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REVIEW review

Introduction

The different subtypes of acute lymphoblastic leukemias (ALLs) 
are grouped under this umbrella term, because, as a whole, they 
present many similarities from the point of view of the differ-
entiation phenotypes of the tumoral cells. However, ALLs are a 
heterogeneous group of diseases, not only between children and 
adults, but also from the aspect of the molecular pathogenesis and 
from the point of view of their clinical evolution and response to 
treatment. Indeed, some subtypes are now highly responsive to 
the currently used chemotherapy regimens, and complete long-
term remissions (>10–15 y) can be achieved, while other subtypes 
still present very poor prognoses. This aspect is highly correlated 
with the characteristics of the molecular, leukemia-initiating, 
genetic anomalies that are at the root of the disease. In this way, 
the 5-y event-free survival estimate for TEM-AML1+ patients is 
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The latest scientific findings in the field of cancer research are 
redefining our understanding of the molecular and cellular 
basis of the disease, moving the emphasis toward the study 
of the mechanisms underlying the alteration of the normal 
processes of cellular differentiation. The concepts best 
exemplifying this new vision are those of cancer stem cells 
and tumoral reprogramming. The study of the biology of 
acute lymphoblastic leukemias (ALLs) has provided seminal 
experimental evidence supporting these new points of view. 
Furthermore, in the case of B cells, it has been shown that all 
the stages of their normal development show a tremendous 
degree of plasticity, allowing them to be reprogrammed 
to other cellular types, either normal or leukemic. Here 
we revise the most recent discoveries in the fields of B-cell 
developmental plasticity and B-ALL research and discuss their 
interrelationships and their implications for our understanding 
of the biology of the disease.
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of 89%,1 while for those carrying the MLL-AF4 translocation it 
is only of 32%.2,3 Therefore, given the high degree of similarity 
on their B-cell differentiation surface or intracellular markers, 
it is clear that the natural evolution and prognosis of B-ALLs is 
closely dictated by the molecular nature of the underlying genetic 
anomalies.

The normal development of B lymphocytes is a highly ordered 
process in which a tightly regulated interplay between the extrin-
sic cytokine and B-cell receptor (BCR) signaling and the intrinsic 
transcriptional and epigenetic programming leads the cells all the 
way from hematopoietic stem cells (HSCs) to the mature B cells. 
This is a multistep process in which several “quality control” 
checkpoints verify the presence of the correct immunoglobulin 
genes rearrangements and give access to the progressively more 
differentiated stages. Any deregulation of this delicate equilib-
rium will lead, in most cases, to developmental arrest and cel-
lular death. However, there are specific circumstances in which 
this differentiation program can be subverted and rewired toward 
new developmental fates. This reprogramming can be caused by 
experimental manipulations in the laboratory, as in the case of 
reprogramming to pluripotency or programmed dedifferentia-
tion, but it can also happen in vivo in human leukemias (Fig. 1). 
In the majority of these cases, the molecular players leading to 
these aberrant fates are in close relationship with the ones partici-
pating in normal development. The field of ALL development is a 
clear example of the mutual beneficial feedback existing between 
the study of the normal developmental biology of a lineage and 
that of its tumoral counterpart. In this review, we describe the 
fundamental and latest findings in the field of B-cell commit-
ment and early development, and we discuss them in the context 
of the most recently proposed paradigms for our understanding 
of B-ALL development and biology.

Early B-Cell Development

The progression from hematopoietic stem cells to committed 
B cells. The continuous technological and scientific advances 
in the fields of flow cytometry and mouse genetic engineering 
keep on adding new layers of complexity to our understanding 
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immunoglobulin gene rearrangements and the pattern of expres-
sion of immunoglobulins (Fig. 2).

The first cell in the hematopoietic hierarchy is the hemato-
poietic stem cell (HSC). By definition, according to their stem 
cell nature, these cells have the capacity of extensive self-renewal 
and differentiation (i.e., they can originate all the cellular types 
within the hematopoietic system). From a functional point of 
view, this is defined as their capacity to maintain blood forma-
tion for at least 16 weeks after their transplantation into a lethally 
irradiated host.4 As we have just mentioned, the procedures 
for isolating hematopoietic stem cells are not standardized or 
100% reproducible among different laboratories. For a detailed 
description of the combinations of markers used to define the 
subpopulations of early lymphoid progenitors, please see refer-
ence 5. Possibly the most common universal (but nowadays 
somewhat insufficient for advanced studies) definition is that of 
lineage (CD3, CD4, CD8, CD11c, CD19, DX5 or NK1.1, B220, 
TER119, GR1 and MAC1)-negative (Lin-) Sca1+ c-KitHIGH cells 
from the bone marrow (BM), containing all short- and long-term 
repopulating HSCs (LT-HSCs) and representing approximately 
0.1% of the total cell pool in the BM of mice of the C57BL/6 
strain. It is possible to further enrich LT-HSCs by excluding 
short-term HSCs and progenitors, distinguishable on the basis of 
their higher retention of the rhodamine 123 dye6 or their expres-
sion of markers like Mac-1,7 CD34,8,9 Flk2/Flt3 10-12 or CD49b/

of hematopoietic cell development. This is especially true for 
the early stages of differentiation, where progenitors’ popula-
tions are formed by very low numbers of cells, and the use of 
novel combinations of phenotypic markers allows their subdivi-
sion into new subgroups. There are, however, several problems 
associated with this increased cytometric accuracy. First, the 
demonstration of the functional capabilities of these new popu-
lations in vivo is not always easy given their low numbers and 
the fact that the isolation procedure can condition and/or mod-
ify by itself the developmental potential of the purified popula-
tion (on what could be the Heisenberg’s uncertainty principle 
applied to development). Another important problem is the 
difficult inter-laboratory reproducibility of the experiments due 
to the advanced flow cytometric technologies required for the 
separation and the reduced numbers of progenitors obtained. 
This, together with the fact that different laboratories might 
have generated and studied their own genetically modified mice 
with specific developmental tracers, has caused quite some con-
troversy in the field of early hematopoietic development and 
sometimes makes it difficult to unify the data coming from dif-
ferent research groups.

The maturation process from bone-marrow (BM) progeni-
tors to mature B cells proceeds through a series of stages that 
can be identified by the expression of specific transcription fac-
tors and of cell surface markers as well as by the status of the 

Figure 1. Plasticity in B-cell development. B-cell differentiation is represented in a lineal configuration representing the stages from the HSC to the 
terminally differentiated plasma cells (see text for details). Committed B cells expressing Pax5 are shown with a blue cytoplasm. The red lines repre-
sent events occurring during the genesis and evolution of B-ALL. The red continuous double arrow reflects the fact that dedifferentiation can occur 
from committed B cells to earlier developmental stages by the action of the oncogenic alterations, but, also, the presence of the leukemia-inducing 
alterations in stem/progenitor cells programs these cells to acquire a B cell-like phenotype. The dashed red arrows reflect the fact that both LSCs and 
differentiated B-ALL cells can present with a variable and evolving surface phenotype, resembling different developmental stages. Green and orange 
arrows represent situations obtained experimentally in vivo or in vitro, that illustrate the high degree of plasticity of B cells that allows them to give 
rise to either normal T cells, macrophages, to progenitor B-cell lymphomas or to induced pluripotent stem cells.
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progenitor compartment can also arise as a logical consequence 
of the equilibrium between regulatory genes “pushing” in dif-
ferent directions. Indeed, using the well-established stem cell 
antigen Sca1 as a phenotypic marker, it has been demonstrated 
that its levels of expression follow a Gauss curve, even in a clonal 
population of progenitor cells.16 However, the cells at both ends 
of this curve are not static but, rather, can regenerate the whole 
population with all its range of expression levels. Furthermore, 
when analyzed at the molecular level, these cellular subcom-
partments with defined Sca1 expression levels present different 
transcriptomes, and they confer them specific developmental 

a2 integrin.13 But even within these highly purified populations, 
functional variability exists. For example, it has been recently 
shown that many of the cells that form part of highly enriched 
HSCs suspensions are, in fact, intermediate term HSCs that do 
not have the capacity to sustain long-term erythropoiesis.14 There 
are many accumulating evidences of the functional heterogeneity 
of HSCs. For example, the heritable properties of individually 
analyzed HSC clones indicated that a minority of HSCs have an 
unbalance regarding myeloid-vs.-lymphoid fates.15 This property 
was speculated to result from epigenetic events occurring early 
in life. However, this “fate instability” that seems intrinsic to the 

Figure 2. Molecular control of B-cell development. The figure depicts the cellular windows of expression of the main molecular players participating 
in the building and stabilization of B-cell identity. It must be taken into account that the stem/progenitor populations are heterogeneous regard-
ing their transcriptomes (see main text), and that some of the depicted factors possess several isoforms whose functions and individual patterns of 
expression have not yet been elucidated.
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killer (NK) and dendritic cell (DC) potential, and that they con-
stitute the last hematopoietic progenitor stage before B-cell dif-
ferentiation. The most primitive cells in the thymus are referred 
to as early T-lineage progenitors (ETPs), but the nature of the 
lymphoid progenitor that seeds the thymus and is responsible for 
T-cell development is still highly controversial and falls out of the 
scope of this review.

The subsequent B-cell differentiation steps are represented 
in several schemes that account for the sequential loss and gain 
of expression of differentiation markers and correlate with the 
molecular events that take place along with B-cell differentia-
tion (namely, but not only, the immunoglobulin gene rearrange-
ments). One of the most widely used is the scheme of Hardy and 
colleagues, which classifies B-cell progenitors into several, alpha-
betically ordered, fractions: A (pre-pro-B cells), B (pro-B cells) 
and C (large pre-B cells)29 (Fig. 2). Fraction A (pre-pro-B cells, 
B220+CD24low) are most probably immediately downstream of 
ELPs and CLPs and still include cells belonging to the NK and 
DC lineages.30 Fraction A includes cells with a latent myeloid 
potential, consistent with the fact that they still don’t express the 
B-cell commitment factor Pax5 (see below).31 The original defi-
nition of Fraction A has been expanded to B220+CD24lowLy6C-

AA4.1hiCD43lowKITlowIL-7Rα+ to exclude cells with DC, NK or 
myeloid potential.28 The developmental transition to Fraction 
B (pro-B cell) is marked by the expression of CD19. This event 
is totally contingent on the activation of the transcription fac-
tor Pax5 and dictates in vivo the irreversible commitment to the 
B-cell lineage.32 From this point onwards, in normal conditions, 
B cells proceed through an ordered series of steps that lead to 
the formation of immature B220+CD19+IgM+IgD- B cells in 
the bone marrow that would mature in the peripheral lymphoid 
organs into B220+CD19+IgM+IgD+ mature B cells.32

All the developmental intermediates described above have 
been identified and studied in mice. Although differences exist 
with humans, especially at the levels of the markers defining 
the different compartments, the main concepts can be extrapo-
lated from one organism to another. CD34 is expressed by the 
majority of the early precursors, which lack lineage markers, 
and CD38 expression correlates with lineage commitment. The 
LIN-CD34+CD38- fraction of human BM bone marrow can be 
subdivided into three subpopulations: CD90+CD45RA-, CD90-

CD45RA- and CD90-CD45RA+.33 The LIN-CD34+CD38-

CD90+CD45RA- fraction is highly enriched in HSCs, and the 
LIN-CD34+CD38-CD90-CD45RA- has been proposed as the 
candidate cord blood human multipotent progenitor,33 and the 
LMMPs have been proposed to be contained in the CD38-

CD45RA+ population.33-35 The human candidate CLPs are LIN-

CD10+CD34+, and they are principally biased toward the B-cell 
fate, both in terms of developmental potential and gene expres-
sion profiling.36-38 So, although there is much less information 
available for normal lymphopoiesis in humans than in mice, the 
systems seem to develop in a very similarly organized manner.

Transcriptional regulation of B-cell development. The pro-
gression of the cells from HSCs to the B-cell lineage is paralleled 
by the loss of multipotency and self-renewal and the activation 
of the B cell-specific gene program. As previously explained, the 

capacities toward given lineages.16 These results indicate that 
each individual cell at the progenitor stage is an almost unique 
transitional stage in a gamut of fluctuating transcriptomes. This 
equilibrium makes the population very resilient while, at the 
same time, making it strongly responsive to external or internal 
factors, like, for example, cytokines or pharmacological com-
pounds or epigenetic regulators. Therefore, the heterogeneous 
expression of surface markers is a reflection of what happens 
inside the cells at the much more relevant level of the transcrip-
tion factors and epigenetic regulators. In fact, progenitors at the 
population level have been shown to present a particular pheno-
typic heterogeneity in the form of the promiscuous activation of 
lineage-associated genes.17,18 In summary, we can see that, in the 
progenitors’ population, multipotency is a dynamic state of het-
erogeneity. The cells that are in a more stable state, at the center 
of the attractor “valley” have less tendency to differentiate than 
the ones lying at the periphery of the distribution. These ones 
are partially poised to differentiate, suggesting that commitment 
toward a lineage is a spontaneous but infrequent phenomenon, 
unless it is brought forth by external signals.19,20 In this way, the 
equilibrium between plasticity and heterogeneity in multipotent 
populations is explained, and this also helps understanding how 
the balance between instructed and stochastic cell fate decisions 
takes place. In the context of leukemias (and cancer in general) 
from this point of view, malignant development could be consid-
ered as a particular natural state of cell regulation that normally 
is inaccessible, locked beneath many layers of molecular regula-
tory networks.21 The role of the oncogenic modifications would 
therefore be to tip the balance to make these hidden fates pos-
sible22 (see below).

Even though, as we have outlined, the precise way in which 
it happens is still not known, it is clear that there is a progres-
sive loss of developmental potential as we move away from the 
LT-HSCs. CD34+Flt3+ cells present already a greatly reduced 
capacity to contribute to the megakaryocytic or erythroid lin-
eages, and within this compartment, together with other pro-
genitors, we can already find the lymphoid-primed multipotent 
progenitor cells (LMPPs).23 A subset within LMPPs is the one 
formed by the early lymphoid progenitors (ELPs), identified by 
using a GFP knock-in strategy within the RAG1 locus.24 ELPs are 
very effective in restoring lymphocytes in transplantation assays 
but have reduced potential for generating myeloid cells, therefore 
representing the earliest stages of lymphoid-lineage specification. 
Their progenitor nature is, however, evidenced by the fact that, 
like HSCs, they are not homogeneous, since many are quiescent, 
and individual cells express different combinations of lymphoid 
genes.25 The next stage toward B cells is formed by the common 
lymphoid progenitors (CLPs), first described by the Weissman 
laboratory26 as Lin-IL-7Rα+c-KitLoSca1+ BM cells. They are the 
main differentiation intermediate between ELPs and B lympho-
cytes or NK cells, and, although they were originally described 
as capable of generating T cells, this is currently the subject of 
intense discussion. Indeed, much confusion surrounds the CLPs 
in the literature, partly because their definition is not standard-
ized, and they are isolated in different ways in different labora-
tories.27,28 What is clear is that CLPs harbor lymphoid, natural 
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This suggests that E2A acts upstream of Ebf1 and Pax5 in the 
initiation of the B-cell expression program.51,52 In fact, E2A binds 
to and activates the distal promoter of the Ebf1 gene,54,55 and 
forced retroviral expression of EBF1 restores pro-B-cell develop-
ment of in vitro cultured E2A-deficient progenitors.56 Afterwards, 
E2A cooperates with Ebf1 to coordinately regulate B cell-spe-
cific genes.57,58 E2A is also an essential regulator of light chain 
immunoglobulin rearrangement to such an extent that its ecto-
pic expression, in combination with that of the RAG proteins, is 
enough to induce Igκ VJ recombination in nonlymphoid cells.59 
By conditional mutagenesis, it has recently been shown that E2A 
is essential for the development of pro-B, pre-B and immature 
B cells in the bone marrow but is dispensable for the generation of 
mature B cells and plasma cells in peripheral lymphoid organs.60 
At the molecular level, this is due to the fact that E2A is required 
not only for initiating but also for maintaining the expression of 
Ebf1, Pax5 and the B-cell gene program in pro-B cells. Also at 
later stages, germinal center B-cell development is impaired in the 
absence of E2A.60 Ebf1 and Pax5 are the definitive factors partici-
pating in the commitment to the B-cell fate. Forced expression of 
EBF in multipotential progenitors activates B cell-specific genes 
like Pax5 or its downstream targets and represses genes associ-
ated with alternative fates, like the myeloid ones.61 Ebf1 is first 
expressed in the CLP and regulates many genes involved in B-cell 
development.57,62 Consequently, Ebf1-knockout mice have a CLP 
compartment, but the cells lack B-cell developmental potential, 
since they lack the expression of Pax5 and other B-cell genes.63 
The transcription of Ebf1 is dependent on two promoters that are 
differentially regulated. The distal one is controlled by activated 
STAT5 downstream of IL7 signaling by E47 and by autoregula-
tion. The proximal promoter is upregulated by Pax5 and PU.1, 
creating, in this way, an autoregulatory loop during B-cell com-
mitment and posterior development.54,55

Pax5 is the perfect example of a lineage commitment factor, 
since it controls the irreversible entrance of lymphoid progenitors 
into the B-cell pathway by a dual mechanism:32,64,65 it represses 
B  lineage-inappropriate genes66 and activates B cell-specific 
genes.67 According to this B-cell commitment function, Pax5 
expression is restricted to the B lymphoid lineage, from com-
mitted pro-B cells to the mature B-cell stage, and it has to be 
repressed afterwards for plasma cell differentiation.68 The expres-
sion of Pax5 is continuously required throughout B-cell devel-
opment, and its conditional inactivation induces the conversion 
of mature B cells into functional T cells via dedifferentiation to 
uncommitted progenitors.69 Pax5 is activated in a stepwise man-
ner during B-cell development. Its expression is controlled by an 
enhancer in intron 5 and a promoter element in the 5' region of 
the Pax5 gene.70 In the transition from the HSC to multipotential 
progenitors, the CpG motifs in the enhancer are demethylated. 
The enhancer is activated by PU.1, IRF-4 and IRF-8 and NFκB 
already in multipotent hematopoietic and lymphoid progenitors. 
Therefore, the Pax5 enhancer is kept silent by DNA methyla-
tion in early progenitors and non-B cells and is only demethyl-
ated before or at the onset of hematopoiesis and organized into 
accessible chromatin in Ebf1-null lymphoid progenitors and at 
subsequent B-cell developmental stages.70 However, the promoter 

characteristic promiscuous lineage-priming gene expression pro-
file is lost, leading to an increased expression of B-cell genes.18 
The genes that are expressed during the multilineage priming 
phase are characteristic examples of genes marked by bivalent 
chromatin, presenting both activating and inhibiting histone and 
DNA marks.39,40 In HSCs, B cell-restricted promoters, like those 
of ebf and pax5, present a bivalent histone modification status41 
that will resolve upon commitment leading to their open expres-
sion in B cells. One of the main regulators of the progression 
of HSCs into the lymphoid lineages is the Ikaros transcription 
factor (Fig. 2). Ikaros is required for the suppression of stem cell-
associated genes and for the initiation of the lymphoid priming 
even at the stage of HSCs.42 Ikaros proteins regulate lambda 5, an 
essential component of the pre-B-cell receptor (pre-BCR) com-
plex, in a stage-specific manner.43 Ikaros also regulates the expres-
sion of flt3 and rag genes and contributes to the remodeling of 
the chromatin at the immunoglobulin loci.44 An essential role of 
Ikaros is to antagonize the expression of the transcription factor 
PU.1 in multipotential progenitors, achieved through the induc-
tion of the expression of the B-cell fate-promoting gene Gfi1. The 
equilibrium between Gfi1 and PU.1 activities regulates the lym-
phoid vs. myeloid fate choice,45 and in this indirect way Ikaros 
promotes lymphoid development. PU.1 (purine-box factor  1) 
is an Ets-family transcription factor that plays essential roles 
in the regulation of the specification of lymphoid, myeloid and 
erythroid lineages. It regulates a large number of genes belong-
ing to several lineages. Its expression in progenitors counteracts 
that of the myelo-erythroid-promoting gene GATA-1 at the level 
of multipotential progenitors in such a way that the reciprocal 
activation of GATA-1 and PU.1 organizes the lineage fate choice 
to form a branchpoint between myelo-erythroid and myelo-lym-
phoid progenitors.46 After this, the interaction with the Ikaros-
induced Gfi1 establishes myeloid vs. B-lymphoid lineage choice, 
so that PU.1 is kept at low levels in B cells and high levels in 
myeloid cells.47,48 In the lymphoid lineage, Gfi-1 will also suppress 
the expression of Id2 (inhibitor of DNA binding factor 2), an 
antagonist of the function of the E2A transcription factor, whose 
function is essential for the specification of the B-cell fate.49

As mentioned, the early specification of the B-cell lineage 
requires the transcription factor E2A, which is encoded by the 
Tcfe2 gene.50 The transcripts from the Tcfe2a gene give rise, by 
alternative splicing, to the E2A isoforms E12 and E47, differ-
ing in the dimerization basic-helix-loop-helix (bHLH) domain, 
through which they dimerize and bind to the DNA E-box motif. 
E2A proteins are ubiquitously expressed and normally form het-
erodimers with other tissue-restricted bHLH factors. However, 
in the lymphoid compartment they exist mainly as homodimers. 
As mentioned above, their activity can be regulated by heterodi-
merization with Id proteins, leading to the formation of inactive 
complexes.50 The entrance of the CLPs into the B-cell lineage 
is contingent on E2A and, in its absence, B-cell differentiation 
is completely blocked at the pre-pro-B-cell stage.51-53 The E2A-
deficient CLPs and pre-pro-B cells lack rag1 expression and, 
therefore, fail to undergo immunoglobulin rearrangements. 
They express Il7rα, Igb, transcribe low levels of Ebf1 and do not 
express Pax5 and, therefore, its direct targets Cd19, mb1 or λ5. 
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about by the direct repression of Pax5 by the master regulator of 
plasma cell differentiation, the transcription factor Blimp1.86

Molecular Players and Postulated  
Cellular Origins of B-ALL

In the previous section, we succinctly described the intrinsic 
molecular mechanisms that lead cells through the early stages 
of hematopoietic development, from the multipotential HSC to 
the commitment to the B-cell lineage. From this description, the 
mechanistic importance of the cooperativity between transcrip-
tion factors during lineage priming is evident, and it is easy to 
imagine how this delicate equilibrium can be perturbed by any 
interference with this machinery. B-cell acute lymphoblastic leu-
kemia (B-ALL) is a clonal malignant disease characterized by an 
accumulation of early B cells. This abnormal growth causes the 
suppression of normal hematopoiesis and the infiltration of vital 
organs. ALLs form one of the four major categories of human 
leukemias, and most of the ALLs are of the B-cell type.3,87,88 
ALLs, like every cancer, are clonal and originate from a single cell 
and, traditionally, B-ALL cells have been considered malignant 
counterparts of normal B-cell precursors of similar phenotype. 
However, this assumption is being heavily questioned in light 
of the most recent data. In normal clinical practice, the types of 
B-ALL have traditionally been correlated with the different nor-
mal B-cell developmental stages by studying microscopic appear-
ance and immunophenotype. Using these criteria, in most cases, a 
relationship can be established between every type of B-cell leuke-
mia and a given normal stage of B-cell differentiation.89 However, 
these associations are not always straightforward, since expression 
of myeloid markers has been found in up to 30% of precursor-
B‑ALLs and since lymphoid markers can be found in acute myeloid 
leukemias (AML). Moreover, even the presence of immunoglobu-
lin gene rearrangements, which is usually considered evidence of 
the previous passage of the tumor cells through the B-cell lineage, 
cannot be considered decisive evidence for the B-cell origin of a 
B-ALL: indeed, immunoglobulin gene rearrangements have also 
been described outside of the B-cell compartment,90,91 thus fur-
ther complicating the issue of the B-ALL cellular origins. Finally, 
the plasticity of the different differentiation stages of B-cell devel-
opment makes it very difficult to ascertain the precise nature of 
the first normal cell in which a B-ALL-associated genetic lesion 
takes place (Fig. 1). In human B-ALL patients, it is almost impos-
sible to monitor the natural evolution of the disease from a normal 
hematopoietic cell (an HSC, a progenitor or a differentiated cell). 
In fact, oncogenic events might have occurred at various possible 
stages of B-cell development, after which the now aberrant B cell 
could have differentiated further and been arrested at a later stage 
of differentiation (see below). Nowadays, there is undeniable evi-
dence indicating that several of the chromosomal translocations 
commonly found in childhood B-ALL originate prenatally in 
utero in fetal hematopoiesis92 (see below). This prenatal origin 
has now been confirmed for MLL fusion genes in infant B-ALL 
and for TEL-AML1 fusions in childhood B-ALL.92 These obser-
vations strongly suggest that these chromosomal changes have 
taken place either in the HSCs or even in earlier stages in the fetal 

is demethylated and repressed by Polycomb group proteins in 
embryonic stem cells and other non-B cells. This repression is 
overcome only at the onset of B-cell development by the expres-
sion of Ebf1. Thus, Ebf1 is crucial for initiating modifications 
that result in an active chromatin configuration at the Pax5 
promoter but not at the enhancer. Once it is established, Pax5 
induces active chromatin at activated target genes and eliminates 
it at repressed genes in committed pro-B cells. It does this by 
recruiting chromatin-remodeling, histone-modifying and basal 
transcription factor complexes to its target genes.71

We have described the main intrinsic transcriptional regu-
lators that coordinate the entry of hematopoietic progenitors 
into the B-cell lineage. However, this is not a cell-autonomous 
process, but it is dependent on developmental signals that have 
instructive and survival signals acting on the progenitors. The 
development and homeostasis of lymphocytes are regulated by 
cytokines as the interleukins IL-2, IL-4, IL-7, IL-9, IL-15 and 
IL-21. Among them, IL-7 is an essential, nonredundant cyto-
kine for T- and B-cell development.72 All mentioned interleukins 
signal through receptors that contain a common molecule, the 
common γ chain (γ

c
, Il2rg).73 In contrast to the broad expres-

sion of the γ
c
 chain in various hematopoietic lineages, the IL-7Rα 

subunit of IL7 is preferentially expressed in the lymphoid system 
from CLPs to large pre-B and pre-T cells as well as in thymic and 
peripheral CD4+ and CD8+ single-positive (SP) T cells.26,74 B-cell 
development is blocked at the pre-pro-B-cell stage in the BM of 
adult Il7r-null mice.75-77 IL-7 signaling is transduced by three 
main downstream pathways: the Jak-STAT, the PI3K-Akt and 
the RAS-MAPK pathways, with STAT5 being the predominant 
STAT protein activated by IL-7.78 The most recent data demon-
strate that STAT5 and IL-7R signaling control cell survival dur-
ing early B lymphopoiesis, therefore mainly playing a permissive 
role in early B-cell development.79 Also, it puts order into immu-
noglobulin gene rearrangement by repressing Igκ recombination 
in pro-B cells.80 Subsequently, IL-7 signaling is also required for 
the pro-B to pre-B-cell transition, acting in synergy with pre-
BCR signaling to promote the expansion of large pre-B cells 
with correctly rearranged Igh genes.81 In this way, IL7 signaling, 
especially through STAT5, integrates with the process of rear-
rangement and signaling form the immunoglobulin genes. The 
pre-BCR and BCR are not only markers of developmental stages, 
but also essential signaling molecules themselves that regulate the 
development of B cells by acting as “quality control” checkpoints 
along the differentiation process. The precise mechanisms of this 
control at the signaling, transcriptional and epigenetic levels are 
still incompletely understood and are the subject of numerous 
exhaustive reviews by themselves.82-85 In our context, it is enough 
to mention that they are tightly intertwined with the transcrip-
tional and epigenetic machinery that we have described so far, in 
such a way that any changes in one of the elements has profound 
consequences on the others.

Once the linage commitment has been established, B-cell 
identity will be stably maintained until the interaction of the 
BCR with its cognate antigen triggers the germinal center 
response and the posterior terminal differentiation into plasma 
cells. This actually implies a loss of B-cell identity that is brought 
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By analogy to the study of the molecular mechanisms regulat-
ing normal lymphoid development, as described above, a great 
deal of knowledge about the pathophysiology of B-ALLs has 
been obtained by the identification of the genetic abnormalities 
consistently present in B-cell blasts. The most prevalent findings 
are gene fusions created by chromosomal translocations: TEL-
AML1, MLL rearrangements, BCR-ABL and E2A-PBX1 (see 
below). The frequency of these genetically defined leukemia-
associated molecular aberrations is different from children to 
adults, suggesting that there is a relationship between the devel-
opment of normal B cells (which is known to change with age, 
see below) and that of leukemias. In this way, the TEL-AML1 
fusion gene is almost exclusively present in childhood leukemias 
(22%, vs. 2% in adult leukemias), while BCR-ABL is much more 
frequent in adults (25%) than in children (3%). The molecular 
characteristics on these chimeric proteins have been very well-
characterized in the last decade; however, the precise mechanisms 
by which they induce the B-cell developmental arrest character-
istic of B-ALLs are unknown, although there are several possible 
ways to explain it. One possibility would be that the chimeric 
proteins interfere with the networks controlling B-cell differen-
tiation (see below). Also, the translocation-carrying B-cell blasts 
might lose their capacity to respond to the external signals that 
regulate normal B-cell development. Finally, it could happen that 
the B-ALL-inducing oncogenic events might activate pathways 
that specifically reprogram the cells to phenotypically “copy” a 
particular stage of normal B-cell differentiation.

It is in this context where the unusually high degree of plastic-
ity of B cells has to be especially taken into account (Fig. 1). This 
plasticity has been demonstrated for mouse mature peripheral B 
cells in various experimental settings. On one side, it has been 
described that transduction of BM CD19+ cells with the myeloid 
transcription factor C/EBPα leads to the full transdifferentia-
tion of B cells into macrophages in vitro.106 Also, reprogramming 
of mature B cells to induced pluripotent stem cells (iPSCs) can 
be achieved by using the four Yamanaka transcription factors, 
but only if Pax5 activity is previously abolished.107 This Pax5-
dependent high degree of developmental plasticity of B cells is 
best exemplified in the experiments showing that mature B cells 
can dedifferentiate all the way to multipotential progenitors after 
the genetic inactivation of Pax5.69 Furthermore, the complete loss 
of Pax5 in mature B cells also gives rise to tumors of an early 
pro-B-cell phenotype.69 Such plasticity was first evidenced in ani-
mal models but has since been proven in human patients, where 
examples of transdifferentiation from follicular lymphomas to 
myeloid histiocytic/dendritic cell sarcomas or from chronic lym-
phocytic leukemias/small lymphocytic lymphomas to histiocytic 
and dendritic cell sarcomas have been recently described.108,109 
In human Hodgkin lymphomas, the overexpression of specific 
antagonists leads to the inactivation of the B-cell factor E2A 
and the consequent loss of B-cell markers and expression of lin-
eage-inappropriate genes that characterizes the Reed-Sternberg 
cells.110,111 In children’s B-ALLs, the involvement of stem cells in 
disease initiation and progression is a well-known fact,104 and it 
has recently been described that LSC properties can be found in 
blasts at several different maturational stages, that apparently can 

liver or bone marrow. Still, the precise cellular origin of the trans-
locations is difficult to ascertain, especially since the functional 
consequences of the translocation (that is, the clonal expansion) 
can appear in the cellular types whose phenotypic markers would 
place them either downstream or upstream of the point of origin 
of the translocation (Fig. 1). Thus, cells at later stages of B-cell 
development cannot be formally excluded as B-ALL cells-of-
origin. One essential aspect to be considered in this context is 
that of the leukemic stem cells. This concept has been extensively 
discussed in previous reviews in references 93–95, so it will only 
be briefly summarized here, in relationship with the nature of the 
leukemic cell of origin. In almost all cases analyzed to date, the 
capacity of maintaining and repopulating the leukemic popula-
tions in human B-ALL samples has been shown to be restricted 
to a small subset of the total tumoral population;93 these are the 
so-called leukemic stem cells (and sometimes leukemia-initiating 
cells, but this can be confusing, see next section). Here, when we 
speak of the leukemic cell of origin (LCO), we refer to the first, 
normal hematopoietic cell in which the first genetic lesion linked 
to the development of B-ALL takes place and not to the leuke-
mic stem cell (LSC) than can maintain the leukemic clone once 
this has been established in full-blown leukemia. Determining 
the nature of the LCO is difficult, since, as we have seen, normal 
HSCs are not a static, homogeneous population, but rather a con-
tinuum with highly variable proliferation and self-renewal proper-
ties.96,97 Using samples obtained from human acute myelogenous 
leukemias, it has been shown that, at the root of the disease, 
there is a hierarchical organization of LSCs differing in self-
renewal capacity,98 therefore showing that heterogeneity can also 
be found in the LSCs compartment, similarly to how it happens 
with the normal HSCs.34,35 This fact is supported by the results 
obtained from the analyses of relapsed human acute lymphoblas-
tic leukemias, which show that the cells of the relapse clone were 
already present as subpopulations at diagnosis.99-102 The most 
recent revealing studies about the clonal nature of cancer hetero-
geneity have, in fact, been performed on human B-ALL, either 
TEL-AML1+99 or BCR-ABL+.103 These studies have demonstrated 
that LSCs are genetically diverse, and that samples of patient at 
diagnosis contain multiple genetically distinct LSC subclones. 
Reconstructing the genetic ancestry of these subclones proves 
that leukemogenesis occurs in a Darwinian model of branching, 
multi-clonal evolution, rather than in a linear succession.99,103,104 
This indicates that the cells responsible for the relapse were posi-
tioned developmentally upstream of the leukemic cells that were 
found at diagnosis. Therefore, the leukemic clone evolves with 
time and so do the LSCs, making their precise identification 
even more complicated. This has been also demonstrated using 
xenografts: when human cord blood stem cells were transduced 
with MLL-associated translocations and injected into mice, it 
was found that, from primary to secondary recipients, an increase 
in immunoglobulin rearrangements occurs.105 Furthermore, the 
rearrangements found in different secondary recipients were all 
coming from the same primary donor, indicating once more a 
clonal evolution implying that the properties of the LSC at a cer-
tain time point might not have any relationship with those of the 
initial LCO.105
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in a chimeric protein consisting of the N-terminal portion of the 
MLL (mixed-lineage leukemia) protein, from chromosome  11 
and the C-terminal portion of AF4 (“ALL1 fused gene from 
chromosome 4”). The MLL gene encodes a large methyltrans-
ferase protein belonging to the thrithorax group, whose main 
biological function is to methylate the lysine 4 of histone H3 
(H3K4) to regulate patterns of gene expression, particularly those 
of the genes of the HOX family, which are essential regulators 
of morphogenesis and development.123 More than 40 different 
translocations have been identified in which MLL is involved, 
and the most frequent ones in B-ALL (80% of the cases in which 
the MLL gene is involved in B-ALLs) are those affecting the 
genes AF4, AF9, ENL, AF10 and AF6.124,125 In spite of inten-
sive studies, the precise mechanisms by which MLL-containing 
fusion proteins mediate leukemogenesis are not known, although 
the HOX genes, tightly controlled by MLL and which control the 
expansion of the HSC pool,126-128 are the most plausible critical 
targets involved in the process, together with the potential capac-
ity of interfering with the cell cycle.129

The translocations involving the E2A gene are found in 
both childhood and adult B-ALLs. We have already described 
the essential role of E2A in B-cell development. Two are the 
main genes fused with E2A in B-ALLs. The t(1;19)(q23;p13.3) 
translocation gives rise to the E2A-PBX1 (pre-B-cell leukemia 
homeobox1) fusion gene, mainly present in childhood leukemias 
(5–6% of ALLs and 23% of pediatric B-ALLs), but also in adults 
(1–3%).130 The prognosis for E2A-PBX1+ childhood B-ALLs is 
good, with an 80–90% survival at 5 y. On the contrary, adult 
E2A-PBX1+ B-ALLs have a much poorer outcome (20–40% sur-
vival at 3 y). The E2A-HLF (hepatic leukemia factor) fusion gene 
is the result of the t(17;19)(q22; p13.3) translocation.131 It presents 
with a very low frequency in both children and adults (0.5–1%), 
but its prognosis is highly unfavorable (10% disease-free survival 
at 4 y). PBX1 is an homeobox-containing protein that is normally 
not expressed in the lymphoid compartment. Pbx1-/- mice die by 
embryonic day 15 or 16 with severe hypoplasia or aplasia of mul-
tiple organs and widespread patterning defects of the axial and 
appendicular skeleton, indicating a global role for this gene in 
development and organogenesis.132 The chimeric E2A-PBX1 tran-
scription factor contains the N-terminal transactivation of E2A 
and the DNA-binding domain of PBX1.133 The t(1;19)(q23;p13.3) 
translocation has two simultaneous effects. First, it disrupts one 
allele of both E2A and PBX1, and this already can have a tumor-
promoting effect. Second, it generates the novel fusion gene E2A-
PBX1 expressed under the control of E2A regulatory sequences. 
In contrast to PBX1, E2A-PBX1 is a transcriptional activator of 
genes containing PBX1-binding sites.134-136 E2A-PBX1 can induce 
leukemogenesis by interacting and titrating away normal part-
ners of the PBX proteins, such as the HOX proteins, and also by 
sequestering E2A coactivators, leading to the repression of E2A 
target genes and to uncontrolled cell cycle progression.130 HLF is 
a member of the PAR-bZIP (proline and acidic amino acid-rich 
basic leucine zipper) transcription factor family that is normally 
not expressed in the lymphoid compartment, and its transcripts 
are detected in the liver, kidney, lung and adult nervous system. It 
binds DNA as a homodimer or as a heterodimer with other PAR 

also interconvert among them to a certain degree,112 thus mak-
ing it even more difficult to ascertain the nature of the cancer 
cell of origin. This high degree of lymphoid plasticity has led 
researchers to propose that, in some cases, even the cellular ori-
gin of CALM-AF10+ acute myeloid leukemias could reside in a 
lymphoid progenitor.113 Finally, it has to be considered that the 
problem of the LCO might not be restricted to the hematopoi-
etic compartment, since mesenchymal stem cells obtained from 
the BM of infants with MLL-AF4+ B-ALL harbor the MLL-AF4 
fusion gene and express it.114

Regulation of B-ALL Development

B-ALL-initiating lesions. At the genetic level, as we have men-
tioned, B-ALL is characterized by a relatively small series of 
frequent chromosomal alterations, from aneuploidy to chromo-
somal rearrangements. Although in most cases they are accompa-
nied by secondary mutations (which, as we will see below, often 
involve the main B-cell transcriptional regulators), the chromo-
somal alterations are the essential determinants of leukemogene-
sis and, in all likelihood, they are the earliest, leukemia-initiating 
genetic lesions. Aneuploidy is an important prognostic factor in 
B-ALL, and high hyperdiploidy (>50 chromosomes) present in 
30% of childhood ALLs is associated with a favorable outcome,115 
while hypodiploidy (less than 45 chromosomes), present in 6% 
of cases, implies a poor prognosis.116 However, the role that aneu-
ploidies play at the molecular level in causing ALL is still poorly 
understood. Much more specific determinants of the disease are 
the products of chromosomal translocations. These are defined 
chimeric proteins with newly generated aberrant functions that 
interfere in several ways with the mechanisms of lineage differ-
entiation that we have previously outlined. TEL-AML1 is the 
product of the t(12;21)(p13;q22) translocation. It comprises 
the 5' region of the TEL gene from chromosome 12 and almost 
the entire coding region of AML1 from chromosome 21. TEL/
ETV6 (translocation-ETS-leukemia) encodes a nuclear phospho-
protein belonging to the ETS family of transcription factors and 
is required for maintenance of definitive adult hematopoiesis.117 
AML1 (acute myeloid leukemia) encodes the α subunit of the 
core-binding factor (CBFA). In normal development, the het-
erodimeric CBFA2/CBFB transcription factor complex binds to 
specific enhancer sequences of genes that are important for HSC 
biology and differentiation. AML1 is essential for the emergence 
of HSCs from the embryonic hemogenic endothelium, and its 
loss results in embryonic death and lack of definitive hematopoi-
esis.118-121 TEL-AML1 retains its capacity to bind to the AML1-
binding sequences and to heterodimerize with CBFB but, unlike 
the normal AML1 protein, it recruits a transcriptional corepres-
sor complex with histone deacetylase activity (HDAC),122 there-
fore leading to the repression of transcription. In this way, the 
fusion protein represses the usually activated AML1 target genes, 
and it can also inhibit ETS family proteins via binding through 
the TEL DNA-binding domain, therefore globally altering the 
self-renewal and differentiation capacities of HSCs.

Another frequent translocation, present in 70% of infant leu-
kemias, and with a very poor prognosis, is the t(4;11) resulting 
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upstream of IKAROS by inducing cell cycle arrest in BCR-ABL+ 
ALL cells. Therefore, the absence of IKAROS eliminates this 
control and promotes uncontrolled proliferation at the pre-B cell 
stage.149

Also PAX5 has been directly involved in the molecular patho-
genesis of B-ALLs.32 Approximately 30% of all pediatric B-ALL 
and BCR-ABL+ adult B-ALL cases studied by genome-wide anal-
yses showed monoallelic losses or point mutations of the PAX5 
gene, that result either in haploinsufficiency or in the generation 
of hypomorphic alleles of PAX5.150,151 PAX5 is also involved in 
specific chromosomal translocations that give rise to chimeric 
transcription factors by fusing the N-terminal DNA-binding 
domain of PAX5 with C-terminal regulatory sequences of a sec-
ond transcription factor that can be one of a list of several differ-
ent partner genes described up to date, like ETV6, FOXP1, EVI3, 
ELN, JAK2, PML, BRD1, POM121, HIPK1 or DACH.152-155 It 
is believed that these fusion proteins exert their leukemogenic 
effect by acting as constitutive repressors by interfering with the 
transactivation function of the wild-type PAX5 protein encoded 
by the unaltered PAX5 allele.32

There are also examples showing the involvement of EBF1 
in B-ALL. In genome-wide association studies, eight cases of 
pediatric progenitor B-ALL cases carried mono-allelic deletions 
of EBF1.151 Since EBF1 has been shown to be monoallelicaly 
expressed,156 and heterozygous Ebf+/- mice have a 50% reduction 
in the number of mature B cells, these observations suggest that 
EBF1 haploinsufficiency may contribute to leukemogenesis. In 
fact, overexpression of proteins known to interact with EBF1 and 
block its function, like ZFP521, have been shown to collaborate 
with E2A-HLF in B-ALL and to promote lymphomagenesis in 
mouse models.157-160

Not only are transcriptional regulators altered and mutated in 
B-ALL, but also the molecules involved in signaling, like STAT5. 
BCR-ABL-deregulated kinase activity leads to constitutive acti-
vation of STAT5 and, thus, likely contributes to leukemogenesis 
by signaling via the JAK-STAT pathway.161 In fact, BCR-ABL 
kinase cannot induce leukemia in Stat5-/- mice, therefore indi-
cating an important role for STAT5 in the genesis of B-ALL.162 
Increased STAT5 expression has been shown in cells from ALL 
patients, and it correlates with poor prognosis. Furthermore, 
using mouse models, it has been demonstrated that haploinsuffi-
ciency of either Pax5 or Ebf1 synergized with constitutively active 
STAT5 forms to rapidly induce ALL in 100% of the mice,163 
indicating that small perturbations in a self-reinforcing network 
of transcription factors critical for B-cell development cooperate 
in the initiation and progression of B-ALL.

Molecular alterations in many other genes have been described 
by studying human B-ALL samples, for example affecting FTL3 
or the RB or Tp53 pathways.88 However, the precise way in which 
they contribute to the disease origin and evolution is unclear. 
Also, by using genome-wide association studies, a small group 
of gene variants have been found (IKZF1, ARIDB5, CEBPE 
and CDKN2A) that affect susceptibility to ALL, although 
their individual effects are modest.164-168 As exemplified by the 
case of IKZF1 (IKAROS), these gene variants are also related 
to pathways controlling B-cell development and differentiation. 

factors,137 and it has been proposed to play a role in the function of 
differentiated neurons in the adult nervous system.138 Although it 
is clear that the chimeric E2A-HLF protein interferes with normal 
lymphocyte development and renders lymphocytes susceptible to 
malignant transformation, the precise molecular mechanisms of 
this effect have not been completely elucidated.131 One of its main 
effectors is the transcriptional activation of SLUG/SNAI2, a mul-
tifunctional zinc-finger transcriptional regulator139 implicated in 
many cancerous processes. In the case of E2A-HLF+ B-ALLs, 
it seems that the main consequence of SLUG activation is the 
promotion of cell survival by counteracting the proapoptotic 
function of the BH3 protein.140 In any case, both E2A-involving 
translocations, together with the TEL-AML1 and MLL exam-
ples, demonstrate that the direct interference with transcriptional 
and epigenetic regulators of normal HSCs and B cells is at the 
base of the origin of B-ALLs.

Other type of interference with normal developmental regula-
tory controls can be mediated by deregulated signaling. The most 
classical example of this mechanism in the context of B-ALL is 
the product of the t(9;22)(q34;q11) translocation, the chime-
ric BCR-ABL oncogene. This is a rare alteration in childhood 
B-ALLs (3–5%), but it occurs in 20–40% of adult B-ALLs, and 
it has the most unfavorable prognosis among all B-ALL sub-
types (37% 5-y event-free from diagnosis).141 There are two main 
BCR-ABL isoforms, p190 and p210, with different involvement 
in acute lymphoid or chronic myeloid leukemias. Only 33% of 
adult or 10% of BCR-ABL+ childhood B-ALLs express the p210 
isoform, the p190 form being the main one involved in this type 
of BCR-ABL+ leukemias.142 ABL is a tyrosine kinase that presents 
normally in an inactive conformation, and it participates in the 
transduction of signals from many different pathways (implicated 
in processes like cell differentiation, cell division, cell adhesion 
and stress response) as well as in B-cell development. Its lack in 
ABL-knockout mice leads to death 1 to 2 weeks after birth with 
a loss of specific B- and T-cell populations.143,144 The BCR-ABL 
fusion proteins are deregulated, constitutively active nonrecep-
tor tyrosine kinases, which directly activate signal transduction 
pathways controlling cell proliferation, survival and activation 
and, therefore, contribute to leukemogenic programming of the 
targeted cells.145

Cooperative mutations in B-ALL. We have mentioned the 
main examples of B-ALL-initiating lesions and their basic known 
molecular mechanisms of leukemogenesis. However, human leu-
kemias always present with additional mutations that clearly con-
tribute to disease evolution, progression and malignancy. Most 
of the essential regulators of B cell commitment that we have 
described (Fig. 2) are altered in human B-ALLs. For example, 
using genome-wide analysis of leukemia samples from more than 
300 ALL patients, deletions of the gene encoding the IKAROS 
protein (IKZF1) have been found in > 80% of BCR-ABL+ ALL 
cases,146 and they are accompanied by a much shorter survival 
in humans147 and by an acceleration of the disease in BCR-AB+ 
leukemic transgenic mice.148 These deletions resulted either in 
haploinsufficiency, expression of a dominant-negative IKAROS 
isoform or the complete loss of IKAROS expression. It has been 
recently found that the pre-BCR acts as a tumor suppressor 
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(the effect of electromagnetic fields, infections, parental cigarette 
smoking, etc.), but the etiology of B-ALL is still unknown.2

But also, for B-ALLs of assumed adult origin, age plays an 
essential role in the malignancy of the disease. From this point 
of view, it has recently been shown, using a BCR-ABLp190-
inducible transgene179 or by transfecting mouse cells of different 
ages,180 that cells from old mice develop leukemias at a much 
faster rate than those from young animals, therefore suggest-
ing some kind of competitive advantage of aged B-cell progeni-
tors that could explain the more aggressive nature of B-ALL in 
advanced ages.181,182

Concluding Remarks

Leukemia is the most common type of childhood cancer, account-
ing for 30% of all cancers diagnosed in children younger than 
15 y, and its incidence is on the rise.183 However, little is known 
about its etiology. Apart from some rare genetic syndromes, only 
exposure to ionizing radiation and a child’s high birth weight 
have been identified as risk factors.184 Although treatments have 
improved the rate of childhood B-ALL cures tremendously in the 
last decades, relapses are still a serious problem,185 and in adults, 
B-ALL is a disease with a generally poor prognosis. As we have 
seen, the heterogeneity within the leukemias at all the levels is very 
high, thus making it difficult to find a common ground to fight 
the disease. The knowledge gained from the study of the normal 
development of the hematopoietic system and how the normal 
physiological choices are made during lineage differentiation has 
helped us to shed new light on the molecular mechanisms used 
by B-ALL-associated genetic lesions to subvert development and 
to reprogram normal stem/progenitors into leukemic or pre-leu-
kemic cells. It has also allowed us to realize that the developmen-
tal organization of the leukemias follows a similar scheme to that 
of the normal hematopoietic system. Experimental approaches 
based both in the study of human patient samples and in the 
generation of animal models of disease have allowed us to gain 
new insights into the nature of the disease. We hope, in the near 
future, that both approaches will help us to translate all this new 
knowledge into efficient therapies.
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However, how these germline variations might contribute to the 
development of ALL is still unclear. Finally, while several genetic 
alterations have been proven to be associated with the risk of 
relapse, the biologic and cellular components determining treat-
ment failure are poorly understood.

The Role of Age in B-ALL Development

We have discussed how the developmental position of a cell 
within the differentiation cascade leading from HSCs to B cells 
can have a deep influence on the final leukemic phenotype. We 
have also seen how the molecular nature of the initial and sec-
ondary genetic leukemogenic lesions is an essential determinant 
of leukemic malignancy and response to therapy. One final essen-
tial aspect to consider is that of the age at which the oncogenic 
initiating lesion takes place. This is especially relevant in the case 
of B-ALL. As we have already briefly mentioned, the age of the 
patients at diagnosis is, together with the molecular nature of 
the chromosomal translocation involved, essential in establishing 
B-ALL prognosis.3,88 For example, BCR-ABL+ B-ALL is gener-
ally associated with a poor prognosis in adolescents, but in chil-
dren with a low leukocyte count at presentation, it has a relatively 
favorable outcome; again, adults with this type of B-ALL have 
a dismal prognosis. Infants with MLL-related B-ALL fare con-
siderably worse than older children with this alteration.3,88 This 
may be related, as explained, to the developmental stage of the 
target cell undergoing malignant transformation and also to the 
pharmacogenetic or pharmacokinetic features of the patient.3,88 
However, age itself greatly affects the properties and functional-
ity of the hematopoietic system,169 affecting both the HSC170,171 
and lymphoid172-175 compartments. Therefore, age of onset must 
clearly affect the outcome of the disease.

For some B-cell precursor childhood B-ALLs, it has been 
clearly proven that the translocation occurs prenatally and con-
stitutes the initiating event. The best example is that of TEL-
AML1.92,99,176,177 Screening of cord blood samples found that 
around 1% of newborns have a functional TEL-AML1 fusion 
gene. Since the frequency of development of B-ALL is much 
lower, this implies that the conversion of the preleukemic clone 
to overt disease is a rare phenomenon, and that development of 
childhood B-ALL is a multi-step process requiring, besides the 
prenatal initiating event, secondary prenatal and/or postnatal 
events that would be the rate-limiting ones. While the initiating 
in utero event is believed to be common, the subsequent events 
act as the rate-determining steps in the development of the dis-
ease. If this “two hit” model is correct, it would mean that, for 
every child diagnosed with ALL, there are at least 20 “healthy” 
children who carry a covert preleukemic clone generated in utero. 
It must be mentioned that it has recently been challenged, how-
ever, that the prevalence of the TEL-AML1 gene fusion is really 
as high as 1%,178 and that this topic is still the matter of intense 
debate. But, even if the frequency was not that high, the “two hit” 
model nicely explains the biology of the disease and forces us to 
further understand if there is any external cause for the appear-
ance of the secondary genetic alterations that lead to the develop-
ment of overt leukemia. Many explanations have been postulated 
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