Cross-species tests of 45 microsatellite loci isolated from different species of ungulates in the Iberian red deer (*Cervus elaphus hispanicus*) to generate a multiplex panel

B. SANCHEZ-FERNANDEZ, R. SORIGUER and C. RICO Estación Biológica Doñana (CSIC), Avenue. Ma. Luisa S/N, 41013 Sevilla, Spain

Abstract

The Iberian red deer (*Cervus elaphus hispanicus*) is an emblematic game species in Spain. To generate a battery of polymorphic markers for multiplex polymerase chain reactions for the Spanish red deer, 45 loci isolated in different species of ungulates were tested. Of the primers tested, 27 amplified but only 21 were polymorphic. Eleven of these markers were subsequently optimized for multiplex in four polymerase chain reactions. This allows analysing several molecular markers jointly to substantially reduce costs. Finally, we report descriptive summary statistics such as number of alleles for the former and also test of disequilibria and heterozygosity for the latter.

Keywords: Cervus elaphus hispanicus, cross-species amplification, microsatellite, multiplex PCRs, polymorphism

During decades, natural red deer (*Cervus elaphus L*) populations have been affected by anthropogenic activities which have caused changes in their genetic structure.

Factors such as the selective hunting for trophies, habitat fragmentation, translocations, introduction of deer from genetically distinct populations, and the keeping of isolated populations in enclosures are known to produce depletion of genetic variability within a population, increase of genetic diversity among populations, as well as introgression and changes in allele frequencies (Hart & Zachos 2003).

The Iberian red deer (*Cervus elaphus hispanicus*) is one of the most abundant and emblematic big game species of Spain. An understanding of the population genetics of the natural red deer populations is essential to achieve a sustainable management, since they provide information about their levels of diversity, integrity and effective size. Microsatellites are the most widely used molecular markers in population genetic studies because of their high polymorphism, codominance and abundance throughout the genome (Vial *et al.* 2003). In ungulates, microsatellite flanking sequences are often conserved across close species and even across families, allowing a cross-species amplification of different loci (Roed & Midthjell 1998). For studies requiring genetic characterization of many individuals at a set microsatellite loci, time and cost become serious limiting factors and thus, the development of a multiplex panel which gather the total number of markers to use in a few polymerase chain reactions (PCR) is almost essential.

The aim of this study was to get a battery of polymorphic microsatellite loci with a high-quality amplification in the Spanish red deer and to gather different markers in as few as possible PCRs. Furthermore, we aimed at loading all the selected markers (a total of 11) in a single gel lane.

Tissue samples were obtained from animals shot over three hunting season (2003–2006) from different points in southern Iberian Peninsula. Eight individuals from a natural Andalusian population were used to test a set of 45 microsatellite markers developed in either cattle, sheep, reindeer of goats, initially using a single PCR per locus (Table 1).

DNA was extracted from tongue tissue through a Hot Sodium and Tris (HotSHOT) protocol (Truett *et al.* 2000). PCR amplifications were performed in a reaction volume of 20 μ L, containing 50 ng of DNA, 0.25 μ m of each primer, 250 μ m of dNTP, 2 mm of MgCl₂, 1× PCR buffer (Bioline) and 0.5 U of *Taq* polymerase (Bioline). The amplification of

Correspondence: B. Sanchez-Fernandez, Fax: (+34) 954 621125; E-mail: beatriz@ebd.csic.es

Table 1 Characteristics of 45 primer pairs tested in a sample of eight individuals to develop multiplex PCRs in the Iberian red deer. Twenty-one microsatellites were polymorphic and 11 of them were chosen because of their high polymorphism and size range

Locus (Ref)	GenBank Accession no.	Primers (5'-3')	Amplification	Size range	Na
BM864¶	U06764	TGGTAGAGCAATATGAAGGCC	No amplification		
		GGAAATCCAAGAAAGAGGGG			
BL41¶	NC007301	CCTCGCCATCTTTATTCCT	No amplification		
		AAGATCAACTTATTCCTCACAGTGG			
BL42¶	NC007311	CAAGGTCAAGTCCAAATGCC	No amplification		
		GCATTTTTGTGTTAATTTCATGC			
BM6437¶	G18436	GAGGAAATACAGAACTCAGCCG	No amplification		
		TCAAACAGCATCTAGGCGG			
BP1¶	NC007303	AAAATCCCTTCATAACAGTGCC	No amplification		
		CATCGTGAATTCCAGGGTTC			
BP7¶	NC007304	GACCTTTTCACTGCCCTCTG	Monomorphic	289	1
		TTTATTTCTGAGTGTTTGGGGC			
BM415¶	G18413	GCTACAGCCCTTCTGGTTTG	Polymorphic	136–168	4
		GAGCTAATCACCAACAGCAAG			
BM143¶	G18387	ACCTGGGAAGCCTCCATATC	No amplification		
		CTGCAGGCAGATTCTTATCG			
BM888¶	G18484	AGGCCATATAGGAGGCAAGCTT	Polymorphic	189–219	6
	~	CTCGGTGAGCTCAAAACGAG			
BM4513¶	G18507	GCGCAAGTTTCCTCATGC	Polymorphic	132–146	3
		TCAGCAATTCAGTACATCACCC			
BM302¶	G18774	GAATTCCCATCACTCTCTCAGC	Polymorphic	140–148	4
D. 10 105	G10511	GTTCTCCATTGAACCAACTTCA		200 221	
BM848¶	G18511	TGGTTGGAAGGAAAACTTGG	Polymorphic	289-321	2
D) (1 / 105	G10.000	CCTCTGCTCCTCAAGACAC			
BM1443¶	G18438	AATAAAGAGACATGGTCACCGG	No amplification		
D) (15056	G10511	TCGAGGTGTGGGGAGGAAG		221 222	•
BM4505¶	G18511	TTATCTTGGCTTCTGGGTGC	Polymorphic	231-233	2
DN 7579	019472	ATCTTCACTTGGGATGCAGG		160, 170	2
BM/5/¶	G184/3	'IGGAAACAA'IG'I'AAACC'I'GGG	Polymorphic	160-170	2
DM2020	C19500	TIGAGCCACCAAGGAACC		216 250	6
BM203	G18500	GGGIGIGACATITIGTICCC	Polymorphic	210-250	0
CSSM428	1102924		Dolymomhia	256 212	0
C35M458	003824		Polymorphic	230-512	0
CSSM668	1 5727761		Dolymorphia	170 100	6
C2210008	AI ² 232704		Folymorphic	170-190	0
ETH 108	722730		Nonspecific amplification		
E111 108	L22133		Nonspectific amplification		
FTH1528	714040		Monomorphic	195	1
21111328	214040		Wonomorphie	175	1
FTH2258	AF232767	CATCACCTTCCCACTATTTCCT	No amplification		
21112238	11 252707	ACATGACACCACCACCTACT	no ampinication		
RBP38	NW001494477		Polymorphic	184-188	3
illi 53	1111001191177	CCCTADATACTACCATCTAGAAG	rorymorphie	101 100	5
SR-CSRP01 [†]	L22192	TCCALCACTTTTTCCACACC	Monomorphic	114	1
Sit Cold 014		TCATTCACCABACTCTCABAC	Monomorphic	111	1
SR-CSRP05†	L22197	CCACTCTACCAACTCACCTACAAC	No amplification		
Sit Cold 054		TGAAATGAAGCTAAAGCAATGC	no unprincutori		
ILST011 ⁺ ⁺	L23485	COTTOCTACATOCAAACCAA	No amplification		
	220.00	(TAAAATGCAGAGCCCTACC	ite ampiriouton		
MAF70††	M77199	CACCGACTCACAAACACTCACACC	Nonspecific amplification		
		GCAGGACTCTACGGGGGCCTTTTGC			
TGLA1228	NC007319	CCCTCCTCCAGGTAAATCAGC	Monomorphic	144	1
0		AATCACATGGCAAATAAGTACATAC	· · · · · · · · · · · · · · · · · · ·		-

Table 1 Continued

Locus (Ref)	GenBank Accession no.	Primers (5'-3')	Amplification	Size range	N _a
TGLA94*	AF288204	CGAATCTCTAGGGATTGAGACTGTG	Polymorphic	134–152	5
		CATCAAAACAGTGAAGGATGATTGCCAG			
MB25‡‡	AB204988	GGACACGTTCTGCAGATACAACTAC	Polymorphic	195/203	4
		GAACTCTCCTTAAGCATACTTGCTC			
JMP29‡‡	U30893	GTATACACGTGGACACCGCTTTGTAC	No amplification		
		GAAGTGGCAAGATTCAGAGGGGAAG			
SR-CSRP24‡‡	Unpublished	AGCAAGAAGTGTCCACTGACAG	Nonspecific amplification		
		TCTAGGTCCATCTGTGTTATTGC			
SR-CSRP26‡‡	Unpublished	ACAGAGGTGAAGAATAAGGAGAGTG	Monomorphic	116	1
		GATAGTTTCAGAAGACCCAGTTGAG			
NVHRT16††	AF068206	ATTCTAAGCCCAAATAATCTT	Polymorphic	155-159	2
		TCTAAGGGGTCTGTGTCTT			
NVHRT21(g)	AF068207	GCAGCGGAGAGGAACAAAAG	Polymorphic	149–165	7
(5)		GGGGAGGAGCAGGGAAATC			
NVHRT48††	AF068214	CGTGAATCTTAACCAGGTCT	Polymorphic	086-114	4
		GGTCAGCTTCATTTAGAAAC			
NVHRT66††	AF068216	GCAGAGTCCGTGGGATTG	No amplification		
		TTGGAGGCAGCTTGGCTTAT			
NVHRT73††	AF068218	CTTGCCCATTTAGTGTTTTCT	Polymorphic	204-226	6
		TGCGTGTCATTGAATAGGAG			
RT1**	U90737	TGCCTTCTTTCATCCAACAA	Polymorphic	203-217	5
		CATCTTCCCATCCTCTTTAC			
RT6**	U90739	TTCCTCTTACTCATTCTTGG	No amplification		
		CGGATTTTGAGACTGTTAC			
RT7 _(f)	U90740	CCTGTTCTACTCTTCTTCTC	No amplification		
~ / /		ACTTTTCACGGGCACTGGTT			
RT13**	U90743	GCCCAGTGTTAGGAAAGAAG	Polymorphic	292-312	7
		CATCCCAGAACAGGAGTGAG			
RT25**	U90747	TGCCAAGGAACCAAGATGTC	Nonspecific amplification		
		CATTCCAGTATTATTGCCTGA			
RT27**	U90748	CCAAAGACCCAACAGATG	Monomorphic	133	1
		TTGTAACACAGCAAAAGCATT			
OarFCB193 [†]	L01533	GCTTGGAAATAACCCTCCTGCATCCC	Polymorphic	100-132	7
		TTCATCTCAGACTGGGATTCAGAAAGGC			
OarFCB304†	L01535	CGCTGCTGTCAACTGGGTCAGGG	Polymorphic	124-140	5
		CCCTAGGAGCTTTCAATAAAGAATCGG			

 N_a is number of alleles per locus. Ref is the source of microsatellites: *Georges & Massey (1992); †Buchanan & Crawford (1993); ‡Arevalo et al. (1994); \$Barendse et al. (1994); \$Barendse et al. (1994); *Wilson et al. (1997); ††Roed & Midthjell (1998); ‡‡Vial et al. (2003).

microsatellite markers was carried out in a PTC-100 Programmable Thermal Controller (MJ Research Inc.) using the following conditions: an initial denaturation step at 95 °C for 10 min followed by 35 cycles of 30 s at 94 °C, 1 min at 54 °C and 1 min 30 s at 72 °C and a last cycle of extension of 10 min. The PCR conditions were kept constant for each locus, to make the subsequent multiplex easier. The products of amplification were visualized and scored via gel electrophoresis and ethidium bromide staining.

Of the 45 microsatellite primers tested, 18 failed to amplify or gave nonspecific amplification products while 27 yielded a PCR product of the expected size, but only 21 of them were polymorphic (Table 1). A total of 15 markers were selected to multiplex because of their high levels of polymorphism visualized in agarose gels and the absence of dimer formation among them as detected by the oligo 6.4 software (Molecular Biology Insights).

To multiplex, we carried out a high number of tests, grouping several markers of different allelic size in a single reaction and adjusted the concentration of primers according to the signal. All other PCR conditions were kept as outlined above. Four different combinations of primers were optimized in a total of 11 microsatellite markers. F-primers of these four reactions were 5'-end

Table 2 Description of the 11 microsatellites typed on 30 Iberian red deer in Andalucia, Spain

	Locus	Primer (µm)	N _A	Size range (bp)	H _o	$H_{\rm E}$	$P_{\rm HW}$
PCR1	TGLA94	0.2	7	134–156	0.8333	0.7833	0.6664
	RT1	0.25	7	203-229	0.8667	0.8122	0.7840
	RT13	0.35	11	292-318	0.8276	0.8787	0.0393
PCR2	OarFCB193	0.25	12	092-140	0.8214	0.8807	0.1021
	MB25	0.15	5	195-209	0.4333	0.6850	0.0004
	CSSM43	0.6	14	254-334	0.9310	0.8639	0.8748
PCR3	NVHRT48	0.1	7	084-118	06000	0.6167	0.1759
	BM302	0.25	5	140-156	0.6333	0.6861	0.4194
	NVHRT73	0.25	8	206-228	0.9000	0.7900	0.9538
PCR4	OarFCB304	0.15	8	118-142	0.7667	0.7617	0.3785
	BM203	0.4	8	208–266	0.7667	0.7678	0.6630

 $N_{\rm A}$, number of alleles detected per locus; $P_{\rm HW}$, probability of Hardy–Weinberg equilibrium test; $H_{\rm O}$ and $H_{\rm E}$, observed and expected heterozygosities, respectively.

labelled with PET, NED, FAM or VIC and amplified fragments were resolved on an ABI PRISM 3100 Genetic Analyser (Applied Biosystems).

We analysed the genotypes of 30 individuals of a natural red deer population from Andalusia using the developed multiplex PCRs. Hardy–Weinberg (P_{HW}) and linkage tests of disequilibria were performed with the genepop version 3.4 software (Raymond & Rousset 1995) using Markov chain with 10 000 dememorizations, 1000 batches and 10 000 iterations per batch. Of the 11 microsatellites, only MB25 differed significantly from Hardy-Weinberg expectations. Tests for linkage disequilibrium between pairs of loci revealed no significant results. genetix software version 4.05 (Belkhir et al. 2000) was used to calculate the number of alleles per locus and the heterozygosity. The selected microsatellite markers showed high levels of polymorphism with five (MB25) to 14 (CSSM43) alelles per locus (Table 2). Average allelic diversity across loci was 8. Average expected $(H_{\rm F})$ and observed $(H_{\rm O})$ heterozygosities over loci were 0.7751 and 0.7618, respectively.

These PCR conditions have been thoroughly tested in several hundred samples and thus, are suitable for future studies in this species.

Acknowledgements

We thank G. Lopez, E. Leiva and P.A.I. (RNM118) for their collaboration and support. J. Munoz, M. Alcaide, J.A. Galarza, S. Roques helped in the laboratory. This work was funded in part by ATECA (a society of big game of Andalucian) and Consejeria de Medio Ambiente, Junta de Andalucia.

References

- Arevalo E, Holder DA, Derr JN et al. (1994) Caprine microsatellite dinucleotide repeat polymorphisms at the SR-CSRP-1, SR-CSRP-2, SR-CSRP-3, SR-CSRP-4 and SR-CSRP-5 loci. Animal Genetics, 25, 202.
- Barendse W, Armitage SM, Kossarek LM et al. (1994) A genetic linkage map of the bovine genome. Nature Genetics, 6, 227–235.
- Belkhir K, Borsa P, Goudet J, Chikhi L, Bonhomme F (2000) GENETIX v. 4.05. Logiciel Sous Windows TM, Pour la Génétique Des Populations. Laboratoire Génome, Populations, Interactions. CNRS UMR 5000, Université de Montpellier II, Montpellier, France.
- Bishop MD, Kappes SM, Keele JW et al. (1994) A Genetic linkage map for cattle. Genetics, 136, 619–639.
- Buchanan FC, Crawford AM (1993) Ovine microsatellites at the OarFCB11, OarFCB128, OarFCB193, OarFCB266 and OarFCB304 loci. Animal Genetics, 24, 145.
- Georges M, Massey J (1992) Polymorphic DNA Markers in Bovidae. World Intellectual Property Org, Geneva, Switzerland.
- Hartl GB, Zachos F (2003) Genetic diversity in European red deer (*Cervus elaphus* L.): anthropogenic influences on natural populations. *Comptes Rendus Biologies*, **326** (1), 37–42.
- Raymond M, Rousset F (1995) genepop (version 1.2): population genetics software for exact test and ecumenism. *Journal of Heredity*, **86**, 248–249.
- Roed KH, Midthjell L (1998) Microsatellites in reindeer, Rangifer tarundus, and their use in other cervids. Molecular Ecology, 7, 1773–1776.
- Truett GE, Heeger P, Mynatt RL *et al.* (2000) Preparation of PCRquality mouse genomic DNA with hot sodium hydroxide and Tris (HotSHOT). *BioTechniques*, **29**, 52–54.
- Vial L, Maudet C, Luikart G (2003) Thirty-four microsatellites for European roe deer. *Molecular Ecology Notes*, 3, 523–527.
- Wilson GA, Strobeck C, Wu L, Coffin JW (1997) Characterization of microsatellite loci in caribou *Ranginfer tarandus*, and their use in other artiodactyls. *Molecular Ecology*, 6, 697–699.