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The Fock quantization of fields propagating in cosmological spacetimes is not uniquely determined

because of several reasons. Apart from the ambiguity in the choice of the quantum representation of the

canonical commutation relations, there also exists a certain freedom in the choice of field: one can scale it

arbitrarily absorbing background functions, which are spatially homogeneous but depend on time. Each

nontrivial scaling turns out into a different dynamics and, in general, into an inequivalent quantum field

theory. In this work we analyze this freedom at the quantum level for a scalar field in a nonstationary,

homogeneous spacetime whose spatial sections have S3 topology. A scaling of the configuration variable

is introduced as part of a linear, time dependent canonical transformation in phase space. In this context,

we prove in full detail a uniqueness result about the Fock quantization requiring that the dynamics be

unitary and the spatial symmetries of the field equations have a natural unitary implementation. The main

conclusion is that, with those requirements, only one particular canonical transformation is allowed, and

thus only one choice of the field-momentum pair (up to irrelevant constant scalings). This complements

another previous uniqueness result for scalar fields with a time varying mass on S3, which selects a

specific equivalence class of Fock representations of the canonical commutation relations under the

conditions of a unitary evolution and the invariance of the vacuum under the background symmetries. In

total, the combination of these two different statements of uniqueness picks up a unique Fock quantization

for the system. We also extend our proof of uniqueness to other compact topologies and spacetime

dimensions.
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I. INTRODUCTION

The unique character of nature is alluded in physics by
the uniqueness of the theories employed to describe it. In
particular, by imposing appropriate physical criteria, the
quantization of a classical system should yield a unique
quantum description up to unitary equivalence. Since the
quantization process involves choices that may lead to
inequivalent theories, the specification of a unique descrip-
tion is a nontrivial task.

Even in systems in which one already starts with a
specific choice of basic canonical variables and an associ-
ated set of canonical commutation relations (CCRs), there
exists an intrinsic ambiguity in the quantization process
because the CCRs can be represented in nonequivalent
ways. In the case of linear systems with a finite number
of degrees of freedom, these ambiguities are essentially
suppressed by the imposition of certain unitarity and con-
tinuity conditions on the representation of the algebra of

observables (as stated in the Stone–von Newmann theorem
[1]), so that uniqueness follows without misadventures.
Nonetheless, the situation changes drastically in the arena
of field theory. These systems accept infinite nonequivalent
representations of the CCRs [2] and there is no general
procedure to select a preferred quantum description. In
this situation, physical results depend on the represen-
tation adopted, a fact that brings into question their signifi-
cance. It is then necessary to look for additional criteria to
warrant uniqueness and regain robustness in the quantum
predictions.
The usual procedure to select a preferred representation

in field theory for a given set of CCRs is to exploit the
classical symmetries. For instance, the invariance under the
Poincaré group is the criterion imposed to arrive at a unique
representation in ordinary quantum field theory. Thus, if the
field theory corresponds to a scalar field, Poincaré invari-
ance, adapted to the dynamics of the considered theory,
selects a complex structure [2], which is the mathematical
object that encodes the ambiguity in the quantization
and determines the vacuum state of the Fock representation.
For stationary spacetimes, the time translation symmetry is
exploited to formulate the so-called energy criterion and
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then select a preferred complex structure [3]. But when the
symmetries are severely restricted, as it is the case for
generic curved spacetimes or for manifestly nonstationary
systems, extra requirements must be imposed to complete
the quantization process. For example, in the case of
de Sitter space in 1þ 1 dimensions, it is possible to pick
up a unique de Sitter invariant Fock vacuum for a free scalar
field by looking for an invariant Gaussian solution to a
properly regulated Schrödinger equation [4].

In the context of quantum cosmology, the extra criterion
of a unitary implementation of the dynamics has been
successfully employed to specify a unique, preferred
Fock quantization for the Gowdy spacetimes. These are
spacetimes which possess two spacelike Killing isometries
and spatial sections of compact topology [5]. In the case of
a three-torus topology and a content of linearly polarized
gravitational waves, the local gravitational degrees of free-
dom can be described by a scalar field with a specific time
dependent mass and which propagates in an auxiliary,
static background with the spatial topology of the circle
[6]. For this choice of basic field for the model, one is
able to find a unique Fock quantization which incorporates
the background symmetries as symmetries of the vacuum
and implements the field dynamics as a family of unitary
quantum transformations [6–9].

More recently, in a broader context, a unitary equiva-
lence class of Fock representations has been specified
for scalar fields with generic time varying mass, defined
on spheres in three or less dimensions [10,11]. Again, the
procedure consists in requiring a unitary dynamics and the
vacuum invariance under the symmetries of the field equa-
tion. The particularly relevant case of the three-sphere,
with the dimensionality observed in our universe, was
considered in Ref. [11].

Apart from the inherent ambiguity in choosing the rep-
resentation of the CCRs, the quantization of fields in
curved spacetimes is affected by another kind of ambigu-
ity. It is due to the freedom in choosing a specific field
parametrization to describe the physical system, namely,
the freedom in declaring a particular choice of field
(together with its associated dynamics) as the fundamental
one. Let us concentrate our attention on the case of
homogeneous but nonstationary spacetimes, like those
encountered as backgrounds in cosmology. In these cir-
cumstances, it is most natural to consider field redefinitions
which absorb background functions. This leads to a scaling
of the field by a time dependent function, such that the
linearity of the field equations and of the structures of the
system are preserved. If this time dependence is nontrivial,
the two fields (i.e., the scaled and the unscaled ones) are
governed by different dynamics. Since a change in the
dynamics typically calls for inequivalent representations,
the construction of a quantum theory clearly depends on
the selection of a specific field description for the system
among all those related by these scaling transformations.

As commented above, these considerations are crucial
for quantum matter fields propagating in inflationary or
cosmological backgrounds, which are spatially homoge-
neous but not stationary. The discussion is also relevant for
the quantization of local gravitational degrees of freedom,
in contrast with the previous context of quantum matter
fields in classical spacetimes that are solutions to the
gravitational field equations. This latter class of systems
includes, e.g., the already mentioned Gowdy models and
the case of gravitational perturbations around cosmologi-
cal backgrounds. For these gravitational systems, there
exists a great freedom in the choice of parametrization of
the metric components in terms of fields. In all these
situations, the choice of a suitable field parametrization
involves a time dependent scaling related to background
functions and whose specific form depends on the particu-
lar system under study. This choice often leads to fields
which effectively propagate in an auxiliary static back-
ground, therefore simplifying in part the corresponding
dynamics, although there remain (or appear) time depen-
dent potentials which manifest that the scenario is a non-
stationary one.
The question immediately arises of whether it is again

possible to invoke natural criteria to remove (at least in
certain situations) the ambiguity that this freedom in the
choice of field introduces at the quantum level. A detailed
analysis about this issue was first carried out for the quan-
tization of the linearly polarized Gowdy model with three-
torus topology in Ref. [9]. That work studied a family of
linear, time dependent canonical transformations that in-
volve a scaling of the field. It was proven that there actually
exists no freedom left in performing a transformation of
this kind, once the criteria of invariance under the remain-
ing spatial symmetries and the unitary implementation of
the dynamics are imposed. More precisely, Ref. [9] shows
that the considered transformations lead to new dynamics
such that one cannot attain a unitary quantum evolution in
a Fock representation while keeping the symmetry invari-
ance of the vacuum.1 The requirements of unitary evolu-
tion and invariance, therefore, suffice to select a specific
scaling of the field and a privileged family of equivalent
Fock quantizations for it. In other words, the uniqueness is
guaranteed both for the choice of fundamental field (with
its corresponding dynamics) and for the quantum repre-
sentation of the corresponding CCRs.
One may wonder whether the uniqueness in the choice

of field description can also be guaranteed in other, more
general systems than the Gowdy model, and, in particular,
for nonstationary settings where there already exist results
about the uniqueness of the representation of the CCRs.
The case of fields in 1þ 3 dimensional spacetimes with

1In fact, in this particular linear system one can still introduce
a redefinition of the momentum which implies no scaling of the
field, but this turns out to be irrelevant inasmuch as no new
nonequivalent Fock quantization arises.

CORTEZ et al. PHYSICAL REVIEW D 83, 025002 (2011)

025002-2



compact spatial topology is specially important, owing to
its applications, e.g., to cosmology. A summary of the
discussion for scalar fields propagating in a nonstationary
spacetime with sections of S3 topology was already pre-
sented by us in Ref. [12], anticipating that the answer to the
question of uniqueness is in the affirmative. The aim of the
present work is to provide full details of the demonstration
of this result.

We will consider a scaling of the field by a generic
function of time. This scaling can always be completed
into a time dependent canonical transformation. We de-
mand such a transformation to be compatible with all linear
structures on phase space and with the symmetries of the
field equations. Any admissible canonical transformation
is then linear and, furthermore, can be divided into two
parts. The first one is a linear canonical transformation that
is explicitly time independent but takes into account the
initial conditions, rendering simple ones for the remaining
part, which incorporates then all the time dependence. We
will demonstrate that there exists only one possible choice
of phase space variables such that the resulting field theory
admits a Fock quantization with unitary dynamics and
a natural implementation of the symmetries of the field
equations. The unique choice which remains available is
precisely the one which corresponds to a transformed
scalar field that propagates in a static spacetime with S3

spatial topology, though in the presence of a time varying
mass term. Recall that, for this latter field, the uniqueness
of the representation of the CCR’s was proven in Ref. [11].

As we have already mentioned, the list of scenarios
where this result finds direct applications includes the
case of inflationary models where a scalar field with con-
stant mass propagates in a Friedmann-Robertson-Walker
(FRW) spacetime with compact spatial topology. In this
case, one can check that a linear, time dependent canonical
transformation allows one to rewrite the field equation as
that of a field in a spacetime with identical spatial topol-
ogy but static, whereas the mass becomes time varying.
Another type of situation where our result has implications
is given by the quantization of (inhomogeneous) perturba-
tions around nonstationary homogeneous solutions of the
Einstein equations, typically cosmological backgrounds
[13–17]. Examples are the gauge-invariant energy density
perturbation amplitude in a FRW spacetime with S3 spatial
topology filled with a perfect fluid (when the perturbations
of the energy-momentum tensor are adiabatic [14,16]) or
the matter perturbations around the same FRW spacetime
for a massive scalar field [18]. With a suitable scaling (and
in an appropriate gauge in the case of the massive field), the
corresponding equations of motion can be related to those
of a scalar field in a static spacetime with a time dependent
mass term (see Ref. [9] for additional details). At this
point, it may be worth commenting that, although flat
FRW universes receive a special attention in cosmology
nowadays, some recent works find reasons to prefer closed

FRWmodels with S3 topology, for example, from the point
of view of perturbation theory in relation with the choice of
appropriate gauges which embody Mach’s principle [19],
or in an attempt to account for a low microwave back-
ground quadrupole [20,21]. On the other hand, we will
argue later on that our results can be generalized to the case
of flat but compact FRW universes.
In summary, the question that we are going to investigate

is whether the criteria of unitary dynamics and invariance
of the vacuum under the symmetries of the field equation
select a unique Fock quantization among all those arising
from different time dependent scalings of the field. We will
concentrate our discussion on the case that a particular
scaling renders the dynamics into that of a scalar field
with time varying mass propagating in a static spacetime,
with inertial spatial sections that have the topology of a
three-sphere. We will study at the quantum level the
consequences of local, time dependent canonical transfor-
mations which involve a scaling of the field. These trans-
formations must preserve the invariance of the field
equation under the group of symmetries and the linearity
of the space of solutions. Transformations of this kind
consist of a scaling of the configuration variable by a
function of time, the inverse scaling of the canonical
momentum, and possibly a contribution to the momentum
that is linear in the configuration variable, the proportion-
ality factor being time dependent. Our main goal in this
work is to provide a full proof demonstrating that the
canonical transformation is so severely restricted by our
criteria that it turns out to be fixed. In addition, we will
argue that the analysis can be generalized to lower dimen-
sions, replacing the three-sphere with S2 or S1 (for this last
case, see Ref. [9]), as well as to other compact topologies.
The content of the paper is organized as follows. In

Sec. II we summarize the results that are already known
about the Fock quantization of a scalar field with a time
varying mass in a static spacetime whose spatial sections
have the topology of S3. In Sec. III we introduce the linear,
time dependent canonical transformation which accounts
for the scaling of the field and discuss its consequences at
the quantum level. Section IV contains the detailed proof
that only one of these canonical transformations leads to a
field dynamics which is compatible with our criteria of a
quantum unitary evolution and the symmetry invariance of
the vacuum. We discuss the results and conclude in Sec. V.
Finally, an appendix which deals with some technical parts
of our demonstration is added.

II. PRELIMINARIES: THE SYSTEM AND THE
FOCK QUANTIZATION OF REFERENCE

Let us start by reviewing some of the key aspects and
results about the Fock quantization of a real scalar field �
subject to a time dependent potential Vð�Þ ¼ sðtÞ�2=2,
where sðtÞ is in principle any regular function of time
(conditions on this function will be introduced later on).
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The field propagates in a static background in 1þ 3
dimensions whose Cauchy surfaces are three-spheres,
equipped with the standard round metric

habdx
adxb ¼ d�2 þ sin2ð�Þ½d�2 þ sin2ð�Þd�2�: (1)

Here, � and � have a range of �, and � 2 S1. The time
coordinate t runs over an interval I of the real line, so that
the spacetime has the topology of I� S3. Its metric is

ds2 ¼ �dt2 þ habdx
adxb: (2)

In the canonical approach, the dynamics of the system are
governed by the equations

_P� ¼ ffiffiffi
h

p ½��� sðtÞ��; _� ¼ 1ffiffiffi
h

p P�; (3)

where P� is the canonical momentum of �, h ¼
sin2ð�Þsin4ð�Þ is the determinant of the metric (1), �
denotes the Laplace-Beltrami operator on S3, and the dot
stands for the time derivative.

The canonical phase space of the theory is a symplectic
linear space � coordinatized by the field variables ð�;P�Þ
(evaluated on a particular Cauchy section, e.g., the section
t ¼ t0 for a given value of time t0) and endowed with a
symplectic structure � such that these variables form a
canonical pair, namely, their corresponding Poisson
bracket is

f�ðxÞ; P�ðyÞg ¼ �ð3Þðx� yÞ; (4)

where the Dirac delta is defined on S3. The equations of
motion (3) amount to the linear wave equation

€����þ sðtÞ� ¼ 0: (5)

Since the Laplace-Beltrami operator on S3 is invariant
under the rotation group SO(4), the above equation is
clearly invariant under this group as well. On the other
hand, notice by comparison with the Klein-Gordon
equation that a nonnegative function sðtÞ can be inter-
preted as an effective nonnegative time dependent mass

mðtÞ ¼ s1=2ðtÞ.
Owing to the field character of the theory, the system

accepts infinite nonequivalent representations of the CCRs.
Restricting one’s attention to representations of the Fock
type, this freedom is encoded in the complex structure,
which is a linear symplectic map j: � ! �, compatible
with the symplectic structure [in the sense that the bilinear
map �ðj�; �Þ is positive-definite], and such that j2 ¼ �1
(see, e.g., Refs. [2,22,23]). Different choices of complex
structure select distinct, in general not unitarily related,
spaces of quantum states for the theory; thus, physical
predictions depend on the choice of j.

Actually, as we have mentioned, it has been proven
recently that, in the ð�;P�Þ description, there exists one

(and only one) subfamily of equivalent complex structures
satisfying the criteria of SO(4) invariance and a unitary

implementation of the dynamics. Let us sketch the main
steps of the proof and explain the corresponding quantiza-
tion [11]. Given the invariance of the field equation under
SO(4), it is convenient to expand the field in terms of
(hyper-)spherical harmonics Qnlm, where the integer n
satisfies n � 0, and the integers ‘ and m are constrained
by 0 � ‘ � n and jmj � l [13,24,25]. In this basis, the
Laplace-Beltrami operator � is diagonal with eigen-
values equal to�nðnþ 2Þ. Although the (hyper-)spherical
harmonics are complex functions, it is straightforward to
obtain a real basis from the real and imaginary parts of
Qnlm, with which one can directly expand the real field �
(see Ref. [11] for details). The degrees of freedom are
represented by the coefficients qn‘m in this expansion,
which can be understood as a discrete set of modes.
These are functions of time which satisfy the linear
equation

€q n‘m þ ½!2
n þ sðtÞ�qn‘m ¼ 0; (6)

with!2
n ¼ nðnþ 2Þ. Hence, the modes qn‘m are decoupled

from each other. Besides, together with their canonically
conjugate momenta pn‘m ¼ _qn‘m, they form a complete
set of variables in phase space. For each fixed value of n,
there exist gn ¼ ðnþ 1Þ2 modes with the same dynamics,
because the equation of motion is independent of the labels
‘ and m. Obviously, the quantity gn is just the dimension
of the corresponding eigenspace of the Laplace-Beltrami
operator. The canonical phase space � can be split then as a
direct sum

� ¼ M
n

Qn � P n; (7)

where Qn and P n are the respective configuration and
momentum subspaces for the modes with fixed n. From
now on, we will omit the labels ‘ and m, unless they are
necessary in the analysis.
Furthermore, in the following we restrict our study to the

inhomogeneous sector, namely, to modes with n � 0. This
does not affect the properties of the system related to its
field character, because this is maintained if one removes a
finite number of modes.2 Wewill introduce the annihilation
and creation-like variables

an
a�n

� �
¼ 1ffiffiffiffiffiffiffiffiffi

2!n

p !n i
!n �i

� �
qn
pn

� �
: (8)

Notice that these are precisely the variables which one
would naturally adopt in the case of a free massless scalar
field. They form a complete set in the phase space of
the inhomogeneous sector. Given a set of initial data
fanðt0Þ; a�nðt0Þg at initial time t0, it is possible to write the
classical evolution to an arbitrary time t 2 I in the form

2The requirements on the quantization of the zero mode, q0,
may lead to extra conditions on the function sðtÞ. See Ref. [11]
and Sec. V for further comments on this issue.
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anðtÞ
a�nðtÞ

� �
¼ �nðt; t0Þ �nðt; t0Þ

��
nðt; t0Þ ��

nðt; t0Þ
� �

anðt0Þ
a�nðt0Þ

� �
: (9)

Let us callUnðt; t0Þ the linear evolution operator defined in
this way. Since the time functions �nðt; t0Þ and �nðt; t0Þ
provide a symplectomorphism on �, one has

j�nðt; t0Þj2 � j�nðt; t0Þj2 ¼ 1; (10)

independently of the particular values of n, t0, and t. Such
Bogoliubov coefficients �nðt; t0Þ and �nðt; t0Þ of this evo-
lution map can be determined in the way explained in
Ref. [11]. For our present analysis, we only need to employ
that their asymptotic behavior when n ! 1 is given by

�nðt; t0Þ ¼ e�iðnþ1Þ	 þO
1

n

� �
; �nðt; t0Þ ¼ O

1

n2

� �
;

(11)

where 	 ¼ t� t0 and the symbolO denotes the asymptotic
order. The derivation of this asymptotic behavior makes
use of the mild assumption that the function sðtÞ in Eq. (5)
must be differentiable, with a derivative that is integrable in
every closed subinterval of I. To simplify the notation, we
will omit in the following the reference to the initial time t0
in the coefficients of the evolution operator and in the
initial data, called now fan; a�ng.

The SO(4) symmetry of the field equations is imposed at
the quantum level by demanding that the complex structure
be invariant under this group.We call invariant this class of
complex structures. By Schur’s lemma [26], any invariant
complex structure has to be block diagonal with respect to
the decomposition of the phase space as the direct sum
of the subspaces Qn � P n. In other words, the complex
structure can be decomposed as a direct sum j ¼ L

njn,
where jn is an invariant complex structure defined on
the n-th subspace of the inhomogeneous sector of �.
Moreover, a further application of Schur’s lemma shows
that each of the complex structures jn is again block
diagonal and independent of the labels l and m, so that it
can be characterized by a complex structure in two dimen-
sions, describing, e.g., the action on the annihilation and
creation-like variables ðan; a�nÞ for any fixed mode labels l
and m (see Ref. [11] for more details).

On the other hand, let us call j0 the complex structure
which in our basis of variables fan; a�ng takes the diagonal
form:

j0n ¼ i 0
0 �i

� �
: (12)

A general complex structure j is related with j0 via a
symplectic transformation j ¼ Kj0K�1. Taking into
account the form of the invariant complex structures, the
symplectic transformation K must be also block diagonal
and independent of the degeneracy labels l and m. We call
Kn the 2� 2 block corresponding to the n-th mode, for
which we adopt the notation:

K n ¼ 
n �n
��
n 
�

n

� �
: (13)

The symbol � denotes again complex conjugation. Here,
j
nj2 � j�nj2 ¼ 1 because Kn is a symplectomorphism.
It follows, in particular, that j
nj � 18 n 2 Nþ. Note
that there exist infinite invariant complex structures.
Actually, they are not all unitarily equivalent, so that the
imposition of SO(4) symmetry does not eliminate the
ambiguity in the Fock quantization on its own.
In order to select a class of equivalent invariant complex

structures we need to appeal to additional conditions. A
unitary implementation of the classical dynamics at the
quantum level turns out to determine a preferred class, and
hence a unique Fock quantization up to equivalence. We
recall that a symplectic transformation T is implementable
as a unitary transformation in the quantum theory for
a given complex structure j if and only if j� TjT�1 is a
Hilbert-Schmidt operator (on the one-particle Hilbert
space defined by j, see, e.g., Refs. [3,23]). In the case of
the time evolution operator, and choosing the complex
structure j0, this condition is satisfied if and only ifX

n‘m

j�nðtÞj2 ¼
X
n

gnj�nðtÞj2 <1 8 t 2 I; (14)

i.e., if and only if the sequences f ffiffiffiffiffi
gn

p
�nðtÞg are square

summable (SQS) for all possible values of time. Then,
since

ffiffiffiffiffi
gn

p ¼ nþ 1, the asymptotic behavior (11) of the

beta coefficients guarantees the desired summability, en-
suring that the dynamics is implemented unitarily in the
Fock quantization picked up by j0, namely, the complex
structure associated to the natural choice of annihilation
and creation-like variables for the free massless case.
Let us suppose now that we choose a different invariant

complex structure j, which can be obtained from j0 by
means of a symplectic transformation K, as we have
commented. The unitary implementation of the evolution
operator with respect to the new complex structure j is
equivalent to the unitary implementation of a transformed
evolution operator with respect to the complex structure j0
[11]. This transformed evolution operator is obtained from
the original one by the action of K. Its diagonal blocks
are KnUnðtÞK�1

n , with corresponding beta coefficients
given by

�j
nðtÞ :¼ ð
�

nÞ2�nðtÞ � �2
n�

�
nðtÞ þ 2i
�

n�n=½�nðtÞ�: (15)

Here, the symbol= denotes imaginary part. If one assumes
that the evolution is unitary in the Fock quantization de-

termined by j, so that the sequences f ffiffiffiffiffi
gn

p
�j

nðtÞg are SQS

8 t 2 I, one can prove that the sequence f ffiffiffiffiffi
gn

p
�ng must be

SQS as well [11]. But this summability is precisely the
sufficient and necessary condition for the unitary imple-
mentation of the symplectic transformation K in the
Fock representation determined by j0, what amounts to
the equivalence of the two complex structures j and j0.
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Therefore, the SO(4) invariance and the requirement of
unitary dynamics select a unique equivalence class of
complex structures, removing the ambiguity in the choice
of representation of the CCRs.

III. THE AMBIGUITY IN THE CHOICE OF FIELD
AND THE UNITARITY CRITERION

Although we have succeeded in selecting a preferred
representation of the CCRs for the ð�;P�Þ variables, we
can always change from the ð�;P�Þ description of the

phase space to a new canonical description by means of a
canonical transformation. Since many canonical transfor-
mations fail to be represented by unitary operators quan-
tum mechanically, the classical equivalence of these
descriptions may be broken in the quantum arena, origi-
nating another type of ambiguity in the quantization. In our
case, we are only interested in considering linear, local
canonical transformations, which respect the linearity of
the field equations and, consequently, the linear nature of
the structures of the system. As we have explained in the
Introduction, the class of canonical transformations that we
want to analyze results in a time dependent scaling of the
field. It is this time dependence that makes the transforma-
tion nontrivial, otherwise any admissible representation
of the original field would provide an admissible one for
the transformed field by linearity. But when the canonical
transformation is time dependent, the field dynamics
changes, affecting the properties of the quantum theory.

A time dependent scaling of the configuration field
variable can be regarded as a contact transformation, which
can easily be completed into a canonical one. Then, the
canonical momentum must experience the inverse scaling
and, optionally, may be modified with the addition of a
term depending on the configuration field variable, which
we restrict to be linear (and local), according to our pre-
vious comments. The coefficient in this linear term may
vary in time like the rest of coefficients in the linear
canonical transformation under consideration. In this
way, one obtains a transformation of the form

’ ¼ FðtÞ�; P’ ¼ P�

FðtÞ þGðtÞ ffiffiffi
h

p
�: (16)

We recall that the momentum variable is a scalar density of
unit weight. This explains the square root of the determi-
nant of the spatial metric appearing in Eq. (16). In order
that the transformation does not spoil the differential for-
mulation of the field theory, nor produces singularities, F
and G are restricted to be two real and differentiable
functions of time, with FðtÞ different from zero every-
where. Notice also that the homogeneity of F and G
preserves the SO(4) invariance of the field dynamics.
In the following, we will consider only time dependent
canonical transformations of the form (16).

As we have pointed out, different choices of the basic
fieldlike variables typically lead to distinct dynamics. For

instance, a canonical transformation with FðtÞ ¼ 1=aðtÞ,
where a is a solution of the second order differential
equation

€a

a
�m2a2 þ sðtÞ ¼ 0; (17)

leads from the field equation (5) to the dynamics of a
Klein-Gordon field with mass m propagating in the FRW
background d~s2 ¼ a2ðtÞds2 [see Eq. (2)]. This indicates
that one can extract information about the dynamics of
different field theories by performing a time dependent
canonical transformation of the above type. Let us empha-
size, however, that with this procedure one is not trans-
forming a given field theory into another one, but rather
considering distinct field descriptions of a given physical
system, assuming that none of these descriptions is im-
posed from the start. In this kind of system, one has to
address the ambiguity associated with the choice of field
parametrization (i.e., with the selection of a fundamental
field, together with its associated dynamics). Then it is
necessary to invoke additional, physically acceptable cri-
teria to pick up a preferred quantization, otherwise, the
significance of the predictions of the quantum theory
would be in question. The criteria that we are going to
adopt are indeed the same that allow us to select a unique
equivalence class of Fock representations in the ð�;P�Þ
representation, that is, the SO(4) invariance and the unitary
implementation of the evolution.
For the rest of our analysis, it is convenient to split the

time dependent canonical transformation (16) into two
parts, one that takes care of the initial conditions on the
functions FðtÞ and GðtÞ, and the other that carries all the
time dependence. We fix once and for all an initial refer-
ence time t0, and denote by F0 and G0, respectively, the
initial values Fðt0Þ and Gðt0Þ. Then, any transformation of
the form (16) can be obtained as the composition of the
canonical transformation

~’ ¼ F0’; P~’ ¼ P’

F0

þG0

ffiffiffi
h

p
’; (18)

which does not vary in time, with a linear canonical trans-
formation of the type (16),

’ ¼ fðtÞ�; P’ ¼ P�

fðtÞ þ gðtÞ ffiffiffi
h

p
�; (19)

but such that the functions fðtÞ and gðtÞ now have fixed
initial values, namely, fðt0Þ ¼ 1 and gðt0Þ ¼ 0. The trans-
formation (18) is just a time independent linear one, with
no impact in our discussion, given the linearity of the
Fock representations of the CCRs. In fact, if a quantization
with SO(4) invariance and unitary dynamics is achieved
for the canonical pair ð’;P’Þ, one immediately obtains a

quantization with the same properties for the transformed
pair ð~’;P~’Þ. No real ambiguity comes from this kind of

transformation, since the quantum representation for the
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original and the transformed fields is actually the same (see
Ref. [9] for more details).

Thus, we shall restrict our analysis to the family of
canonical transformations (19) with fixed initial condi-
tions. We will demonstrate that any such transformation,
except the identity, leads to a classical evolution which
admits no unitary implementation with respect to any of
the Fock representations defined by an SO(4) invariant
complex structure. Thus, our criteria fix completely the
choice of field description [up to a trivial time independent
transformation of the type (18)].

Let us discuss now the form of the new dynamics
obtained with the transformation (19), and present the
mathematical condition necessary for a unitary implemen-
tation of this dynamical evolution. We recall that the linear
transformation (19) preserves the SO(4) invariance of the
field equations and that we demand that the (real) functions
fðtÞ and gðtÞ be differentiable. Moreover, [like the func-
tions FðtÞ] the function fðtÞ is required to differ from zero
everywhere. The sign of the function fðtÞ is therefore
constant and, since its initial value has been fixed equal
to the unit, in what follows we take fðtÞ> 08 t 2 I.

As we have already commented, since the canonical
transformation (19) depends on time, the classical evolu-
tion operator that describes the dynamics of the pair
ð’;P’Þ differs from that corresponding to the original

pair ð�;P�Þ. In order to describe the new dynamics, we

will follow the same procedure adopted in the previous
section. Namely, we first expand the field ’ and its mo-
mentum P’ in (hyper-)spherical harmonics, extracting in

this way their spatial dependence, and then introduce
annihilation and creation-like variables, defined in terms
of the coefficients of the expansion like in Eq. (8). One can
check [using the transformation (19) and the corresponding
initial conditions] that, with those variables, the blocks of
the original evolution matrix UnðtÞ are replaced by new

2� 2 matrices ~UnðtÞ ¼ T nðtÞUnðtÞ, where3

T nðtÞ :¼
fþðtÞ þ i gðtÞ2!n

f�ðtÞ þ i gðtÞ2!n

f�ðtÞ � i gðtÞ2!n
fþðtÞ � i gðtÞ2!n

0
@

1
A; (20)

and 2f	ðtÞ :¼ fðtÞ 	 1=fðtÞ. Finally, a straightforward
computation allows us to obtain the Bogoliubov coeffi-

cients ~�nðtÞ and ~�nðtÞ of the evolution matrices ~UnðtÞ,
which are of the form

~� nðtÞ :¼ fþðtÞ�nðtÞþf�ðtÞ��
nðtÞþ i

gðtÞ
2!n

½�nðtÞþ��
nðtÞ�;

~�nðtÞ :¼ fþðtÞ�nðtÞþf�ðtÞ��
nðtÞþ i

gðtÞ
2!n

½��
nðtÞþ�nðtÞ�:

(21)

One can now simply follow the procedure explained in
Sec. II and write down the condition for a unitary imple-
mentation of the dynamics of the transformed canonical
pair ð’;P’Þ with respect to a representation of the CCRs

defined by an SO(4) invariant complex structure. We again
call K the symplectic transformation that determines the
invariant complex structure j under consideration in terms
of the complex structure of reference j0. We also adopt the
notation (13) for its coefficients, which do not depend on
time. The new dynamics admits a unitary implementation
with respect to the representation determined by j if and

only if the sequences f ffiffiffiffiffi
gn

p ~�J
nðtÞg are SQS 8 t 2 I, where

~�
j
nðtÞ :¼ ð
�

nÞ2 ~�nðtÞ � �2
n
~��
nðtÞ þ 2i
�

n�n=½~�nðtÞ�: (22)

IV. UNIQUENESS IN THE CHOICE
OF FIELD DESCRIPTION

We will now present the detailed proof that the unitarity
condition introduced in the previous section implies
that the transformation (19) must in fact be the identity
transformation.
Let us assume that the unitarity condition is satisfied.

Then, the sequences f ffiffiffiffiffi
gn

p ~�j
nðtÞg are SQS for all values

of time in the considered interval I. In particular, this

requires that the terms
ffiffiffiffiffi
gn

p ~�j
nðtÞ of these sequences tend

to zero in the limit n ! 1. Since both gn and j
nj are
greater than 1, it must be also true that ~�j

nðtÞ=ð
�
nÞ2 tends

to zero. Taking into account the asymptotic limits of
the Bogoliubov coefficients �nðtÞ and �nðtÞ, given in
Eq. (11), and introducing for convenience the notation
zn ¼ �n=


�
n, we arrive at the conclusion that

½eiðnþ1Þ	 � z2ne
�iðnþ1Þ	�f�ðtÞ � 2izn sin½ðnþ 1Þ	�fþðtÞ

(23)

must have a vanishing limit when n ! 1 for all values of
t 2 I. Recall that 	 ¼ t� t0.
By considering separately the real and imaginary parts

of the above expression, we get that the two sequences
given, respectively, by

ð2=½zn�fþðtÞ � =½z2n�f�ðtÞÞ sin½ðnþ 1Þ	�
þ ð1�<½z2n�Þf�ðtÞ cos½ðnþ 1Þ	� (24)

and

ðf1þ<½z2n�gf�ðtÞ � 2<½zn�fþðtÞÞ sin½ðnþ 1Þ	�
� =½z2n�f�ðtÞ cos½ðnþ 1Þ	� (25)

have to tend to zero when n ! 18 t 2 I. Here, the sym-
bol < denotes the real part.
We can now apply arguments similar to those presented

in Ref. [9] and show that, if it is true that the sequences
given in Eq. (25) tend to zero for all values of time, then it
is impossible that the two sequences formed by

3While the dependence of UnðtÞ on t0 is not shown explicitly
to simplify the notation, the matrix T nðtÞ actually does not
depend on the initial time.
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1�<½z2n� and =½z2n� (26)

have simultaneously a vanishing limit on any (infinite)
subsequence of the positive integersM 
 Nþ (i.e., for n 2
M 
 Nþ). Let us see this in more detail.

We first note that ð<½zn�Þ2 tends to the unit whenever the
two terms in Eq. (26) tend to zero. This can be checked by
summing the square of the two terms (26), which gives

ð1� jznj2Þ2 þ 4ð=½zn�Þ2: (27)

By our assumptions, this expression tends to zero on a
given subsequence M. Then, we get that jznj must tend to
the unit and =½zn� to zero on this subsequence, and this
implies that the limit of ð<½zn�Þ2 is equal to one.

Suppose then that there really exists a particular subse-
quenceM 
 Nþ such that the terms (26) tend to zero on it
for all possible values of time. Since the factor

f�ðtÞ cos½ðnþ 1Þ	�; (28)

which multiplies =½z2n� in Eq. (25), is bounded for every
particular value of t, it follows that

ðf1þ<½z2n�gf�ðtÞ � 2<½zn�fþðtÞÞ sin½ðnþ 1Þ	� (29)

must have a vanishing limit on M8 t 2 I. Besides, since
by hypothesis 1�<½z2n� tends to zero on M as well, one
further obtains that

ðf�ðtÞ � <½zn�fþðtÞÞ sin½ðnþ 1Þ	� (30)

must tend to zero onM at each possible value of the time t.
We now make use of the result proven above that

ð<½zn�Þ2 necessarily tends to the unit on M. Then, there
exists at least one subsequence M0 
 M such that <½zn�
tends to 1 or to�1 onM0. In any of these cases, given that
M0 is a subsequence ofM, and hence expression (30) must
tend to zero on M0, we conclude (using the definition of
f	) that either

sin½ðnþ 1Þ	�fðtÞ or
sin½ðnþ 1Þ	�

fðtÞ (31)

(or both) have a vanishing limit on the subsequence M0 

Nþ 8 t 2 I. But, since the function fðtÞ is continuous and
vanishes nowhere, this implies that sin½ðnþ 1Þ	� must
tend to zero on M0 for all possible values of time in I, or
equivalently8 	 2 �I, where �I is the domain obtained from
I after a shift by the initial time t0.

Let us finally prove that this limiting behavior is not

allowed. Take a positive number L such that ½0; L� 
 �I.
We have, in particular, that sin2½ðnþ 1Þ	� tends to zero
on M0 8 	 2 ½0; L�. However, a simple application of the
Lebesgue dominated convergence shows that this state-
ment is false. The details are presented in the Appendix.
Essentially, one can see that the integral of sin2½ðnþ 1Þ	�
over the interval ½0; L� is bounded from below by a strictly
positive number for large n, something which is incompat-
ible with a vanishing limit for this function in the entire

interval. Therefore, one can exclude the possibility that
the two sequences of time independent terms appearing
in Eq. (26) can both converge to zero on a subsequence
M0 
 Nþ.
We will now use this fact to demonstrate that the

function fðtÞ is necessarily a constant function. Let us
study again the real sequences given by Eqs. (24) and
(25) which, as we have seen, must necessarily tend to
zero in the limit n ! 1 for all possible values of time
t 2 I if the dynamics of the ð’;P’Þ canonical pair admits a

unitary implementation.
We concentrate our attention on a specific subset of

values of the shifted time 	, namely, all values of the
form 	 ¼ 2�q=p where q and p can be any positive
integers, except for the condition that the resulting value

of 	 belongs to the interval of definition of this variable, �I.
For each value of p, we consider the subsequence of
positive integers

M p :¼ fn ¼ kp� 1> 0; k 2 Nþg: (32)

Given p, the terms (24) and (25) tend to zero on the
subsequence Mp when n ! 1 for all the values of 	

reached when q varies. Then, we reach the conclusion
that both

ð1�<½z2kp�1�Þf�
�
t0 þ 2�q

p

�
(33)

and

=½z2kp�1�f�
�
t0 þ 2�q

p

�
(34)

must tend to zero as k goes to infinity. The limit must
vanish for every possible integer value of p and q. Note,
however, that the time independent factors on the left of
these expressions are precisely those given in Eq. (26),
which we have proven cannot tend simultaneously to zero
on any subsequence of the positive integers, e.g., those
provided byMp for each of the values of p. Therefore, the

only possibility left is that the function f�ðt0 þ 2�q=pÞ is
equal to zero at all the considered values of p and q. Using
the fact that fðtÞ> 08 t 2 I, the last result amounts to the
equality

f

�
t0 þ 2�q

p

�
¼ 1 8 p; q: (35)

Realizing that the subset of time values ft0 þ 2�q=pg is
dense in I 
 R and that the function fðtÞ is continuous, we
are led to the conclusion that fðtÞ must equal the unit
function on its entire domain.
It remains to be proven that the function gðtÞ in the

transformation (19) necessarily vanishes under the con-
dition of unitary dynamics. Note first that the identity
fðtÞ ¼ 1 that we have just demonstrated implies that zn
tends to zero when n ! 1. In fact, after introducing
this identity in Eq. (23), one sees that the sequences
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fzn sin½ðnþ 1Þ	�g must tend to zero 8	 2 �I. Therefore,
in order to avoid again the false conclusion that
sin2½ðnþ 1Þ	� tends to zero on some subsequence of the
positive integers for all values of 	 in a compact interval, it
is necessary that the complex sequence zn has a vanishing
limit. Taking into account that j
nj2 ¼ j�nj2 þ 1, it is
straightforward to check that the sequence formed by the
coefficients �n must tend to zero, and that 1=j
nj2 (and
j
nj2) approaches the unit in the limit of large n, what
implies, in particular, that the sequence given by 
n is
bounded.

To complete the proof that gðtÞ vanishes, we consider

again the sequences f ffiffiffiffiffi
gn

p ~�j
nðtÞg, particularized now to the

only value allowed for the function fðtÞ, namely, the iden-
tity, so that fþðtÞ ¼ 1 and f�ðtÞ ¼ 0. Employing the defi-

nition of the coefficient �j
nðtÞ, given in Eq. (15), one can

check that the leading terms in ~�j
nðtÞ are

~�
j
nðtÞ ffi �j

nðtÞ þ i
gðtÞ
2!n

½ð
�
nÞ2��

nðtÞ þ �2
n�nðtÞ�: (36)

The condition of unitarity demands that
ffiffiffiffiffi
gn

p ~�j
nðtÞ tend to

zero in the limit n ! 1 at all values of time, and there-
fore the same must happen to the sequences with termsffiffiffiffiffi
gn

p ~�j
nðtÞ=
�2

n . Using this condition and taking into ac-

count the known asymptotic behavior (11) of �nðtÞ and
�nðtÞ, as well that �n tends to zero and

ffiffiffiffiffi
gn

p
=!n tends to the

unit for large n, a simple calculation leads to the result that
the sequences given by

gðtÞ � 4zn!n sin½ðnþ 1Þ	�e�iðnþ1Þ	 (37)

must have a vanishing limit 8 t 2 I. We then consider the
real and imaginary parts of these sequences, namely,

gðtÞ � 4jznj!n sin½ðnþ 1Þ	� cos½ðnþ 1Þ	� �n� (38)

and

4jznj!n sin½ðnþ 1Þ	� sin½ðnþ 1Þ	� �n�; (39)

where we have written the complex numbers zn in terms of
its phase and complex norm:

zn ¼ jznjei�n : (40)

Although we already know that jznj tends to zero, the limit
of the product jznj!n is still undetermined, because !n

grows like n at infinity.
Let us suppose first that the sequence fjznj!ng tends to

zero. In this case, recalling that the sequences given in
Eq. (38) should tend to zero 8 t 2 I, it follows immedi-
ately that gðtÞmust be the zero function on I, as we wanted
to prove. Finally, let us demonstrate that the alternate
possibility, i.e., the hypothesis that fjznj!ng does not tend
to zero, leads to a contradiction. We make use of the fact
that the sequences formed by the terms (39) tend to zero
8 t. If fjznj!ng does not tend to zero, there must exists a
subsequenceM of the positive integers such that the (posi-

tive) sequence fjznj!ng is bounded from below on M.
Thus, on that subsequence,

sin½ðnþ 1Þ	� sin½ðnþ 1Þ	� �n� (41)

must necessarily have a zero limit 8 	 2 I. But, as shown
also in the Appendix, this last statement can never be true.
Again the crucial argument involves the application of the
Lebesgue dominated convergence.
As a result, the only function gðtÞ that is allowed by the

condition of unitarity is the zero function. In total, we have
demonstrated that the only canonical transformation of the
type (19) which is permitted once one accepts the unitarity
criterion is the trivial one, i.e., the identity transformation.
In this way, the choice of a field parametrization for the
system turns out to be completely fixed (up to irrelevant
constant scalings) by the requirements of invariance under
the symmetry group of the field equations, SO(4), and the
unitary implementation of the dynamics. The ambiguity in
the selection of a field description is totally removed.

V. CONCLUSIONS AND DISCUSSION

In this work, we have begun our analysis by reviewing
the Fock quantization of a scalar field with a time varying
mass in a static background, in which the inertial spatial
sections have S3 topology. For this particular scenario, we
have seen that the criteria of (i) invariance of the vacuum
under the SO(4) symmetry of the field equations; and
(ii) unitary implementation of the field dynamics, are
sufficient to select a unique Fock representation of the
CCR’s.
An additional question concerns the possibility of

changing the field description if one allows for a scaling
of the field by time dependent functions. This is a situation
frequently found in cosmology, where it is common to
introduce scalings of the fields in order to absorb part of
the time dependence of the cosmological background. The
prototypical example is that of fields in a FRW spacetime
with compact topology (S3 for our discussion), or the
closely related scenario of field perturbations around a
FRW background of that kind. There is, therefore, an extra
ambiguity affecting the quantization of such systems,
namely, the choice of the field description, which neces-
sarily affects the dynamics.
In the above mentioned systems, it is generally the

case that a time dependent scaling of the field renders the
field equations into a form describing the effective propa-
gation in a static background with a time varying mass, i.e.,
the model that we considered initially. We have demon-
strated here the result that we anticipated in Ref. [12],
namely, that our criteria of symmetry invariance and uni-
tary evolution allow only for one admissible field descrip-
tion among all those that can be reached by means of time
dependent canonical transformations that include a time
dependent scaling of the field. The analyzed canonical
transformations are linear, in order to maintain the linearity
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of all the structures on phase space, and preserve the
symmetry of the field equations.

To arrive at this uniqueness result, very mild require-
ments have been imposed on the mass function sðtÞ appear-
ing in the field equation (5). Specifically, the only condition
that has been assumed is that the mass function has a first
derivative which is integrable in all closed subintervals of
the domain of definition. In addition, if one wants that the
zero mode of the scalar field (the homogeneous sector) can
be quantized consistently in the standard Schrödinger rep-
resentation with the Lebesgue measure (on R), an extra
condition has to be added: the mass sðtÞ has to be non-
negative for all possible values of time.

Let us comment on some key points underlying our
uniqueness result. A fundamental question is to understand
why one can reach unitarity in the quantum evolution and
how this unitarity selects a unique field description as well
as a unique equivalence class of complex structures for it,
among the set of all symmetry invariant complex struc-
tures. In this respect, we first notice that infrared divergen-
ces are not an issue to begin with, owing to the fact that the
spatial sections have compact topology (leading, in par-
ticular, to a discrete spectrum for the Laplace-Beltrami
operator). Like for many other considerations in cosmol-
ogy, the compactness of the spatial sections is essential.
When the spatial topology is not compact, the infrared
problem appears and changes the scenario drastically.4

On the other hand, the ultraviolet divergences are absent
in the system precisely because we are using an appropriate
representation of the CCRs. This representation turns
out to be the one naturally associated with a free massless
scalar field. The reason is that, in the asymptotic limit of
large wave numbers, which are the relevant modes for
the ultraviolet regime, the behavior of the system (when
the field is properly scaled) approaches sufficiently fast the
behavior of a massless field. Only Fock quantizations (with
the desired invariance) which are equivalent to the one that
we have chosen, keep this good ultraviolet property. In this
way, one obtains a single family of unitarily equivalent
Fock quantizations which incorporate the symmetries of
the field equation and respect the unitarity in the evolution.
Concerning the choice of field description, let us also note
that nonstationary spacetimes give rise to damping terms
(first order time derivatives of the scalar field) in the
equations of motion. In relation with our previous com-
ments, such contributions spoil the unitary implementation
of the dynamics at the quantum level. Fortunately, a suit-
able scaling of the field relegates all the information about
the nonstationarity of the system to the (effective) mass
term.

Let us see this last point in some more detail. As we have
explained, in order to quantize a scalar field in a nonsta-
tionary setting along the lines presented in this paper, one
generically performs a canonical transformation which
involves a time dependent scaling of the field, so that the
transformed field effectively propagates in a static back-
ground. Let us call ’ and ~sðtÞ, respectively, the field and its
time dependent mass previous to the discussed transforma-
tion. As commented above, the corresponding field equa-
tion contains a damping term, which is linear in _’. We call
rðtÞ the function multiplying _’ in this damping contribu-
tion. We now want to give the explicit expressions of the
time dependent scaling factor, FðtÞ [see Eq. (16)], and of
the mass function sðtÞ for the field� ¼ ’=FðtÞ. A straight-
forward calculation shows that

FðtÞ ¼ F0 exp

�
�
Z t

t0

d	
rð	Þ
2

�
;

sðtÞ ¼ ~sðtÞ � ½r2ðtÞ þ 2 _rðtÞ�
4

:

(42)

We also note that the condition imposed on sðtÞ for the
validity of our uniqueness result is met, for instance, if ~sðtÞ
satisfies the same condition and rðtÞ has a second derivative
which is integrable in all compact subintervals of the time
domain I. On the other hand, the positivity of the mass
function (for a standard quantization of the homogeneous
sector) amounts just to

~sðtÞ � ½r2ðtÞ þ 2 _rðtÞ�
4

8 t 2 I: (43)

Let us now address possible generalizations of our re-
sults, starting with the case of scalar fields in different
compact spatial manifolds. The analysis carried out here,
together with the dimensional arguments explained in
Ref. [11] in relation to the uniqueness of the representation
of the CCRs for the field description selected by our
criteria, strongly indicate that the results that we have
achieved for the three-sphere can be extended to other
compact spatial manifolds provided that the spatial dimen-
sion d is equal or smaller than 3. Suppose that, in these
cases, the representation of the symmetry group of the field
equation is irreducible in each of the eigenspaces of the
Laplace-Beltrami operator [like it happens for SO(4) in the
case of the three-sphere]. This property is actually suffi-
cient (though not necessary) to characterize the invariant
complex structures in a block diagonal form similar to that
discussed in this work. One can then follow the same kind
of steps that have allowed us to complete the proof of
uniqueness, reaching analogous conclusions.
In all the cases with d � 3, our arguments therefore

support the expectation that, when one adopts the scalar
field description with propagation in a static background,
the free massless representation provides the unique
(equivalence class of) Fock quantization that satisfies our
criteria of symmetry invariance and unitary dynamics [11].

4For instance, the well-known inequivalence of the quantum
representations corresponding to free scalar fields of different
masses in Minkowski spacetime is precisely due to the long
range behavior of the quantum fields. See Ref. [27] for an
account.
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Besides, our criteria are expected to fix again the function
fðtÞ in the canonical transformations of the type (19).
This ensures that there is no ambiguity in the scaling of
the field, either. The only freedom remaining in the ca-
nonical transformation is given by the function gðtÞ. It is
not difficult to realize, repeating the arguments discussed
here, that whether or not the function gðtÞ is fixed to vanish
depends on the square summability of the sequence
f ffiffiffiffiffi

gn
p

=!ng. If the sequence is not SQS, as it happens for

the cases of the two-sphere and the three-sphere, the func-
tion gðtÞ must vanish. However, if the sequence is SQS,
there exists an arbitrariness and our criteria do not deter-
mine the definition of the momentum P’ completely. For

instance, this is the case of the circle S1 [9]. It is worth
pointing out that, nevertheless, this freedom has nothing to
do with the scaling of the field, leaving intact the time
evolution. If a choice of momentum and of invariant com-
plex structure permits a unitary implementation of the
dynamics, the same complex structure leads to a unitary
evolution for any other admissible choice of the momen-
tum canonically conjugate to the field. In other words,
this freedom to change the momentum by adding a time
dependent contribution linear in the configuration field
variable, when available, does not allow one to reach a
new representation satisfying our criteria.

As we have explained in the Introduction, a framework

where our results find a natural application is in the

quantization of (inhomogeneous) perturbations around a

closed FRW spacetime. In this context, the simplest system

is a scalar field coupled to a homogeneous and isotropic

universe with compact spatial sections. This system is

specially relevant in cosmology. On the one hand, the

considered perturbations provide the seeds for structure

formation. On the other hand, those perturbations explain

the anisotropies imprinted in the power spectrum of the

cosmic microwave background. Our criteria to eliminate

the quantization ambiguities can now be applied in their

quantum treatment and the subsequent analysis of the

power spectrum.
Although the discussion that we have carried out has

been focused on scalar fields, there does not seem to exist

any technical or conceptual obstacle to extend the analysis

to other kind of fields, applying to them our criteria in order

to pick up a unique Fock quantization. For instance,

an interesting case is provided by the traceless and diver-

genceless tensor perturbations of the metric around a FRW

spacetime with compact spatial topology. These tensor

perturbations describe gravitational waves. The primordial

gravitational waves generated in the early universe can also

contribute to the power spectrum of the cosmic microwave

background, in the form of tensor modes. In fact, with a

convenient scaling and in conformal time, these tensor

perturbations satisfy again equations of motion like those

for a free field with a time dependent quadratic potential in

a static spacetime when the perturbations of the energy-

momentum tensor are isotropic (see Ref. [14]). Let us

mention also the case of fermionic fields. The study of

the perturbations around a closed FRW spacetime pro-

duced by fermions of constant mass was carried out in

Ref. [28], where a quantization was achieved after expand-

ing the perturbations in spinor harmonics on the three-

sphere. Preliminary calculations indicate that the kind of

techniques employed here can be extended to deal as well

with the uniqueness of the Fock quantization for fermions.

It is worth emphasizing that the criteria for this uniqueness

are the natural implementation of the symmetries of the

field equations and the unitarity of the evolution. For cases

other than the scalar field (and gravitational waves, as

noticed above), these criteria may not necessarily imply

that the selected field description corresponds to a field

propagating in a stationary background.
The Fock quantization of fields in the context of modern

approaches to quantum cosmology is another interesting

framework where our results can have applications. One of

the most promising approaches is what nowadays is called

Loop Quantum Cosmology [29–31]. LQC employs the

techniques of Loop Quantum Gravity [32–34] in the study

of models of interest in cosmology, obtained from general

relativity by the imposition of certain symmetries. In the

specific case of a FRW spacetime coupled to a scalar field

(see Refs. [35–37]), where homogeneity and isotropy are

imposed, LQC predicts that the classical big bang singu-

larity is replaced by a big bounce, which connects the

observed branch of the Universe with a previous branch

in the evolution. For semiclassical states with certain prop-

erties [38], the evolution is peaked around a trajectory

which shows a behavior different from the classical one

in Einstein’s theory. Then, one could use such a trajectory

to define an effective, quantum corrected background. If

inhomogeneous matter fields are introduced, their scaling

by background functions would then provide a different

time dependent scaling with respect to the conventional

case in general relativity. At the quantum level, the combi-

nation of the use of loop techniques for the homogeneous

background with a standard Fock quantization of the in-

homogeneous fields, which propagate in it, is known in the

literature as hybrid quantization [39–42]. This quantization

procedure assumes that the most relevant quantum geome-

try effects (characteristic of Loop Quantum Gravity) are

those that affect the homogeneous degrees of freedom of

the gravitational field. A family of systems in which the

application of such a quantization procedure seems most

natural is the already commented case of perturbations

around FRW spacetimes. Our analysis provides a unique

Fock quantization for those perturbations, which ought to

be recovered from LQC (either with a hybrid or with

a genuinely loop quantization) in regimes in which the

behavior of the degrees of freedom of the background

can be described satisfactorily by an effective trajectory.
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In conclusion, we have completed the demonstration
that a scalar field with time dependent mass in a FRW
spacetime with compact spatial sections admits (within the
considered infinite family of possibilities that respect the
linear structure of the theory, and up to equivalence) a
unique Fock quantization where the vacuum is invariant
under the symmetries of the field equation and the dynami-
cal evolution is unitary. In this sense, it is not only that one
does not have to renounce to unitarity in the context of
quantum cosmology, but, furthermore, the requirement
of unitarity has the remarkable counterpart of selecting a
unique Fock description among all those that incorporate
the symmetry invariance of the system.
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APPENDIX: APPLICATION OF THE LEBESGUE
DOMINATED CONVERGENCE

In Sec. IV we used the fact that sin2½ðnþ 1Þ	�, or more
generally sin½ðnþ 1Þ	� sin½ðnþ 1Þ	� �n� (from which
the previous case is recovered by taking �n ¼ 0), cannot
tend to zero in the limit n ! 1 on any subsequence of the

positive integers8 	 2 �I. In this appendix we are going to
prove an even more general result. Let

U ¼ fun; n 2 Nþg (A1)

be a monotonous and diverging sequence of positive real
numbers, i.e., unþ1 > un 8n 2 Nþ, with fung unbounded.
Let also

D ¼ f�n; n 2 Nþg (A2)

be a sequence of phases [namely, real numbers, identified
modulo 2�], and let L > 0 be an arbitrary positive number.
Then, the sequences of values

xnð	Þ ¼ sinðun	Þ sinðun	� �nÞ (A3)

cannot tend to zero 8 	 2 ½0; L�.
To prove this, we assume from the start that the sequence

formed by cosð�nÞwith �n 2 D does not tend to zero when
n tends to infinity. We will show below that there is no loss
of generality in making this assumption. A straightforward
computation shows that

Z L

0
xnð	Þd	 ¼ L

2
cosð�nÞ � cosðunL� �nÞ sinðunLÞ2un

:

(A4)

Taking into account the range of the trigonometric func-
tions, we get the following bounds, valid for all positive
integers n:

L

2
cosð�nÞ þ 1

2un
�

Z L

0
xnð	Þd	 � L

2
cosð�nÞ � 1

2un
:

(A5)

Given that cosð�nÞ does not tend to zero, there exists a
subsequence M00 
 Nþ and a number �> 0 such that
j cosð�nÞj � �, 8n 2 M00. Thus, there exists a subse-
quence M0 
 M00 such that

cosð�nÞ � � 8n 2 M0; (A6)

or

cosð�nÞ � �� 8n 2 M0; (A7)

(both types of sequences may exist).
Let us consider for the moment the first case (A6). Since

the sequence of positive numbers 1=un (with un 2 U)
tends to zero for large n, one can find a positive integer
n0 2 M0 such that L�> 1=un0 . Moreover, since unþ1 >

un in U, one gets from the second inequality in Eq. (A5)
that the considered integral is bounded from below on the
given sequence by a positive number:

Z L

0
xnð	Þd	� L�

2
� 1

2un0
> 0; 8n>n0; n2M0:

(A8)

It is clear that the second possibility, i.e., the existence of
a sequenceM0 such that cosð�nÞ � ��, leads to a negative
upper bound by similar arguments. Taking into account the
two possibilities, we conclude that [assuming that cosð�nÞ
does not tend to zero] there exist positive numbers �,
n0 2 Nþ, andM ¼ L�� 1=un0 , as well as a subsequence

M 
 Nþ such that��������
Z L

0
xnð	Þd	

���������
M

2
8 n 2 M: (A9)

The sequence M is formed by those elements of M0 such
that n > n0.
Suppose now that the sequence of functions xnð	Þ con-

verges to the zero function on ½0; L�. Since the functions
jxnð	Þj are obviously bounded from above by the constant
unit function, we are in the conditions of Lebesgue domi-
nated convergence [1], and it follows that the sequence of
integrals

R
L
0 xnð	Þd	 must converge to the integral of the

zero function, i.e., to zero. But this conclusion is obviously
contradicted by the bound obtained in Eq. (A9). Therefore,
it is not possible that the values of xnð	Þ converge to zero
8 	 2 ½0; L�.
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To conclude the proof, it only remains to consider the
situation in which cosð�nÞ tends to zero for large n. In that
case, the vanishing limit of xnð	Þ implies that sinð2un	Þ
must tend to zero, and therefore so must sin2ð2un	Þ. But
this last situation is covered by the proof presented above.

It suffices to make all the phases �n identically null, and
identify the sequence f2ung as the new sequence U, since
the positive real numbers 2un form a monotonous and
diverging sequence if the un’s do as well.
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