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[1] Changes in gravity and/or surface deformation are often associated with volcanic
activity. Usually, bodies with simple geometry (e.g., point sources, prolate or oblate
spheroids) are used to model these signals considering anomalous mass and/or pressure
variations. We present a new method for the simultaneous, nonlinear inversion of gravity
changes and surface deformation using bodies with a free geometry. Assuming simple
homogenous elastic conditions, the method determines a general geometrical configuration
of pressure and density sources. These sources are described as an aggregate of pressure
and density point sources, fitting the whole data set (given some regularity conditions). The
approach works in a growth step‐by‐step process that allows us to build very general
geometrical configurations. The methodology is validated against an ellipsoidal body with
anomalous pressure and a parallelepiped body with anomalous density, buried in an elastic
medium. The simultaneous inversion of deformation and gravity values permits a good
reconstruction of the assumed bodies. Finally, the inversion method is applied to the
interpretation of gravity, leveling, and interferometric synthetic aperture radar (InSAR)
data from the volcanic area of Campi Flegrei (Italy) for the period 1992–2000. For this
period, a model with no significant mass change and an extended decreasing pressure
region satisfactorily fits the data. The pressure source is located at about ∼1500 m depth,
and it is interpreted as corresponding to the dynamics of the shallow (depth 1–2 km)
hydrothermal system confined to the caldera fill materials.
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1. Introduction

[2] Calderas are highly heterogeneous volcanic systems in
terms of local stress‐field and volcano‐structural features. In
such complex environments, surface expressions for magma
replenishment or withdrawal and dynamic changes in
hydrothermal systems mimic and superimpose on each other
at spatial and temporal scales, making the characterization
of periods of unrest difficult [e.g., Eggers, 1987; Bonafede
and Mazzanti, 1998]. Geophysical and geodetic studies
can identify at least three different levels of reservoirs
capable of producing mass or pressure changes [Gottsmann
and Battaglia, 2008]: (1) hydrothermal reservoirs (few
kilometers depth), (2) midcrustal reservoirs (melt and
aqueous fluids), and (3) deep reservoirs (underplating).

[3] Operative geodetic techniques, useful for the charac-
terization of volcanic processes, are mainly microgravity
and surface deformation control. Temporal gravity changes
(dg) and surface deformation (dx, dy, dz) can provide fun-
damental insight into processes that involve mass redistri-
bution and pressure changes within volcanic structures.
Accurate gravity data from control networks are collected by
time‐lapse surveys [Battaglia et al., 2008], and then sig-
nificant temporal gravity changes (dg) can be detected. In
addition, repeated leveling surveys allow us to detect changes
in elevation for benchmarks. Accuracies of observed gravity
changes are usually about 10 mGal (1 mGal = 10−8 m s−2)
and a rather better accuracy level comes from altitude
changes. Ground deformation using repeated and nearly
simultaneous Global Positioning System (GPS) observa-
tions and permanent stations can detect temporal changes of
three‐dimensional (3‐D) positions (dx, dy, dz) for the
observed benchmarks within an accuracy of about a few
millimeters, and differential interferometric synthetic aper-
ture radar (InSAR) techniques can produce nearly spatially
continuous maps for surface deformation along the line of
sight (LOS) for selected epochs within an accuracy level of
some few millimeters [Gabriel et al., 1989].
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[4] A quantitative interpretation of geodetic data may
require an inversion approach, constrained by general
hypotheses, to constrain source processes (mass and pres-
sure variations) at depths. A number of analytical and
numerical mathematical models, available in the literature,
can be used to fit ground deformation and gravity data to
infer source location [see e.g., Battaglia and Hill, 2009].
The interpretative discussion of results aims to offer a better
understanding of the volcano’s behavior and is also a basic
aspect for volcano monitoring strategy and helping decision
makers’ actions during crisis situations.
[5] The source approach for the data fit is usually based

on spherical, ellipsoidal, or general extended causative
bodies. Fault, dike, laminar, or cylindrical structures are
sometimes employed. Moreover, the mathematical model
for the source structure must consider some elastic proper-
ties to account for the deformation phenomena. The usual
analytical models assume an elastic, homogeneous and
isotropic crust, but they can take into account effects from
several source geometries, topography relief, and gravity
background [e.g., Williams and Wadge, 1998; Charco et al.,
2007; Battaglia and Hill, 2009].The elastic‐gravitational
model of Rundle [1980, 1982] and Fernández and Rundle
[1994a, 1994b] is a refinement of purely elastic models
and can interpret gravity and deformation changes in active
volcanic zones [Charco et al., 2006].
[6] Some published studies combine several geodetic data

to produce integrated inversion models. For instance, Vasco
et al. [2007] combine leveling, GPS, and InSAR data (u) to
infer volume change (v) below the Yellowstone volcanic
system. They fit an anomalous volume change distribution v
by working from the linear model equations u = Gv for a
3‐D grid of cells. We propose here a more ambitious task: to
include within the geodetic data also the gravity changes and
invert for a single source a model for pressure changes and a
model for mass changes for the same area, working in a 3‐D
nonlinear context.
[7] Camacho et al. [2000, 2002, 2007] present an original

methodology for gravity inversion searching for an anom-
alous density distribution model, defined as a 3‐D aggre-
gation of m parallelepiped cells that are filled, in a growth
process, by means of prescribed positive and/or negative
density contrasts. The success of this structural inversion
process gave us the idea to use the same approach to model
causative bodies with anomalous density for small gravity
changes and even causative bodies with anomalous pressure
for surface deformation. Here, we present a new method-
ology for the simultaneous inversion of gravity changes and/
or surface deformation (three components and/or LOS
InSAR components) by means of extended bodies with
anomalous mass and/or pressure and with free geometry.
The inversion approach can be applied in a simultaneous run
to several types of data: gravity changes, leveling data, GPS
positions, InSAR interferograms, etc.
[8] The Campi Flegrei (Italy) caldera provides a test site

for this new method. It is located in an active area where a
very large deformation has been observed. We have used
terrestrial data for elevation changes (leveling) and gravity
and satellite InSAR data for the same period, 1992–2000.
The detailed application of this new inversion approach
can provide interesting information about the mechanisms

that have driven the deformation phenomena, highlighting
details about the position and morphology of the causative
structures for anomalous mass and pressure.
[9] We present below (1) the new methodology for

simultaneous inversion of deformation data and gravity
changes by means of extended bodies (pressure and/or
density) with free geometry in an elastic medium, (2) sim-
ulation tests examples (considering an ellipsoidal pressure
body and a parallelepiped mass body), and (3) a test study of
gravity, leveling, and InSAR data from Campi Flegrei.

2. Inversion Approach for Gravity Changes
and Deformation by Free Extended Bodies

2.1. Model Description

[10] We assume that surface deformation and gravity
changes are due to density and/or pressure changes allocated
within extended source structures below the surface. The
source approach for data fitting is usually based on point
sources or spherical, ellipsoidal (prolate or oblate) extended
causative bodies characterized by anomalous density or
pressure. For simplicity, we assume that anomalous density
or pressure changes are nearly homogeneous within the
causative bodies according to some prescribed values. We
also assume homogeneous elastic conditions. Our purpose is
to model the volume of these anomalous extended bodies in
a 3‐D context with a free geometry. To do it, we develop a
methodology rather similar to the growth algorithm previ-
ously used for inversion of structural gravity data [Camacho
et al., 2000].
[11] A general description of the geometry of the anom-

alous bodies can be achieved by partitioning the subsurface
volume into a dense 3‐D grid of point sources. Therefore the
geometrical structures will be described by a dense aggre-
gation of elementary point sources. We approximate the
gravity and pressure effects in the surface benchmarks by
summing up the effects of some suitable point sources filled
with some prescribed values for anomalous density or
pressure.

2.2. System of Nonlinear Equations

[12] We consider a geodetic network composed of several
stations (xl, yl, zl), l = 1,…, n, where gravity changes dgi, i = 1,
…, ng, and position changes (dxj, dyj, dzj), j = 1,…, np, have
been observed, nearly simultaneously, but not necessarily in
the same locations. Let us name d the ng + np vector of
observables dgi, dxj, dyj, dzj. We will try to model this vector
by using m buried point sources, located in (Xk, Yk, Zk),
k = 1, …, m, and characterized by corresponding values for
volume vk, (positive or negative) incremental pressure pk,
and (positive or negative) incremental density rk. We fit the
data d as

d ¼ dc þ e; ð1Þ

where dc represents the ng + np vector of modeled values
dgi

c, dxj
c, dyj

c, and dzj
c for gravity and position changes, and e

is the ng + np vector for residual values coming from inac-
curacies in the observation process and also from insuffi-
cient model fit. We calculate simultaneously the modeled
changes, dgi

c, dxj
c, dyj

c, and dzj
c by means of simple formulas
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for vertical attraction and deformation effects that are due
to additional mass and pressure of several point sources
(Xk, Yk, Zk; vk, rk, pk) within an homogeneous elastic half‐
space characterized by a shear modulus m (given in stress
units of pascals (Pa)) and a Poisson’s ratio of u ffi 0.25
(dimensionless).
[13] The surface deformation dx, dy, dz that is due to a

buried point source is considered mainly as composed by
(1) the effects that are due to the incremental pressure pk and
expansion radius within the elastic half‐space, described by
the Mogi model [Masterlark, 2007], and (2) the effects
produced by the loading of the additional point mass vk × rk
within the elastic half‐space, described by the Boussinesq
model [Davis and Selvadurai, 1996; Saleh, 2002].
[14] The surface gravity changes dg can be decomposed

as follows:
[15] 1. Free‐air effect, corresponding to the relocation of

the benchmark, is due to elevation changes according a free‐
air vertical gravity gradient (about −290 mGal/m for Campi
Flegrei); this effect can be included in the model fit using
modeled or observed elevation changes.
[16] 2. Newtonian effects are due to density changes

within the original boundaries of the deep bodies.
[17] 3. Newtonian effects are due to mass relocation or

change of volume.
[18] 4. Effects are due to mass uplift in the surface corre-

sponding to elevation changes; these effects can be obtained
using another vertical gravity gradient, depending on the
regional terrain density (similar to the Bouguer correction
[Rundle, 1978;Walsh and Rice, 1979; Currenti et al., 2007]).
Effects 1 and 4 depend on the surface elevation changes and
can be combined by using a combined gravity gradient F
(about −210 mGal/m).
[19] 5. Water table effects correspond to very local and

shallow perturbations and must be included in the reduction
process. Therefore, we will consider reduced data free of
these last effects.
[20] 6. Topographical effects are used for the approximate

approach of assuming different source depths at each point
[Williams and Wadge, 1998; Battaglia and Hill, 2009].
[21] Furthermore, we assume possible common and con-

stant terms dx0, dy0, dz0 for the position changes (for
instance an unknown change of the leveling origin) and a
possible constant term dg0 (simplest form of a long‐wave
component, a global offset value, or a common uncorrected
groundwater effect). Then, we adopt the following expres-
sions for the modeled changes:

dgci ¼ G
Xm
k¼1

vk�k
zi � Zk
d3ik

þ dgo þ F � dzci ;

i ¼ 1; . . . ; ng

ð2Þ

dzcj ¼ �
Xm
k¼1

g0
4�� djk

2 � 1� �ð Þ þ zj � Zk
� �2

d2jk

" #
vk�k

þ
Xm
k¼1

1� �

4��

zj � Zk
d3jk

3vkpk þ dz0;

j ¼ 1; . . . ; n ð3Þ

dxcj ¼ �
Xm
k¼1

g0 xj � Xk

� �
4�� djk

zj � Zk
d2jk

� 1� 2�

djk þ zj � Zk

" #
vk�k

þ
Xm
k¼1

1� �

4��

xj � Xk

d3jk
3vkpk þ dx0;

j ¼ 1; . . . ; n ð4Þ

dycj ¼ �
Xm
k¼1

g0 yj � Yk
� �
4�� djk

zj � Zk
d2jk

� 1� 2�

djk þ zj � Zk

" #
vk�k

þ
Xm
k¼1

1� �

4��

yj � Yk
d3jk

3vkpk þ dy0;

j ¼ 1; . . . ; n ð5Þ

where

rik ¼ xi � Xkð Þ2þ yi � Ykð Þ2
� �1=2

dik ¼ xi � Xkð Þ2þ yi � Ykð Þ2þ zi � Zkð Þ2
� �1=2

;

G is the gravitation constant, u, m are elastic parameters
(Poisson ratio and shear modulus), and g0 is a mean surface
gravity value (g0 ≈ 9.8 Gal). By substituting dzi

c from
equation (3) into equation (2) we get

dgci ¼
Xm
k¼1

G
zi � Zk
d3ik

� g0
4��

F

dik
2 � 1� �ð Þ þ zi � Zkð Þ2

d2ik

" #( )
vk�k

þ F
Xm
k¼1

1� �

4��

zi � Zk
d3ik

3vkpk þ dgo þ F dz0; i ¼ 1; . . . ; ng:

ð6Þ
System (3)–(6) is constituted by linear equations for rk and
pk, but by a nonlinear relationship with respect to the geo-
metrical parameters (point sources “filled” with nonnull
anomalous density or/and nonnull anomalous pressure). Let
us observe that we prefer to calculate the free‐air and
“Bouguer” effects of the elevation changes as proportional
to the modeled values dzj

c, instead of proportional to the
observed ones. It allows us to include gravity and elevation
changes corresponding to different stations, and it gives
better final results.
[22] In the case of InSAR data, deformation ds on the

surface points is measured along the radar line of sight
(LOS) corresponding to the direction of the satellite antenna.
Then, the modeled changes dsi

c for the n data points can be
written as

dsci ¼ dzci cos � þ dxci sin� cos�� dyci sin� sin�

i ¼ 1; . . . ; n
ð7Þ

where a, b are the direction angles (azimuth and incidence)
for the antenna pointing direction.

2.3. Misfit Conditions

[23] If we assume a Gaussian distribution of the uncer-
tainty, described by a covariance matrix QD for the gravity
and position data dgi and dxj, dyj, dzj (or dsj), then the
minimization condition for residuals e, eTQD

−1e = min, leads
to the maximum likelihood solution. If we also assume that
the data are not correlated, QD is a diagonal matrix of
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estimated variances corresponding to observation of gravity
and position changes. Gravity and elevation observations
are independent and, then, QD can be decomposed into two
covariance matrices QG (ng × ng) for gravity and QP (np ×
np) for position changes. Then the minimization condition
for observation residuals can be written as

eTGQ
�1
G eG þ � eTPQ

�1
P eP ¼ min; ð8Þ

where eG and eP are ng and np vectors for gravity and ele-
vation residuals and � is a weighting factor for the balance
between gravity and deformation fits. This factor is intro-
duced to allow a more versatile fit, making it possible to
give optional priority to one kind of observable data over the
other. Values for � can be adopted according to the accu-
racies of the data sets and considering the approximate
equivalence of 1 cm ≈3 mGal.
[24] As usually happens for inversion of geophysical data,

problems of singularity and instability for the solution can
arise because of inadequate data coverage (e.g., usually the
number of data points is smaller than the number of un-
knowns), because of inaccuracy of the data, and because of
intrinsic ambiguity of the design problem (in particular, if
we assume that positive and negative anomalous density and
pressure can be contemporaneously present in the model). A
possible approach for solving these problems is to use fuzzy
logic [Tiede et al., 2005] based on general properties esti-
mation for the physical environment. A more classical and
simple process to avoid the instabilities of the solutions is
obtained by means of additional minimization or smoothing
conditions for the norm of the solution model as

mTQ�1
M m ¼ min; ð9Þ

where the model vector m is constituted by the values rk, pk,
k = 1, …, m, for the cells of the model and QM is a suitable

covariance matrix corresponding to the physical configura-
tion of cells and benchmarks. This matrix provides a bal-
anced model, avoiding very shallow solutions. We use a
normalizing diagonal matrix QM with elements qk, k = 1, …,
m, given for volumes vk and distances djk as

qk ¼ vK
n

Xn
j¼1

zj � Zk
�� ��

d3kj
: ð10Þ

Condition (9) is a stabilizing term [e.g., Farquharson and
Oldenbourg, 1998; Bertete‐Aguirre et al., 2002] to control
the whole incremental mass and the whole pressure for the
bodies (weighting according to matrix QM). It prevents very
large fictitious values of mass and/or pressure resulting from
a rather poorly determined model (for instance, one that is
due to the coupling of some positive and negative sources,
aligned stations, peripheral sources).
[25] A mixed minimization equation,

S mð Þ ¼ eTQ�1
D eþ 	 mTQ�1

M m ¼ min; ð11Þ

is finally adopted constraining equation (6) for residuals and
for model magnitude. l is a factor for selected balance
between fitness and smoothness of the model. Low l values
produce a very good data fit (even with noise inversion!) but
also produce too extended and/or irregular models. Con-
versely, high l values produce concentrated and smooth
models but a poor data fit (even with autocorrelated
residuals). The optimal choice is determined by an auto-
correlation analysis of the residual values, as that value
producing a null (planar) autocorrelation distribution. See
Camacho et al. [2007] for more details.

2.4. Exploration Approach for Solving the System

[26] The model system, (3)–(6), must be satisfied within
the minimization constraint (11). The system constitutes a
nonlinear problem of optimization with respect to the geo-
metrical properties. Iterative or explorative methods are
mostly used for this purpose [Tarantola, 1987]. Iterative
methods (gradient methods) are supported by a long tradi-
tion, but they involve starting with a good initial solution.
The more versatile explorative methods can be advanta-
geously applied when the model space to be explored is
reasonably sized (small number and range of parameters). In
this case, random explorative processes (e.g., genetic algo-
rithm or simulated annealing) are mostly adopted. However,
taking into account the very large number of degrees of
freedom for describing the density and pressure models (as
aggregations of thousands of small cells filled with anom-
alous values), a general exploratory inversion approach,
simultaneously for the whole cells, would be ineffective. An
alternative approach is to build the anomalous 3‐D struc-
tures by means of a growth process and then to apply an
exploratory approach for each step of the growth process.
[27] In fact, we carry out a step‐by‐step process of growth

of the 3‐D models, using an exploratory technique to find a
new cell to be filled with density and/or pressure and
aggregated to the models. Therefore, for the kth step of the
growth process, k cells have been filled with the prescribed
anomalous values for pressure and density, giving rise to

Figure 1. Simulated anomalous bodies for low density
(a light blue right parallelepiped) and low pressure (a dark
blue vertical ellipsoid). These nonconcentric bodies are
assumed below the same zone used for the further applica-
tion case (Campi Flegrei). Tick marks indicate 1000 m.
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Figure 2. Location of a regular net with step 600 composed of 233 benchmarks on the application area
and a regular net of 2656 pixels for InSAR data. Simulated values for the observable fields: (a) vertical
deformation, (b) gravity changes, (c) LOS deformation for ascending pass, and (d) LOS deformation for
descending pass, for the observation points. Tick marks indicate 1000 m. Blue, modeled values; orange,
observed values.
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modeled values dc. Then for the new (k + 1)th step, we try to
find and fill a new cell to fit the system:

d ¼ f dc þ e ð12Þ

eTQ�1
D eþ 	f 2mTQ�1

M m ¼ min; ð13Þ

where f > 1 is a scale factor to allow for a fit between the
anomaly of the provisional (not totally developed) model and
the observed anomaly (gravity and position changes). To
solve it, we calculate the value e2 = eTQD

−1 e + l f 2mTQM
−1m

for the empty cells according to an exploratory technique. In
the (k + 1)th step we choose, as an optimal cell to be filled, the
jth cell, one giving

e2j ¼ min : ð14Þ

The process continues until we reach a scale factor value
f ffi 1. As a final result, we arrive nearly automatically at
3‐D models described as the aggregation of point sources
filled with the prescribed anomalous values for density
and pressure. They fit simultaneously the observed values
for gravity and position changes well enough and keep a
small size for both anomalous models.
[28] Camacho et al. [2000 and 2002] and Gottsmann et al.

[2008] give some simulation examples showing the suit-
ability of this 3‐D inversion approach as applied to gravity
data. Results are quite satisfactory. A certain trend to pro-
duce rounded bodies or other distortions is observed for the
low‐reliability zones (mainly because of the additional
condition necessary to solve the underdetermined system;
see equation (9)).

3. Simulation Tests

[29] To give an idea of the performance of the inversion
process, we consider some test simulation examples. They

are referred to the same geographical location used for the
next application study, the Campi Flegrei caldera (Italy). We
consider a set of model parameters obtained previously in
this area for another time period [Gottsmann et al., 2006a],
which represents an overpressured region geometrically
described by a vertical ellipsoid located at a depth (center) of
2900 m below sea level (bsl), with semiaxes at 2200 m and
1400 m. The simulated source has a fixed pressure change
of −14 MPa (see Figure 1). In addition, we assume that there
is a region, described by a right parallelepiped with sides of
2000 and 4000 m and centered at a depth of 2000 m bsl (not
far from the ellipsoid), characterized by a uniform density
decrease of −50 kg/m3 (see Figure 1). The combined effect
of both anomalous regions produces surface deformation
and gravity changes. Assuming an elastic medium charac-
terized by shear modulus = 10 GPa and Poisson ratio = 0.25,
and assuming a vertical gravity gradient (free‐air and Bou-
guer) of −220 mGal/m, we can calculate the simulated values
for gravity changes and deformation on the surface. We
consider the “observed” data set as composed by (1) gravity
changes, dgi, and vertical changes from leveling (up com-
ponent), dzi, for 233 terrestrial benchmarks corresponding to
a nearly regular grid with a step of 600 m covering the
inland area, and (2) synthetic InSAR values of LOS dis-
placement for both ascending and descending orbits, dsi, for
2656 simulated pixels according to a grid with a step of
300 m over the inland area (see Figure 2). We note that data
cover only a little bit more than half of the simulated
pressure body. We assume as direction angles (incidence
angle and azimuth) for the LOS a = 23°, b = −13° for the
ascending pass and a = 23°, b = −167° for the descending
pass. First, we assume no errors in the data. Figure 2 shows
the simulated field for the observation points: gravity
changes, vertical deformation, and InSAR LOS deforma-
tion, for ascending and descending passes.
[30] We apply the previously described inversion meth-

odology to obtain a density‐pressure model fitting simulta-
neously gravity changes and displacement. Assuming a
similar relative quality for components of the deformation
vector and gravity changes, we choose the homogenization
value � in equation (8) as corresponding to the vertical
gravity gradient, which relates both magnitudes.
[31] Then we take a subsurface partition into 9,609 small

cells with mean side step of 90 m. It recovers the significant
domain below the survey area. After some trial and error, we
choose a l value that allows a sufficient level of fit: about
0.1 cm for vertical and InSAR data and about 2 mGal for the
gravity data. The corresponding inverse model is obtained
automatically. Figure 3 shows a three‐dimensional view,
and Figure 4 shows several horizontal and vertical profiles.
[32] We observe that the fit between simulated and

modeled structures is satisfactory. Magnitude, location,
depth, and geometry of the modeled structures approach
those of the original structure. Some comments can be
made.
[33] First, we observe that the inversion approach tends to

generate rather rounded bodies. In fact, the ellipsoid is a
rounded body, and its corresponding model fits its rounded
geometry quite well. In contrast, the original anomalous
density body is a prism with sharp vertices. The corre-
sponding inversion structure fits the location, depth, and

Figure 3. A 3‐D view of the modeled anomalous bodies
for the simulated test. Dark blue indicates a low‐pressure
body; light blue indicates a low‐density body. This inver-
sion model fits that of Figure 1.
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Figure 4. Vertical and horizontal sections of the modeled anomalous bodies for the simulated test:
(a) model for density changes and (b) model for pressure changes. Superimposed dotted lines indicate
the original simulated bodies.
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magnitude, but offers a more rounded geometry (because of
the imposed smoothing condition (9)).
[34] Second, the sizes and depth are quite good. However,

for the case of the depressurized ellipsoid we observe some
expansion in its bottom that exceeds the original contour. It
is produced because the bottom of the ellipsoid is too deep
with respect to the survey range. Also, for very peripheral or
very deep areas in the model, some distortions can be
observed. In addition, we must remember that the data cover
only a little bit more than a half of the horizontal extension
at the surface of the anomalous body.
[35] Now we repeat the inversion process, adding a

Gaussian noise to the simulated data obtained from a single
ellipsoidal source. For instance, we have included a
Gaussian noise with a standard deviation of 2 cm in both
components of LOS InSAR data. It corresponds to about
23% of the nonperturbed signal. With a no‐null noise level,
the suitable l value is smaller to keep the fit within the new
assumed noise level. The resulting inverse model (Figure 5)

is very similar to the former, but presents some slight
distortion and involves a smaller size (only about 1%).
With an even higher noise level, the model fits only the
correlated signal in the data, and the model becomes even
more simplified.

4. Application: Modeling of Campi Flegrei Unrest

[36] To show the applicability of our methodology, we
apply it to actual data from the caldera of Campi Flegrei
(Italy). We use gravity and leveling data as gravity bench-
marks and LOS deformation observed by InSAR for
ascending and descending passes. All the data correspond to
nearly the same time period, 1992–2000. To get a longer
overlapping between the data, we consider a somewhat
different case: We use change rates, mean annual displace-
ment or gravity changes.

Figure 5. Inversion results corresponding to the simulated model including a simulated noise (with a
standard deviation of 2 cm) for both components of the LOS InSAR deformation: (a) inversion residuals
for ascending LOS, (b) comparison between observed and modeled values, (c) two profiles of the inverse
model for anomalous pressure, and (d) a 3‐D view of this model.
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4.1. Campi Flegrei: Geological Setting, Volcanic
History, and Previous Geophysical Models

[37] Campi Flegrei is a caldera complex (Figure 6). Its
activity was dominated by two main eruptions that produced
widespread ash flow deposits and two collapses, forming
two nested calderas [Lirer et al., 1987] of 12 km [Rosi and
Sbrana, 1987; Barberi et al., 1991] and about 8 km [Lirer
et al., 1987; Scandone et al., 1991;Orsi et al., 1992, 1996] in
diameter. Postcaldera activity was mainly explosive and
produced several vents inside the caldera, most of which
aligned in NW‐SE and NE‐SW directions, highlighting a
regional tectonic influence on the volcanic activity [Di
Girolamo et al., 1984].
[38] Several geophysical studies have contributed to

define the tectonic settings of the area, supporting the
hypothesis of the occurrence of a sunken area in the middle
of Campi Flegrei [Nunziata and Rapolla, 1981; Cassano
and La Torre, 1987; Rapolla et al., 1989; Fedi et al.,
1991; Berrino et al., 1998, 2008; Florio et al., 1999;
Tramelli et al., 2006]. Campi Flegrei is a site of continual
slow vertical movements (Bradyseism). Deformation is
centered around Pozzuoli and decreases smoothly away
from Pozzuoli, becoming negligible at a distance of about
6–7 km from the town center, just beyond the caldera rim
[Corrado et al., 1976; Berrino et al., 1984; Berrino, 1998].
[39] Many authors modeled and interpreted the displace-

ment pattern associated with uplift and deflation and sug-
gested an internal source of volume change located at a
depth between 2.7 and 5.4 km [e.g., Corrado et al., 1976;
Berrino et al., 1984; Bonasia et al., 1984; Bianchi et al.,
1987; Dvorak and Berrino, 1991; Avallone et al., 1999;
Fernández et al., 2001; Lundgren et al., 2001; Bonafede and
Ferrari, 2009]. Regarding source(s) controlling the rapid
uplift and the slow deflation, some initial studies [e.g.,
Berrino et al., 1992] supported the existence of a shallow
magma reservoir beneath the caldera, while others identified
[e.g., Battaglia et al., 2006] the existing hydrothermal sys-

tem as a more likely source. The slow deflation, partly
considered in this paper, was generally interpreted as long‐
term pressure decrease in the source that was due to (1) mass
loss (perhaps magma drainage) [Berrino et al., 1992],
(2) groundwater removal from water saturated deposits that
fill the caldera [Dvorak and Berrino, 1991; Berrino, 1994],
(3) exhaustion of overpressure in the hydrothermal system
[Bonafede and Mazzanti, 1998; Lundgren et al., 2001], or
(4) some combination of them. A critical reevaluation of
results from previously published models and inverting
post‐1994 data to infer source parameters for the first time
was made by Gottsmann et al. [2006a]. They inverted lev-
eling and tide‐gauge data for a spherical point (Mogi model)
source, a penny‐shaped crack, and finally a prolate spheroid
located about 800 m east of Pozzuoli at a depth of 2.9 km.
They inferred a hybrid nature of the source, including both
magmatic and hydrothermal components. A shallow (about
3 km deep) penny‐shaped source was instead suggested by
Amoruso et al. [2008]. They, for the first time, took into
account crustal layering while inverting 1982–1984 level-
ing, electronic distance measurement (EDM), and gravity
data using a uniformly pressurized source, namely small
vertical spheroids and a finite horizontal penny‐shaped
source. They concluded that the source of the 1982–1984
Campi Flegrei (CF) unrest was probably a shallow (about
3 km deep) penny‐shaped magma intrusion fed by a deeper
magma chamber. The obtained source overpressure value
was a few megapascals.
[40] Repeated gravity measurements, combined with

ground deformation data, distinguished two different caus-
ative phenomena during uplift and deflation. The 1982–
1984 uplift and the subsequent rapid deflation (until 1987)
[Berrino, 1994] may be explained by pressure and mass
changes in a deep (3–5 km) magmatic source, probably
interacting with a shallow (1–2 km) hydrothermal system,
while the slow deflation (since 1988) may be interpreted
mainly in terms of the dynamics of the shallow hydrother-
mal system [e.g., Berrino, 1994; Gottsmann et al., 2003,
2006b, 2006c; Todesco and Berrino, 2005; Battaglia et al.,
2006; Amoruso et al., 2008].
[41] In section 4.2 we describe the several geodetic data

sets used in our test case.

4.2. Optical Leveling and Microgravity Data

[42] The leveling benchmarks we use are only a part of a
longer network covering the whole area [Corrado et al.,
1976; Berrino et al., 1984; Orsi et al., 1999], referenced
to an Istituto Geografico Militare Italiano (IGMI) station
located in Naples. The double‐run survey meets first‐order
standards. Uncertainties in elevation differences are less
than ±2 mm D1/2, where D is the distance along the line
between benchmarks [Berrino et al., 1984], and a final
uncertainty of the value of Dz at each benchmark result is
typically less than 1 cm [Gottsmann et al., 2003].
[43] In the time interval we cover, the gravity network

consisted of 15 stations (Figure 6), each one coinciding with
benchmarks of the leveling network. It is linked to an
absolute gravity station in Naples, outside the volcanic area,
chosen as the reference, whose long‐term stability is peri-
odically checked through the repetition of the absolute
measurements. The absolute gravity measurement in Naples
was carried out in 1986 [Berrino, 1995], while a new

Figure 6. Location of survey benchmarks for repeated
gravity and leveling in Campi Flegrei.
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absolute gravity station was set up on a selected gravity
benchmark at Campi Flegrei (Accademia Aeronautica ‐
Pozzuoli) close to the Solfatara crater (Figure 6) [Berrino
et al., 1999]. Gravity measurements have been carried out
using two LaCoste and Romberg gravimeters. After earth‐
tide, air pressure, and instrumental drift effects were
removed from the raw data, the gravity differences between
each pair of stations were obtained by a least squares
adjustment. The uncertainty of the gravity differences is
estimated at less than 10 mGal [Berrino et al., 1984;
Berrino, 1994].
[44] Gravity‐height data have shown at all times an

inverse linear correlation [Berrino et al., 1984; Berrino,
1994]. As an example, in Figure 7 we show the temporal
changes for gravity and elevation at the Serapeo station,
since it is one of the oldest stations and is close to the area of
maximum vertical movements.
[45] We observe that the data for elevation changes show a

rather continuous feature in time, but the gravity data contain
a higher noise level, showing a larger oscillating feature.
Then, instead of the real observed data (the values just
observed for 2000 and 1992, independent of the other
values), we use some filtered (or interpolated or extrapolated)
values. This approach allows us to avoid local or instanta-
neous perturbations or errors in the data, thus allowing a
better definition of the inversion model. In addition, we use
a mean deformation rate (mGal or centimeters per year) for
each station as input data for the inverse approach.

4.3. Radar Interferometry: Time Series of Differential
Interferograms

[46] The Campi Flegrei caldera has been the target of
several previous studies using classical [Avallone et al.,

1999] and advanced differential InSAR methods [Lundgren
et al., 2001, Usai, 2003; Berardino et al., 2002; Lanari et al.,
2007]. In this study, Small Baseline Subset (SABS) results
(linear velocity and displacement time series) were obtained
from a set of 165 European Remote Sensing Satellites 1 and 2
(ERS‐1 and ERS‐2), and 62 ENVISAT SAR data acquired
between 1992 and 2008 on ascending (track 129, frame 809)
and descending (track 36, frame 2781) orbits [Manconi et al.,
2010]. We used a temporal subset of this data set overlapped
with the common time span of the leveling and microgravity
data. In particular, descending data were limited to the periods
1992–2000 and 1993–2000 for the ascending pass.
[47] In Figure 8, we show the ascending and descending

deformation linear rate maps. Both maps show a roughly
circular pattern of subsidence (increase in line‐of‐sight
phase change) with maximum average velocities larger than
3 cm/yr. Through the analysis of the time series, we can
distinguish a minor uplift during 1996. However, despite
this minor uplift, the linear velocity during the whole period
1992–2000 is negative. Linear ground deformation rate and
time series evolution have been extensively validated
against independent geodetic techniques [Lanari et al.,
2004]. The global precisions of the SBAS results were
determined to be ±0.5 cm and ±0.1 cm/yr for the linear
ground deformation rate and time series displacement evo-
lution, respectively [Casu et al., 2006].

Figure 8. (a) Line‐of‐sight deformation velocity com-
puted from ascending passes for the period 1993–2000
and (b) line‐of‐sight deformation velocity computed from
descending passes for the period 1992–2000.

Figure 7. Temporal changes for gravity (red) and elevation
(blue) in Serapeo from 1980 to 2000. The vertical dimension
of the symbols is representative of the errors. A high corre-
lation is observed between both data, but the elevation
values show a more continuous pattern.
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Figure 9. Observed data and observed model fit in Campi Flegrei for 1992–2000 according to the simul-
taneous inversion approach for anomalous pressure and density 3‐D bodies: (a) gravity changes (mGal/yr),
(b) leveling changes (mm/yr), (c) LOS deformation for ascending pass (mm/yr), and (d) LOS deformation
for descending pass (mm/yr). Tick marks indicate 1000 m. Blue, modeled values; orange, observed values.
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4.4. Simultaneous Modeling of Terrestrial Leveling,
Gravity Changes, and InSAR (LOS) Deformation,
1992–2000

[48] The input data are as follows:
[49] 1. The terrestrial data set in terms of linear defor-

mation velocity includes 15 benchmarks with coordinates
(x, y, z), gravity change rates dg, and elevation change rates
dz for the period 1992–2000. In this time interval the geo-
detic changes offers a nearly stable pattern: increasing
gravity, decreasing elevation (see Figure 7).
[50] 2. Direct inversion of the total InSAR data (about

15,000 points) is rather tedious. For a faster process we
select pixels separated by a distance larger than, for instance,
300 m. It produces two subsets, each with approximately
1330 data points.
[51] We apply the new inversion methodology to the

combined subsampled data set (about 2670 data points) with
both ascending and descending data and the terrestrial
gravity and elevation, using all the data simultaneously.
[52] Figure 9 shows the distribution and magnitude of the

observed changes in elevation dz, gravity dg, and ascending
and descending LOSs ds. This heterogeneous data set con-
stitutes the input values that enter into the inversion
approach. A suitable relative weighting for the different types
of data is necessary to carry out a simultaneous fit. Leveling
data have a good confidence level (better than 1 cm), and
their temporal evolution is quite stable (e.g., Figure 7).
Gravity data also have a good confidence level (better than
10 mGal), but their temporal evolution seems more noisy
(Figure 7). For the InSAR data, we have a rather good

accuracy level (assumed to be ±0.5 cm and ±0.1 cm/yr). In
line with these considerations, we assume a similar relative
weighting factor for our several types of data (gravity, lev-
eling, and InSAR). Clearly, the modeling process is going to
be conditioned by these weighting criteria.
[53] The assumed values for the elastic parameters are

Poisson ratio = 0.25 and shear modulus = 10 GPa
[Gottsmann et al., 2006a]. The assumed gravity gradient
used is −220 mGal/m. It corresponds to a free‐air value of
−290 mGal/m [Berrino et al., 1984] and a value 70 mGal/m
for the Bouguer correction for Campi Flegrei, resulting from
the analyses carried out by Berrino et al. [1992].
[54] To obtain the inverse models we consider a 3‐D

partition of the local subsurface volume into 14,500 ele-
mental point sources (located at the center of the cells with
sides of about 120 m). Using this distribution of “empty”
elements, the inversion approach produces the models for
pressure and density as defined by the aggregation of filled
point sources according to the prescribed extreme values for
anomalous density and pressure. After some trials, we select
the extreme values ±20 kg/m3 and ±10 MPa as a suitable
contrast to obtain extended anomalous bodies. Suitable
values for parameters � and l were also chosen taking
into account the assumed accuracy of the data (gravity
uncertainties smaller than ±10 mGal, leveling uncertainties
smaller than ±1 cm, and LOS error values of the order of
about ±1 cm) and, after some simple trials, looking to obtain
compact source bodies and a good fit to the correlated signal
in the data. In this step, the inverse process works auto-
matically, and produces a combined model and final
residuals. Figure 9 shows the fit between observed and
modeled values from the global simultaneous fit. The
standard deviation of the inversion residuals is 0.2 cm/yr for
the elevation changes, 0.6 mGal/yr for the gravity changes,
and about 1.1 cm/yr for the LOS values. Figure 10 shows
some additional views of the inversion residuals for the case
of the ascending LOS component.
[55] The first main result is that the process does not

produce any significant region for anomalous positive or
negative density. The resulting anomalous model for density
changes consists of only a very few filled cells located close
to the surface below some benchmarks, which correspond to
very local effects. There is no extended body for gravity
changes.
[56] The anomalous 3‐D depressurized model (Figure 11)

shows a clear structure located below Pozzuoli at a mean
depth of about 1500 m bsl. The vertical profiles in Figure 11
suggest a “partially filled parabolic glass” shape along a
WNW–ESE course, with a less‐developed similar shape
along the orthogonal course. The picture also suggests some
small tracks from the main body toward the surface.

5. Summary and Conclusions

[57] From a methodological point of view, this paper offers
a new and simple methodology for carrying out the simul-
taneous inversion of data for geodetic changes (gravity,
leveling, GPS values, InSAR interferograms), assuming that
they correspond to changes in density and lithostatic pressure
within extended subsurface volumes and within a homoge-
neous elastic medium. The method allows us to obtain, by
means of a nearly automatic approach, constraints about the

Figure 10. Three cross sections of the 3‐D model for
depressurization: Horizontal (depth 1500 m) and NNE–
SSW andWNW–ESE vertical sections of the under‐pressure
model across a central position resulting from the simulta-
neous inversion of the gravity changes, leveling changes,
and InSAR data in Campi Flegrei for 1992–2000 assuming
an elastic half‐space.
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location, size, and shape of the source structures as a 3‐D
distributed source with free geometry. This methodology
could be applied in different active areas, e.g., volcanic sites
and sites with hydrologic phenomena, using different com-
binations of observations (for instance, only InSAR data,
InSAR plus gravity, leveling plus gravity). The simulation
tests show a good modeling approach, especially for sources
with smooth shapes. Results could be particularly interesting
when compared with general structural models [e.g.,
Battaglia and Vasco, 2006].This new methodology has been
also applied to model leveling, gravity, and InSAR data for
Campi Flegrei obtained for the time period 1992–2000.
[58] In this application case, the anomalous mass model

obtained from a joint inversion of gravity and leveling
changes is nearly empty. There is no anomalous mass
below the central area. Only some very shallow (depth
about 200 m) and small anomalous (positive and negative)
masses are adjusted close to some benchmarks, as corre-
sponding to local effects. It suggests that mass changes are
not detected below the main deformation area. The gravity
changes observed in the benchmarks of the main defor-
mation area can be fully interpreted as produced by free‐
air and Bouguer effects of the uplift (according the
assumed gravity gradient). We can conclude that the
phenomena below the central area do not involve input or
output of significant mass (magma or fluids).
[59] The absence of a significant mass change would

imply no temporal variability of the fluids in the source
region. It might be consistent with an exponential decay of
fluid pore pressures during the analyzed slowdown subsi-
dence phase (post‐1987), following the rapid uplift phases
(1982–1984) during which the high‐pore‐pressure condi-
tions were established. A physical mechanism that could
reconcile these observations could be a long‐lasting tran-
sient pulse of pore‐pressure diffusion confined to the caldera
filled material, which does not necessarily imply a mass
transfer process (fluids in and out) in the hydrothermal
system [Talwani and Acree, 1984]. However, the absence of
mass change does not preclude high‐pore‐pressure condi-
tions from producing fluid flow at the more permeable,
shallow, hydrothermal system levels, as suggested by the

geochemical variation of volatile discharge at Solfatara
[Todesco and Berrino, 2005]. Indeed, local fluid flow could
explain few very shallow mass change sources required to
fit some benchmarks.
[60] All deformation data (terrestrial, ascending, and

descending InSAR) provide a similar low‐pressure structure
located at a shallow depth (about 1500 m) below the survey
area. The shape of that structure is nearly filling in the
bottom of a parabolic cup with the same additional filling in
the walls (Figure 9). We do not detect signs of the deep
magmatic source for this period. Some main WNW–ESE
elongation is detected (about N100°E). The parabolic cup is
super imposable to the shape in depth of some structure,
namely the inner caldera edge, as depicted by a 2.5‐D
inversion of on‐land and offshore gravity data [Berrino et al.,
2008]. Moreover, its bottom corresponds to the depth of
the bottom of the inner caldera (between 2 and 2.5 km).
The modeled structure fits well the polygenic body inside
the modeled caldera (see Profiles 2 and 13, respectively,
W–E and NW–SE crossing the center of the caldera by
Berrino et al. [2008]). We interpret it as corresponding to
the dynamics of the shallow (depth 1–2 km) hydrothermal
system, as previously suggested by several authors [e.g.,
Gottsmann et al., 2003, 2006b; Battaglia et al., 2006]. The
hydrothermal system is confined to the filling caldera
materials and is limited by the inner caldera structure.
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