19.5 136±8.1 234±12.8 42±4.7 

P 0.01 0.001 0.003 0.26 

A-CREB On/Off (n=32, 4) 151±8.1 142±9.7 200±11.9 27±3.4 
Control On/Off (n=17, 2) 159±23.7 144±15.2 143±12.1 31±6.1 

P 0.67 0.9 0.003 0.56 

A-CREB XE 991 (n=14, 3) 256±42 117±16.8 170±19.0 33±6.3 
Control XE 991 (n=14, 2) 229±20 121±15.1 131±14.2 21±3.7 

P 0.56 0.87 0.11 0.11 
   

In A-CREB On mice and control littermates, the recordings were performed 

in 3-week old animals. In A-CREB On/Off mice and control littermates, the 

transgene was expressed for 3 weeks and then silenced for 10 additional 

days. Recording in neurons treated with XE 991 were performed in 3-week 

old mice. 
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Supplementary Table 2

Genes altered in the hippocampus of A-CREB mice (GENOTYPE significant genes, p<0,05)

FC saline = fold change wild-type saline vs. A-CREB saline
FC KA14 = fold change wild-type 14 mg/Kg kainate vs. A-CREB 14 mg/Kg kainate
FC KA18 = fold change wild-type 14 mg/Kg kainate vs. A-CREB 18 mg/Kg kainate

n.d. = not determined / not found
Fold changes < 1.5 are indicated in gray

Genes downregulated in A-CREB mice
Probe Set ID Gene Symbol Gene Title Unigene ID FC saline FC KA14 FC KA18 P value CRE sites

1437397_at Prlr prolactin receptor Mm.442298 -2,04 1,12 -1,24 0,0331 4
1434008_at Scn4b sodium channel, type IV, beta Mm.335112 -1,80 -3,21 -3,52 0,0357 n.d.
1427038_at Penk1 preproenkephalin 1 Mm.2899 -1,54 -2,69 -3,33 0,0268 n.d.
1443287_at Gm1337 gene model 1337, (NCBI) Mm.35758 -1,42 -2,22 -1,73 0,0057 n.d.
1429215_at 2310058N22Rik RIKEN cDNA 2310058N22 gene Mm.440654 -1,40 -2,10 -2,03 0,0066 n.d.
1444687_at C1ql2 complement component 1, q subcomponent-like 2 Mm.337409 -1,30 -2,55 -2,31 0,0029 n.d.
1420666_at Doc2b double C2, beta Mm.5137 -1,29 -1,98 -2,04 0,0225 n.d.
1416266_at Pdyn prodynorphin Mm.6239 -1,20 -1,94 -2,02 0,0108 2

Genes upregulated in A-CREB mice
Probe Set ID Gene Symbol Gene Title Unigene ID FC saline FC KA14 FC KA18 P value CRE sites

1427532_at Trat1 T cell receptor associated transmembrane adaptor 1 Mm.167298 8,47 5,87 5,11 1,0E-05 n.d.
1437561_at Trat1 T cell receptor associated transmembrane adaptor 1 Mm.167298 3,72 4,76 4,61 1,7E-05 n.d.
1421009_at Rsad2 radical S-adenosyl methionine domain containing 2 Mm.24045 2,28 1,42 1,12 0,0450 n.d.
1426278_at Ifi27 interferon, alpha-inducible protein 27 Mm.271275 2,16 1,47 1,66 0,0315 n.d.
1453196_a_at Oasl2 2'-5' oligoadenylate synthetase-like 2 Mm.228363 2,05 2,76 2,90 0,0017 2
1418930_at Cxcl10 /// LOC100045000 chemokine (C-X-C motif) ligand 10 Mm.877 2,00 2,50 2,47 0,0030 4
1419042_at Iigp1 /// LOC100044196 interferon inducible GTPase 1 Mm.261140 1,63 2,29 2,02 0,0202 1
1420699_at Clec7a C-type lectin domain family 7, member a Mm.239516 1,54 2,10 2,50 0,0047 n.d.
1443086_at Alcam activated leukocyte cell adhesion molecule Mm.288282 1,54 2,52 3,33 0,0142 4
1419202_at Cst7 cystatin F (leukocystatin) Mm.12965 1,42 2,43 1,91 0,0288 0
1419043_a_at Iigp1 /// LOC100044196 interferon inducible GTPase 1 Mm.261140 1,39 2,99 2,20 0,0029 1
1453793_at 1700026J12Rik RIKEN cDNA 1700026J12 gene Mm.307720 1,33 1,96 2,14 0,0299 n.d.
1424825_a_at Glycam1 glycosylation dependent cell adhesion molecule 1 Mm.219621 1,14 2,14 1,73 0,0419 0

Two-way ANOVA analysis:  21 genes out of 830 genes significantly affected by genotype exhibited a fold change larger than 2 in the comparison between genotypes in 
animals injected either with saline or kainate

Some genes, such as Scn4b and Penk1, are reduced both in animals injected with saline and kainate, whereas the genotype effect in other genes, such as Pdyn and
Doc2b, is only evidenced in response to kainate 

CRE sites = number of CRE predicted in murine promoters (3 Kb upstream and 200 bp dowstream of the transcription start site, see Zhang et al. (2005), PNAS
102:4459-64, for further details)
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Supplementary Table 3

Genes altered in the hippocampus of A-CREB mice and control littermates after kainate treatment (DRUG significant genes, p>0.05)
Two-way ANOVA analysis:  209 genes out of 2025 genes significantly affected by drug treatment exhibited a fold change larger than 2 in the comparison between drug treatments in animals of either genotype        
FC WT = fold change wild-type saline vs. wild-type 14 mg/Kg kainate
FC AC KA14 = fold change A-CREB saline vs. A-CREB 14 mg/Kg kainate
FC AC KA18 = fold change A-CREB saline vs. A-CREB 18 mg/Kg kainate
CRE sites = number of CRE predicted in murine promoters (3 Kb upstream and 200 bp dowstream of the transcription start site, see Zhang et al. (2005), PNAS 102:4459-64, for further details)
n.d. = not determined
Fold changes < 2 are indicated in grey

Probe Set ID Gene Symbol Gene Title Unigene ID FC saline FC KA14 FC KA18 P value CRE sites
1459372_at Npas4 neuronal PAS domain protein 4 Mm.287867 41,91 64,60 53,89 2,1E-06 5
1422134_at Fosb FBJ osteosarcoma oncogene B Mm.248335 15,37 24,59 19,02 3,0E-05 7
1449363_at Atf3 activating transcription factor 3 Mm.2706 13,24 13,50 9,80 3,0E-05 3
1417262_at Ptgs2 prostaglandin-endoperoxide synthase 2 Mm.292547 9,68 11,17 8,62 2,4E-05 2
1423100_at Fos FBJ osteosarcoma oncogene Mm.246513 9,57 12,74 12,09 2,8E-06 9
1417263_at Ptgs2 prostaglandin-endoperoxide synthase 2 Mm.292547 9,42 10,58 8,84 3,1E-05 2
1425671_at Homer1 homer homolog 1 (Drosophila) Mm.37533 8,82 10,34 6,15 0,0018 4
1416250_at Btg2 B-cell translocation gene 2, anti-proliferative Mm.392646 8,59 7,39 9,07 4,2E-04 5
1450842_a_at Cenpa centromere protein A Mm.290563 8,55 6,51 3,81 4,7E-05 3
1422053_at Inhba inhibin beta-A Mm.8042 6,60 8,90 7,45 7,1E-05 3
1450971_at Gadd45b growth arrest and DNA-damage-inducible 45 beta Mm.1360 5,85 6,30 4,57 1,9E-04 3
1449773_s_at Gadd45b growth arrest and DNA-damage-inducible 45 beta Mm.1360 5,70 7,28 5,57 5,7E-05 3
1438133_a_at Cyr61 cysteine rich protein 61 Mm.1231 5,68 11,19 11,44 1,5E-04 8
1427683_at Egr2 early growth response 2 Mm.290421 5,60 14,70 12,50 3,7E-05 3
1427682_a_at Egr2 early growth response 2 Mm.290421 5,35 12,95 12,95 1,8E-04 3
1426063_a_at Gem GTP binding protein (gene overexpressed in skeletal muscle) Mm.247486 5,25 9,99 8,18 3,3E-04 5
1453851_a_at Gadd45g growth arrest and DNA-damage-inducible 45 gamma Mm.281298 5,05 7,65 8,72 1,7E-04 3
1435872_at Pim1 Proviral integration 1 Mm.472907 5,03 5,96 4,61 1,1E-05 4
1417483_at Nfkbiz nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor, zeta Mm.247272 4,85 6,55 4,90 1,2E-04 n.d.
1415899_at Junb Jun-B oncogene Mm.1167 4,79 5,39 4,63 6,7E-04 6
1419816_s_at Errfi1 ERBB receptor feedback inhibitor 1 Mm.318841 4,78 4,62 3,84 4,1E-04 n.d.
1421811_at LOC640441 /// Thbs1 thrombospondin 1 /// similar to thrombospondin 1 Mm.4159 4,78 6,97 4,08 2,7E-04 1
1419247_at Rgs2 regulator of G-protein signaling 2 Mm.28262 4,74 6,11 5,25 5,0E-05 4
1429444_at Rasl11a RAS-like, family 11, member A Mm.266978 4,72 3,76 3,03 2,3E-04 n.d.
1422168_a_at Bdnf brain derived neurotrophic factor Mm.1442 4,50 4,57 3,59 2,3E-04 1
1416129_at Errfi1 ERBB receptor feedback inhibitor 1 Mm.318841 4,42 5,03 4,27 4,7E-05 n.d.
1436387_at C330006P03Rik RIKEN cDNA C330006P03 gene 4,29 10,25 6,95 8,7E-04 n.d.
1448272_at Btg2 B-cell translocation gene 2, anti-proliferative Mm.392646 4,27 4,93 6,03 2,8E-04 5
1418250_at Arl4d /// LOC100044157 ADP-ribosylation factor-like 4D /// hypothetical protein LOC100044157 Mm.266840 4,21 4,81 4,69 0,0012 n.d.
1416039_x_at Cyr61 cysteine rich protein 61 Mm.1231 4,14 10,46 11,47 1,4E-04 8
1416442_at Ier2 immediate early response 2 Mm.399 4,05 5,68 6,31 0,0018 4
1420720_at LOC100044234 /// Nptx2 neuronal pentraxin 2 /// hypothetical protein LOC100044234 Mm.10099 4,01 4,78 3,07 0,0061 3
1449977_at Egr4 early growth response 4 Mm.44137 3,99 4,64 3,64 1,3E-04 4
1447830_s_at Rgs2 regulator of G-protein signaling 2 Mm.28262 3,98 5,58 4,82 6,7E-05 4
1449960_at Nptx2 neuronal pentraxin 2 Mm.10099 3,83 4,86 3,45 1,2E-04 3
1452160_at Tiparp TCDD-inducible poly(ADP-ribose) polymerase Mm.246398 3,76 4,63 4,09 3,3E-04 n.d.
1419248_at Rgs2 regulator of G-protein signaling 2 Mm.28262 3,68 4,90 4,27 6,6E-05 4
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1437884_at Arl5b ADP-ribosylation factor-like 5B Mm.174068 3,67 4,73 3,26 0,0015 n.d.
1418687_at Arc activity regulated cytoskeletal-associated protein Mm.25405 3,57 6,41 5,75 0,0025 2
1418932_at LOC100046232 /// Nfil3 nuclear factor, interleukin 3, regulated / similar to NFIL3/E4BP4 transcription factor Mm.136604 3,45 4,11 2,93 0,0027 6
1452161_at Tiparp TCDD-inducible poly(ADP-ribose) polymerase Mm.246398 3,45 3,77 3,40 0,0015 n.d.
1416067_at Ifrd1 interferon-related developmental regulator 1 Mm.168 3,43 4,97 4,30 6,5E-05 5
1447863_s_at Nr4a2 nuclear receptor subfamily 4, group A, member 2 Mm.3507 3,43 3,81 2,88 0,0013 6
1455899_x_at Socs3 suppressor of cytokine signaling 3 Mm.3468 3,35 6,37 4,25 1,9E-04 2
1455085_at 1700086L19Rik RIKEN cDNA 1700086L19 gene Mm.287421 3,32 2,58 2,44 3,2E-04 n.d.
1422169_a_at Bdnf brain derived neurotrophic factor Mm.1442 3,30 3,43 2,37 8,0E-04 1
1427747_a_at Lcn2 lipocalin 2 Mm.9537 3,22 2,63 1,65 0,0038 1
1455166_at Arl5b ADP-ribosylation factor-like 5B Mm.174068 3,22 4,23 3,13 3,1E-04 n.d.
1448830_at Dusp1 dual specificity phosphatase 1 Mm.239041 3,18 4,31 4,77 3,1E-04 2
1423294_at Mest mesoderm specific transcript Mm.335639 3,12 4,47 3,41 8,5E-05 1
1448285_at Rgs4 regulator of G-protein signaling 4 Mm.41642 3,07 3,47 3,02 4,2E-04 3
1416505_at Nr4a1 nuclear receptor subfamily 4, group A, member 1 Mm.119 3,05 3,93 3,81 0,0010 6
1450750_a_at Nr4a2 nuclear receptor subfamily 4, group A, member 2 Mm.3507 3,05 3,88 3,13 0,0012 6
1417051_at Pcdh8 protocadherin 8 Mm.390715 3,05 2,76 2,25 7,2E-04 3
1455271_at LOC620695 hypothetical protein LOC620695 3,05 2,68 2,47 0,0018 n.d.
1417394_at Klf4 Kruppel-like factor 4 (gut) Mm.473692 3,00 5,40 5,02 8,1E-04 2
1447825_x_at Pcdh8 protocadherin 8 Mm.390715 2,99 3,18 2,74 7,6E-04 3
1455034_at Nr4a2 nuclear receptor subfamily 4, group A, member 2 Mm.3507 2,98 3,52 2,82 3,6E-04 6
1450749_a_at Nr4a2 nuclear receptor subfamily 4, group A, member 2 Mm.3507 2,91 2,97 2,17 0,0022 6
1435458_at Pim1 proviral integration site 1 Mm.328931 2,90 3,01 2,07 1,7E-04 4
1418666_at Ptx3 pentraxin related gene Mm.276776 2,88 1,83 1,29 0,0063 1
1441228_at Apold1 apolipoprotein L domain containing 1 Mm.296104 2,82 4,65 4,16 7,1E-05 n.d.
1444681_at Erc2 ELKS/RAB6-interacting/CAST family member 2 Mm.318004 2,74 2,45 1,70 0,0020 n.d.
1427540_at Zwint ZW10 interactor Mm.62876 2,73 3,92 2,89 0,0036 3
1429863_at Lonrf3 LON peptidase N-terminal domain and ring finger 3 Mm.327654 2,73 2,34 1,81 8,2E-04 n.d.
1418936_at Maff v-maf musculoaponeurotic fibrosarcoma oncogene family, protein F (avian) Mm.86646 2,70 4,21 2,89 2,0E-04 3
1428834_at Dusp4 dual specificity phosphatase 4 Mm.170276 2,69 2,75 1,88 0,0026 6
1417406_at Sertad1 SERTA domain containing 1 Mm.153684 2,67 3,06 2,19 0,0028 n.d.
1438796_at Nr4a3 nuclear receptor subfamily 4, group A, member 3 Mm.247261 2,64 3,24 2,62 1,8E-04 2
1426870_at Fbxo33 F-box protein 33 Mm.311026 2,63 3,16 2,79 1,8E-04 n.d.
1426721_s_at Tiparp TCDD-inducible poly(ADP-ribose) polymerase Mm.246398 2,57 3,86 3,68 3,0E-04 n.d.
1456212_x_at Socs3 suppressor of cytokine signaling 3 Mm.3468 2,57 4,48 3,12 1,7E-04 2
1437696_at BC049807 cDNA sequence BC049807 Mm.441097 2,56 2,73 2,41 0,0064 n.d.
1436305_at Rnf217 ring finger protein 217 Mm.295212 2,54 2,47 1,68 0,0025 n.d.
1426871_at Fbxo33 F-box protein 33 Mm.311026 2,53 3,57 2,98 6,2E-04 n.d.
1460302_at Thbs1 thrombospondin 1 Mm.4159 2,53 2,92 2,34 3,2E-04 1
1440179_x_at Rnf217 ring finger protein 217 Mm.295212 2,52 2,70 1,91 0,0018 n.d.
1452352_at Ctla2b cytotoxic T lymphocyte-associated protein 2 beta Mm.439734 2,51 3,55 2,27 0,0054 n.d.
1451280_at Arpp21 cyclic AMP-regulated phosphoprotein, 21 Mm.297444 2,50 2,54 2,32 0,0121 n.d.
1417395_at Klf4 Kruppel-like factor 4 (gut) Mm.473692 2,50 4,58 3,94 0,0010 2
1434350_at Axud1 AXIN1 up-regulated 1 Mm.125196 2,48 2,44 1,99 0,0001 7
1437247_at Fosl2 /// LOC634417 fos-like antigen 2 /// similar to fos-like antigen 2 Mm.24684 2,47 5,08 3,63 5,5E-04 5
1453590_at Arl5b ADP-ribosylation factor-like 5B Mm.174068 2,47 3,93 2,82 0,0012 n.d.
1416756_at Dnajb1 DnaJ (Hsp40) homolog, subfamily B, member 1 Mm.282092 2,46 2,82 2,64 0,0030 6
1459941_at Rlbp1l1 retinaldehyde binding protein 1-like 1 Mm.471888 2,45 2,50 1,52 0,0036 n.d.
1417409_at Jun Jun oncogene Mm.275071 2,43 2,60 2,50 0,0017 4
1416811_s_at Ctla2a /// Ctla2b cytotoxic T lymphocyte-associated protein 2 alpha / cytotoxic T lymphocyte-associated protein 2 beta Mm.439734 2,42 2,32 1,58 0,0114 3 / n.d.
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1448728_a_at Nfkbiz nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor, zeta Mm.247272 2,39 3,57 2,40 0,0016 n.d.
1442340_x_at Cyr61 cysteine rich protein 61 Mm.1231 2,39 3,66 7,76 0,0048 8
1457823_at Cyr61 cysteine rich protein 61 Mm.1231 2,36 2,91 5,89 0,0023 8
1416287_at Rgs4 regulator of G-protein signaling 4 Mm.41642 2,35 3,30 2,80 8,9E-05 3
1418322_at Crem cAMP responsive element modulator Mm.5244 2,33 3,51 3,02 0,0021 1
1451680_at Srxn1 sulfiredoxin 1 homolog (S. cerevisiae) Mm.218639 2,32 1,82 1,50 0,0132 n.d.
1419209_at Cxcl1 chemokine (C-X-C motif) ligand 1 Mm.21013 2,31 3,57 3,19 0,0019 2
1421396_at Pcsk1 proprotein convertase subtilisin/kexin type 1 Mm.1333 2,28 2,74 2,35 4,6E-04 3
1448471_a_at Ctla2a cytotoxic T lymphocyte-associated protein 2 alpha Mm.30144 2,28 2,31 1,53 0,0125 3
1421679_a_at Cdkn1a cyclin-dependent kinase inhibitor 1A (P21) Mm.195663 2,27 1,74 1,34 0,0206 3
1416431_at Tubb6 tubulin, beta 6 Mm.181860 2,27 2,42 1,81 3,8E-04 n.d.
1420499_at Gch1 GTP cyclohydrolase 1 Mm.10651 2,27 1,99 1,64 0,0022 n.d.
1450377_at LOC640441 /// Thbs1 thrombospondin 1 /// similar to thrombospondin 1 Mm.4159 2,25 2,04 1,78 8,5E-04 n.d.
1451264_at Frmd6 FERM domain containing 6 Mm.2962 2,24 3,42 2,26 0,0018 n.d.
1453287_at 5730557B15Rik RIKEN cDNA 5730557B15 gene Mm.102470 2,23 3,72 2,50 0,0041 3
1427005_at Plk2 polo-like kinase 2 (Drosophila) Mm.380 2,23 1,94 1,72 0,0022 4
1453326_at 3300001A09Rik /// EG244911RIKEN cDNA 3300001A09 gene /// predicted gene, EG244911 Mm.105353 2,22 1,52 1,43 5,3E-05 n.d.
1440104_at Ranbp2 RAN binding protein 2 Mm.401648 2,21 2,85 4,20 0,0211 7
1436329_at Egr3 early growth response 3 Mm.103737 2,18 3,16 2,50 0,0062 5
1417357_at Emd emerin Mm.18892 2,18 2,72 2,21 4,6E-05 4
1421756_a_at Gpr19 G protein-coupled receptor 19 Mm.4787 2,17 2,04 1,92 2,5E-04 2
1452418_at 1200016E24Rik RIKEN cDNA 1200016E24 gene Mm.332931 2,15 2,23 1,51 0,0034 n.d.
1444402_at Zc3h12c zinc finger CCCH type containing 12C Mm.390172 2,15 1,99 1,41 0,0229 n.d.
1453238_s_at 1200016E24Rik /// 3930401B19Rik /// A130040M12Rik /// E430024C06RikRIKEN cDNA 3930401B19 gene / RIKEN 1200016E24 gene / RIKEN A130040M12 gene / RIKEN E430024C06 gene Mm.332931 2,15 2,63 1,74 0,0026 n.d.
1424248_at Arpp21 cyclic AMP-regulated phosphoprotein, 21 Mm.297444 2,14 2,63 2,57 0,0016 n.d.
1422562_at Rrad Ras-related associated with diabetes Mm.29467 2,10 2,59 1,94 0,0006 3
1427539_a_at Zwint ZW10 interactor Mm.62876 2,09 4,68 3,77 0,0227 3
1450716_at Adamts1 a disintegrin-like and metallopeptidase (reprolysin type) with thrombospondin type 1 motif, 1 Mm.1421 2,08 3,33 3,14 0,0040 3
1415834_at Dusp6 dual specificity phosphatase 6 Mm.1791 2,07 2,36 2,34 0,0122 2
1422324_a_at Pthlh parathyroid hormone-like peptide Mm.28440 2,06 1,81 1,34 0,0032 3
1429856_at LOC100048169 /// Tspan18tetraspanin 18 /// hypothetical protein LOC100048169 Mm.467598 2,05 1,13 1,22 0,0149 n.d.
1435119_at Transcribed locus Mm.395027 2,05 1,71 1,26 0,0381 n.d.
1455130_at Spty2d1 SPT2, Suppressor of Ty, domain containing 1 (S. cerevisiae) Mm.155687 2,04 3,17 2,92 8,7E-04 n.d.
1460510_a_at Coq10b coenzyme Q10 homolog B (S. cerevisiae) Mm.281019 2,04 2,44 2,15 1,8E-04 n.d.
1423619_at Rasd1 RAS, dexamethasone-induced 1 Mm.3903 2,03 1,94 1,77 0,0029 6
1437199_at Dusp5 dual specificity phosphatase 5 Mm.52043 2,03 2,60 2,24 0,0029 n.d.
1416529_at Emp1 epithelial membrane protein 1 Mm.182785 2,02 3,28 2,79 0,0013 3
1428562_at 2210403K04Rik RIKEN cDNA 2210403K04 gene 2,01 1,61 1,28 0,0306 n.d.
1422554_at Ndnl2 necdin-like 2 Mm.19944 2,00 1,53 1,23 0,0390 1
1450708_at Scg2 secretogranin II Mm.5038 2,00 2,06 1,82 0,0011 5
1416286_at Rgs4 regulator of G-protein signaling 4 Mm.41642 1,99 2,93 2,44 1,8E-04 1
1436871_at Sfrs7 splicing factor, arginine/serine-rich 7 Mm.292016 1,99 2,05 1,90 0,0305 n.d.
1442014_at Transcribed locus Mm.441586 1,98 3,66 3,77 0,0054 n.d.
1449227_at Ch25h cholesterol 25-hydroxylase Mm.30824 1,96 2,41 1,61 0,0064 n.d.
1419706_a_at Akap12 A kinase (PRKA) anchor protein (gravin) 12 Mm.27481 1,95 3,73 2,49 3,1E-04 3
1428923_at Ppp1r3g protein phosphatase 1, regulatory (inhibitor) subunit 3G Mm.473856 1,92 2,97 2,42 0,0186 n.d.
1452519_a_at Zfp36 zinc finger protein 36 Mm.389856 1,91 2,36 2,39 9,8E-05 4
1424880_at Trib1 tribbles homolog 1 (Drosophila) Mm.40298 1,91 2,26 2,13 0,0022 n.d.
1449037_at Crem cAMP responsive element modulator Mm.5244 1,91 2,35 2,31 0,0056 1
1448325_at Myd116 myeloid differentiation primary response gene 116 Mm.4048 1,90 2,13 2,25 0,0021 3
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1428083_at 2310043N10Rik RIKEN cDNA 2310043N10 gene Mm.281895 1,90 3,43 2,81 0,0101 n.d.
1434885_at Spty2d1 SPT2, Suppressor of Ty, domain containing 1 (S. cerevisiae) Mm.155687 1,90 2,43 2,19 0,0099 n.d.
1418572_x_at Tnfrsf12a tumor necrosis factor receptor superfamily, member 12a Mm.28518 1,88 2,29 1,76 0,0056 4
1443196_at Transcribed locus Mm.373919 1,88 2,40 1,57 0,0102 n.d.
1428487_s_at Coq10b coenzyme Q10 homolog B (S. cerevisiae) Mm.281019 1,85 2,53 2,22 2,7E-04 n.d.
1434585_at Tulp4 tubby like protein 4 Mm.28251 1,84 2,10 1,67 0,0098 n.d.
1417065_at Egr1 early growth response 1 Mm.181959 1,84 3,27 3,10 7,0E-04 5
1451612_at Mt1 metallothionein 1 Mm.192991 1,83 1,76 2,12 0,0057 6
1457644_s_at Cxcl1 chemokine (C-X-C motif) ligand 1 Mm.21013 1,80 2,36 1,90 0,0173 2
1435249_at Btaf1 BTAF1 RNA polymerase II, B-TFIID transcription factor-associated, (Mot1 homolog, S. cerevisiae) Mm.295062 1,80 2,30 1,87 0,0030 n.d.
1460275_at Gpr3 G-protein coupled receptor 3 Mm.4721 1,80 2,34 1,72 0,0013 8
1426081_a_at Dio2 deiodinase, iodothyronine, type II Mm.21389 1,79 2,12 1,82 0,0469 3
1448509_at 3110001A13Rik RIKEN cDNA 3110001A13 gene Mm.277864 1,77 2,08 1,54 0,0060 1
1428759_s_at Ccdc49 coiled-coil domain containing 49 Mm.33206 1,77 2,62 2,40 8,6E-05 n.d.
1437481_at LOC623451 hypothetical LOC623451 Mm.441245 1,73 2,58 2,26 4,8E-04 n.d.
1433582_at 1190002N15Rik /// LOC100044725RIKEN cDNA 1190002N15 gene /// hypothetical protein LOC100044725 Mm.258746 1,73 2,04 1,72 0,0042 n.d.
1439826_at Hspa14 heat shock protein 14 Mm.89341 1,72 2,07 1,94 0,0010 n.d.
1424271_at Dclk1 doublecortin-like kinase 1 Mm.393242 1,72 2,22 2,05 0,0028 n.d.
1416953_at Ctgf connective tissue growth factor Mm.393058 1,71 2,23 1,69 0,0057 2
1450690_at Ranbp2 RAN binding protein 2 Mm.401648 1,70 2,03 1,56 0,0062 7
1424107_at Kif18a kinesin family member 18A Mm.274086 1,70 2,42 1,82 0,0267 5
1451289_at Dclk1 doublecortin-like kinase 1 Mm.393242 1,70 2,17 2,03 0,0090 n.d.
1435248_a_at Btaf1 BTAF1 RNA polymerase II, B-TFIID transcription factor-associated, (Mot1 homolog, S. cerevisiae) Mm.295062 1,69 2,49 1,94 0,0151 n.d.
1416892_s_at 3110001A13Rik RIKEN cDNA 3110001A13 gene Mm.277864 1,69 2,14 1,78 8,7E-04 1
1446840_at Transcribed locus Mm.437560 1,69 2,23 1,51 0,0034 n.d.
1451340_at Arid5a AT rich interactive domain 5A (Mrf1 like) Mm.34316 1,68 2,07 1,70 0,0023 n.d.
1436659_at Dclk1 doublecortin-like kinase 1 Mm.393242 1,67 2,35 2,07 0,0016 n.d.
1422931_at Fosl2 fos-like antigen 2 Mm.24684 1,67 2,27 2,16 0,0048 5
1417612_at Ier5 immediate early response 5 Mm.12246 1,66 2,41 1,80 0,0078 3
1435137_s_at 1200015M12Rik /// 1200016E24Rik /// A130040M12Rik /// E430024C06RikRIKEN cDNA 1200015M12 gene / RIKEN 1200016E24 gene / RIKEN A130040M12 gene / RIKEN E430024C06 gene Mm.332931 1,66 2,12 1,54 0,0024 n.d.
1434967_at Zswim6 zinc finger, SWIM domain containing 6 Mm.433838 1,66 2,09 1,54 0,0038 n.d.
1430535_at Tsc22d2 TSC22 domain family 2 Mm.218409 1,65 2,13 1,75 0,0014 n.d.
1457651_x_at Rem2 rad and gem related GTP binding protein 2 Mm.274727 1,65 2,06 1,53 0,0045 2
1441894_s_at Grasp GRP1 (general receptor for phosphoinositides 1)-associated scaffold protein Mm.276573 1,64 2,06 1,69 0,0018 3
1422621_at Ranbp2 RAN binding protein 2 Mm.401648 1,62 2,01 1,71 0,0093 7
1416755_at Dnajb1 DnaJ (Hsp40) homolog, subfamily B, member 1 Mm.282092 1,62 2,05 2,31 0,0094 6
1435595_at 1810011O10Rik RIKEN cDNA 1810011O10 gene Mm.25775 1,62 2,42 1,62 0,0099 3
1456216_at 1,61 2,25 2,43 0,0030 n.d.
1426599_a_at Slc2a1 solute carrier family 2 (facilitated glucose transporter), member 1 Mm.21002 1,60 2,04 1,61 0,0034 1
1448694_at Jun Jun oncogene Mm.275071 1,60 2,12 2,03 0,0013 4
1449475_at Atp12a ATPase, H+/K+ transporting, nongastric, alpha polypeptide Mm.273271 1,59 2,59 1,92 0,0288 3
1450767_at Nedd9 neural precursor cell expressed, developmentally down-regulated gene 9 Mm.288980 1,59 2,03 1,34 0,0483 3
1448117_at Kitl kit ligand Mm.45124 1,58 2,01 1,74 0,0143 3
1457167_at Med14 mediator complex subunit 14 Mm.17616 1,57 2,32 2,04 0,0122 n.d.
1423852_at Shisa2 shisa homolog 2 (Xenopus laevis) Mm.275409 1,55 2,24 1,78 0,0058 n.d.
1451415_at 1810011O10Rik RIKEN cDNA 1810011O10 gene Mm.25775 1,54 2,33 1,90 0,0125 3
1436202_at Malat1 metastasis associated lung adenocarcinoma transcript 1 (non-coding RNA) Mm.298256 1,53 1,84 2,90 0,0338 n.d.
1441536_at Hmgcs1 3-hydroxy-3-methylglutaryl-Coenzyme A synthase 1 Mm.61526 1,53 2,19 2,31 0,0284 1
1437100_x_at Pim3 proviral integration site 3 Mm.400129 1,49 2,01 1,89 0,0011 2
1455872_at BC065085 cDNA sequence BC065085 Mm.37882 1,48 2,28 1,54 0,0066 n.d.
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1418681_at Alg13 asparagine-linked glycosylation 13 homolog (S. cerevisiae) Mm.249084 1,48 2,34 1,70 0,0122 n.d.
1452521_a_at Plaur plasminogen activator, urokinase receptor Mm.1359 1,48 2,32 1,90 0,0023 0
1433581_at 1190002N15Rik /// LOC100044725RIKEN cDNA 1190002N15 gene /// hypothetical protein LOC100044725 Mm.258746 1,47 2,16 1,91 0,0042 n.d.
1430352_at Adamts9 a disintegrin-like and metallopeptidase (reprolysin type) with thrombospondin type 1 motif, 9 Mm.257557 1,47 2,55 2,41 0,0034 n.d.
1442700_at Pde4b phosphodiesterase 4B, cAMP specific Mm.20181 1,42 2,30 2,52 0,0073 2
1422609_at Arpp19 cAMP-regulated phosphoprotein 19 Mm.247837 1,42 2,21 2,09 0,0053 2
1425964_x_at Hspb1 heat shock protein 1 Mm.473688 1,42 2,00 1,94 0,0008 4
1424893_at Ndel1 nuclear distribution gene E-like homolog 1 (A. nidulans) Mm.31979 1,39 1,69 2,06 0,0359 5
1457404_at Nfkbiz Nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor, zeta Mm.247272 1,34 1,71 2,24 0,0087 n.d.
1455182_at Kif1b kinesin family member 1B Mm.402393 1,28 2,12 1,78 0,0129 n.d.
1418937_at Dio2 deiodinase, iodothyronine, type II Mm.21389 1,28 2,19 1,66 0,0124 3
1423422_at Asb4 ankyrin repeat and SOCS box-containing protein 4 Mm.51340 1,22 2,01 1,39 0,0399 1
1457984_at Crh corticotropin releasing hormone Mm.290689 1,09 3,42 3,47 0,0459 n.d.
1429905_at Lhx9 LIM homeobox protein 9 Mm.250732 -1,07 -2,10 -1,80 0,0176 1
1423635_at Bmp2 bone morphogenetic protein 2 Mm.103205 -1,12 2,19 1,87 0,0488 1
1426514_at 4631426J05Rik RIKEN cDNA 4631426J05 gene Mm.213582 -1,44 -1,82 -2,04 0,0134 4
1460625_at Gm1568 gene model 1568, (NCBI) Mm.29367 -1,48 -2,14 -1,52 0,0116 n.d.
1428682_at Zc3h6 zinc finger CCCH type containing 6 Mm.26377 -1,55 -2,32 -2,01 0,0023 n.d.
1423146_at Hes5 hairy and enhancer of split 5 (Drosophila) Mm.137268 -1,62 -2,39 -1,83 0,0359 3
1456010_x_at Hes5 hairy and enhancer of split 5 (Drosophila) Mm.137268 -1,74 -2,54 -1,77 0,0340 3
1455147_at Transcribed locus Mm.440042 -1,80 -2,25 -1,95 0,0162 n.d.
1455865_at Insm1 insulinoma-associated 1 Mm.379070 -1,93 -2,15 -1,93 0,0032 0
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Supplementary Table 4

Kainate-induced genes altered in the hippocampus of A-CREB mice at the basal state (Pair-wise significant genes)

FC GCOS = average of fold change control saline vs. A-CREB saline in the two pairs of samples (Batch analysis, GCOS, Affymetrix)

Probe Set ID Gene Symbol Gene Title Unigene ID FC GCOS CRE sites
1436387_at C330006P03Rik homer homolog 1 (Drosophila) intron Mm.37533 -1,93 n.d.
1451264_at Frmd6 FERM domain containing 6 Mm.2962 -1,67 n.d.
1427683_at Egr2 early growth response 2 Mm.290421 -1,61 3
1418687_at Arc activity regulated cytoskeletal-associated protein Mm.25405 -1,56 2
1422609_at Arpp19 cAMP-regulated phosphoprotein 19 Mm.247837 -1,56 2
1417065_at Egr1 early growth response 1 Mm.181959 -1,41 5
1416286_at Rgs4 regulator of G-protein signaling 4 Mm.41642 -1,32 3
1416287_at Rgs4 regulator of G-protein signaling 4 Mm.41642 -1,32 3
1422554_at Ndnl2 necdin-like 2 Mm.19944 1,43 1
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Supplementary Table 5: Basal behavior analysis of A-CREB mice 
 
Parameter Control A-CREB p-value 
Abdominal Tone 1 (1-1) 1 (1-1) 1 
Aggression 0 (0-0) 0 (0-0) 1 
Barbering 0 (0-0) 0 (0-0) 1 
Body Length (mm) 93.67 ± 1.59 79.17 ± 1.56 <0.001 
Body Position 2 (2-3) 2 (2-3) 0.27 
Contact Righting Reflex 1 (1-1) 1 (1-1) 1 
Corneal Reflex 1 (1-1) 1 (1-1) 1 
Defecation 2 (1-3) 2 (1-3) 0.84 
Fear 0 (0-1) 0 (0-1) 0.58 
Gait 0 (0-0) 0 (0-0) 1 
Grip Strength 2 (2-3) 2 (2-3) 1 
Irritability 0 (0-0) 0 (0-1) 0.32 
Lacrimation 0 (0-0) 0 (0-0) 1 
Limb Grasping 1 (1-1) 1 (1-1) 1 
Limb Tone 1 (1-1) 1 (1-1) 1 
Locomotor Activity 12.83 ± 2.12 14 ± 2.09 0.47 
Negative Geotaxis 0 (0-0) 1 (1-2) 0.02 
Palpebral Closure 0 (0-0) 0 (0-0) 1 
Pelvic elevation 3 (3-3) 3 (3-3) 1 
Piloerection 0 (0-0) 0 (0-0) 1 
Pinna Reflex 1 (1-1) 1 (1-1) 1 
Provoked Biting 1 (1-1) 1 (1-1) 1 
Respiration Rate 2 (2-2) 2 (2-2) 1 
Righting Reflex 0 (0-0) 0 (0-0) 1 
Seizures 0 (0-0) 0 (0-0) 1 
Skin Color 2 (2-2) 2 (2-2) 1 
Spontaneous Activity 2 (1-2) 1 (1-2) 0.06 
Tail elevation 1 (1-1) 1 (1-1) 1 
Toe Pinch 2 (2-2) 2 (2-3) 0.32 
Touch Escape 3 (3-3) 2 (1-2) 0.02 
Transfer Arousal 5 (4-5) 5 (4-5) 0.58 
Tremor 0 (0-0) 0 (0-0) 1 
Trunk Curl 0 (0-0) 0 (0-0) 1 
Urination 0 (0-1) 0 (0-1) 0.26 
Vibrissae 1 (1-1) 1 (0-1) 0.32 
Visual Placing 2 (1-2) 2 (1-2) 0.52 
Vocalization 0 (0-1) 0 (0-1) 1 
Weight (gr) 27.8 ± 1.48 18.1 ± 0.58 <0.001 
Wire Maneuver 1 (0-1) 1 (0-1) 0.92 
 
p-values are calculated using T-test for data expressed as Mean ± S.E.M, and Mann-
Whitney test for data expressed as Median followed by Interquartile Range.  
Bolded values indicate parameters with significant differences (p<0.05) 
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Supplementary Figure S1 
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Supplementary Figure S2 
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