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[1] Interferometric Synthetic Aperture Radar (InSAR) is a reliable technique for
measuring crustal deformation. However, despite its long application in geophysical
problems, its error estimation has been largely overlooked. Currently, the largest
problem with InSAR is still the atmospheric propagation errors, which is why
multitemporal interferometric techniques have been successfully developed using a
series of interferograms. However, none of the standard multitemporal interferometric
techniques, namely PS or SB (Persistent Scatterers and Small Baselines, respectively)
provide an estimate of their precision. Here, we present a method to compute reliable
estimates of the precision of the deformation time series. We implement it for the SB
multitemporal interferometric technique (a favorable technique for natural terrains,
the most usual target of geophysical applications). We describe the method that uses
a properly weighted scheme that allows us to compute estimates for all interferogram
pixels, enhanced by a Montecarlo resampling technique that properly propagates the
interferogram errors (variance‐covariances) into the unknown parameters (estimated
errors for the displacements). We apply the multitemporal error estimation method
to Lanzarote Island (Canary Islands), where no active magmatic activity has been
reported in the last decades. We detect deformation around Timanfaya volcano
(lengthening of line‐of‐sight ∼ subsidence), where the last eruption in 1730–1736
occurred. Deformation closely follows the surface temperature anomalies indicating that
magma crystallization (cooling and contraction) of the 300‐year shallow magmatic body
under Timanfaya volcano is still ongoing.

Citation: González, P. J., and J. Fernández (2011), Error estimation in multitemporal InSAR deformation time series, with
application to Lanzarote, Canary Islands, J. Geophys. Res., 116, B10404, doi:10.1029/2011JB008412.

1. Introduction

[2] Two‐pass differential interferometric synthetic aper-
ture radar (DInSAR) has emerged, together with the Global
Positioning System, as the most operative geodetic tools for
ground deformation monitoring due to tectonic and volca-
nic activity in the last two decades [Massonnet et al., 1993;
Dzurisin, 2007]. Differential InSAR provides high resolu-
tion ground deformation (u) at regional level, along the line‐
of‐sight direction (l) between the satellite antenna and the
imaged ground surface. DInSAR exploits the phase differ-
ence between two time‐separated complex SAR images
acquired under similar geometric conditions. The interpre-
tation of simple pairwise DInSAR results has led to an
impressively long list of discoveries in volcanic and tectonic
deformation processes [Massonnet et al., 1993, 1995; Peltzer

et al., 1996; Amelung et al., 2000; Fialko et al., 2005;
Amelung et al., 2007].
[3] Successful geophysical applications of classical dif-

ferential InSAR have started from avoiding error quantifi-
cation [Massonnet et al., 1995; Fialko and Simons, 2001] to
gradually incorporate some error assessment [Simons et al.,
2002; Knospe and Jonsson, 2010]. Several authors have sug-
gested how to incorporate estimated observational errors for
the extraction of geophysical parameters (magma volume,
earthquake source parameters, etc.) [Lohman and Simons,
2005; Dawson and Tregoning, 2007; Sudhaus and Jonsson,
2009]. However, routine error assessment in interferometric
processing methods has only been proposed in quasi‐static
displacement maps through classical DInSAR, and only
envisaged with advanced methods [Emardson et al., 2003].
[4] Advanced or multitemporal interferometric methods

have been developed to overcome (1) temporal decorrela-
tion [Zebker and Villasenor, 1992] and (2) atmospheric dis-
turbances [Zebker et al., 1997; Hanssen et al., 1999].
Multitemporal techniques have been tested to resolve small
strain rates (∼1 mm/yr/10 km). The simplest, yet most effec-
tive form of advanced methods is interferogram stacking
[Lyons and Sandwell, 2003; Fialko and Simons, 2000]. It
consists in (weighted) average interferograms to enhance
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deformation detection, assuming that the error behaves as a
temporal white noise process. Theoretically, it reduces errors
as s = 1/

ffiffiffi
n

p
, where n is the number of independent inter-

ferograms [Strozzi et al., 2001]. However, the use of stack-
ing is limited to the study of static or temporal constant rate
deformation processes. In the late Nineties, the identifica-
tion that some interferogram elements remained coherent in
less favorable interferometric pairs was used to overcome
some of the aforementioned problems [Usai, 1997; Usai
and Hanssen, 1997; Hanssen and Usai, 1997]. It enabled
the temporal analysis of coherent/stable scatterers in a set of
SAR images. Two distinct main methods have been devel-
oped: (1) Permanent or Persistent Scatterer Interferometry ‐
PS (Figure 1a), which uses the equivalence between radar
amplitude and phase stability to identify such stable ele-
ments [Ferretti et al., 2000; Hooper et al., 2004, 2007].
Usually, phase history is reconstructed with reference to a
single image (master) and considering an a priori temporal
ground deformation model (e.g. linear, sinusoidal,..). Such
methods have been mainly, but not only, applied to urban
areas, where such point‐like scatterer mechanisms are dom-
inant. (2) A second group of methods is the Small Baseline ‐
SB (Figure 1b), which exploits small baseline interferograms
to minimize the effects of baseline decorrelation and topo-
graphic errors [Lundgren et al., 2001; Berardino et al., 2002;
Mora et al., 2003; Schmidt and Bürgmann, 2003;Usai, 2003;
Lanari et al., 2004]. Temporal decorrelation is minimized by
using short‐temporal separation between acquisitions. Phase
analysis is primarily done in the spatial two‐dimensional
space and stable distributed scatterers can be selected with
spatial or temporal coherence criteria [Berardino et al., 2002;
Mora et al., 2003; Tizzani et al., 2007]. Such distributed
scatterers aremore frequently found in natural terrains. Finally,
hybrid methods have been recently proposed to identify and
exploit the phase of mixed scatterers [Hooper, 2008].
[5] In current advanced interferometric techniques, error

estimation in the unknown parameters, namely LOS defor-
mation (ulos), rely largely on the root‐mean square of a cer-
tain stable area, some coherence‐based errors or a combination

of both [Hooper et al., 2004; Kwoun et al., 2006; Andersohn
et al., 2009]. Therefore, an error estimation method for
advanced interferometric techniques is necessary for the cor-
rect assessment of any detected deformation and its temporal
evolution. Here, we formulated a rigorous Gauss‐Markov
mathematical model, modifying the SB multitemporal inter-
ferometric method to account for the description and analysis
of the observational errors to construct a suitable obser-
vation variance‐covariance matrix (S’’). The new multi-
temporal interferometric model also take into account the
inherent data correlation of SB methods when SAR acqui-
sitions are used multiple times. For the final uncertainty
refinement, we used a resampling bootstrap method. Later
on, the method is validated against some simulation tests.
Finally, the method is applied to the volcanic island of
Lanzarote.

2. Differential InSAR Phase and Phase Errors:
Theory

[6] Before describing the proposed method, we must first
review the process to obtain the differential phase and the
assumptions we made, as well as the properties of the error
sources affecting the differential interferometric phase (s’

2 )
and how we quantify their contributions.
[7] First, we aligned all available SAR acquisitions to

a single master. We chose the master image based on the
cumulative correlation model or total correlation [Hooper
et al., 2007; Perlock et al., 2008]. This step tends to mini-
mize errors related with the coregistration of long spatial
baselines, although it can be somehow alleviated if a DEM‐
assisted coregistration is performed [Fornaro et al., 2005].
Once all images have been resampled to a common master‐
coordinate system, interferograms are selected based on tem-
poral and perpendicular baseline thresholds. Careful attention
should be paid if the selection procedure results in a single
subset or multiple subsets of short‐baselines interferograms.
Both options are valid but different assumptions should be
made to solve the problem, as a displacement minimum norm
solution or a velocity minimum norm solution respectively
are needed [Usai, 2003; Berardino et al., 2002]. Interfero-
metric phase (y) has geometric contributions (flat earth and
topographic phases), which have to be removed to lead to the
wrapped differential phase (’). Finally, for the later analysis
the phase is unwrapped in 2D.
[8] Differential phase errors come from a variety of sources

and have been previously discussed [Hanssen, 2001]. Here,
we review source errors and the adapted solution to remove
or quantify them for subsequent integration in the stochastic
model of the proposed method.

2.1. Decorrelation

[9] Interferometric decorrelation is computed as a complex
cross‐correlation index between two complex SAR images,
often referred to as its complementary coherence (r). Thus,
coherence serves as a phase quality parameter that measures
the phase stability of the target ground (yscat), routinely
calculated as a spatial approximation (multilooked) [Hanssen,
2001]. Broadly speaking, decorrelation in interferograms
occurs as the combination of several processes, namely the
temporal, processing, geometric, doppler‐centroid, volumet-
ric and thermal decorrelations [Massonnet and Feigl, 1998;

Figure 1. Advanced interferometric methods (PS versus
SB). (a) PS is based on the analysis of point‐like reflectors,
(b) meanwhile SB exploits spatial average of distributed
scatterers.
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Hanssen, 2001; Simons and Rosen, 2007, and references
therein]. Zebker and Villasenor [1992] demonstrated that
decorrelation effects are multiplicative and a total coherence
value accounts for all decorrelation phase error sources.
[10] So, if we consider that our SAR system is imaging a

natural terrain and among any possible reflection mechan-
isms, distributed scatterers would be predominant [Curlander
and McDonough, 1991]. A common approach for estimating
the standard deviation of the interferometric phase is assum-
ing that within a given interferogram pixel, reflections can
be modeled as the sum of many randomly and indepen-
dently oriented subreflectors (Figure 1b, inset). If no single
reflector dominates the radar backscatter, the theorem of
the central limits holds to represent the stochastic properties
of the phase (complex random Gaussian circular variable).
Analytical expressions can be derived for the phase stan-
dard deviation for different multilook factors [Curlander
and McDonough, 1991; Just and Bamler, 1994; Lee et al.,
1994; Hanssen, 2001]. However, if the multilook factor
(or number of independent looks, L) is large, an empirical
expression can be used [Rodriguez and Martin, 1992], which
asymptotically approaches the analytical solution (for L > 4):

�2’ �ð Þ ¼ 1

2L

1� �2

�2
: ð1Þ

In that way, we can estimate the differential phase variance
(s’

2 ) due to decorrelation as a function of the coherence
value (r). Equation (1) can be expressed as LOS range
change:

�2
’ �ð Þ ¼ �

4�

1� �2

2�2
; ð2Þ

where l is the SAR wavelength.

2.2. Geometric Residuals: Orbital and Topography

[11] Typically, orbital ephemerides are not accurate enough
to correctly model baseline parameters. Uncertainties in the
order of ±7 and ±30 cm in azimuth and range directions have
been reported [Scharroo and Visser, 1998]. Thus, assuming
that orbital path errors are correlated and vary slowly with
azimuth/acquisition time (∼15 sec. for standard frame of
ERS‐like SAR sensor), the orbital uncertainties would gen-
erate smooth trends. To correct orbital effects, several methods
have been proposed [Massonnet and Feigl, 1998; Biggs
et al., 2007]. However, after unwrapping, a low order poly-
nomial model is suitable to remove them [Hanssen, 2001].
We found that typically solving for a biquadratic model
parameters is enough to reduce significantly this effect, in
the following we assume that for wavelengths (<half‐width
of the SAR image footprint), the residual shorter spatial errors
are spatially uncorrelated (s’orb–corr

2 ).
[12] Residual topographic errors remain after topography

subtraction due to (1) used DEM inaccuracy, or (2) actual
vertical shifts between target height and nearby DEM post-
ing values. The first effect could propagate to the differential
phase and add as random phase noise according to, s’h

2 =�
4� B?
�R sin �

�
2 sh

2, where B? is perpendicular baseline, R is the
slant‐range distance, � is the local incidence angle and sh

2

is the DEM height variance. However, using small baselines

would diminish this effect with respect to other error sources.
Its stochastic properties can generally be assumed spatially
random, except for DEM in urban areas or digitized topo-
graphic maps where considerable spatial correlation can occur.
However, the later scales with the perpendicular baseline and
can be estimated during the model inversion.

2.3. Atmospheric: Ionosphere and Troposphere

[13] The ultimate limiting factor for geodetic radio‐based
techniques is propagation delay through the atmosphere
[Blewitt, 2007]. Geodetically, the atmosphere can be divided
into two simple layers, ionosphere (conductive atmosphere,
50–2500 km height) and troposphere (neutral atmosphere,
<20−50 km).
[14] The delay is a function of the refraction index (n). The

ionosphere behaves as a dispersive media (n < 1), so induces
a delay in the group velocity [Hofmann‐Wellenhof et al.,
2007]. In particular, ionospheric refraction index depends
on electronic density and inversely on the square signal fre-
quency. However, normally the spatial distribution (hori-
zontal gradient) of the ionospheric refraction index is relatively
homogeneous at the SAR image scales (∼100 km) [Bürgmann
et al., 2000]. Moreover, large spatial gradients can be signifi-
cant at equatorial and polar regions. So, low order polynomial
models could easily remove such effects and the residual can
be again considered spatially uncorrelated. It is worth noting
that, for longer SAR wavelengths, the ionospheric delays can
be pronounced [Meyer et al., 2006].
[15] Yet the neutral atmosphere (troposphere) is by far the

largest error source in DInSAR [Goldstein, 1995; Zebker
et al., 1997]. The radar delay in the troposphere is caused
by spatial and temporal changes in water vapor, pressure,
and/or temperature, which changes the refractivity index
[Hanssen, 2001; Puysségur et al., 2007]. There are two clear
components that affect the tropospheric radar delay (dry and
wet). These effects correlate well with two different atmo-
spheric processes: (1) the dependence on height of the tem-
perature and pressure, and (2) the water content motion and
mixing which is larger at low elevations (due to higher tem-
peratures) [Hanssen, 2001].
2.3.1. Vertical Stratification
[16] Changes in the pressure and temperature vertical pro-

files lead to changes in the hydrostatic equilibrium of dry
atmospheric gases, producing a hydrostatic radar delay
[Hanssen, 1998]. The hydrostatic delay (2.1 m) can be pre-
dicted at the millimeter scale using meteorological data
[Bevis et al., 1992] and using well established vertical static
models [Saastamoinen, 1972]. When pressure and temper-
ature profiles change with time, the total hydrostatic delay
varies. However, only if local topography is prominent with
respect to the vertical hydrostatic delay gradients, those delays
could cause a differential phase contribution. Among several
correction methods [Delacourt et al., 1998; Bonforte et al.,
2002; Wadge et al., 2002; Li et al., 2005, 2006; Onn and
Zebker, 2006; Foster et al., 2006; Puysségur et al., 2007], the
use of an elevation‐dependent polynomial model seems a
very effective tool in most cases [Cavaliè et al., 2007; Elliott
et al., 2008; Doin et al., 2009]. Here, after application of the
elevation‐dependent polynomial model the corrected differ-
ential phase is assumed uncorrelated to this effect (’corr–topo =
’ − ’topo–dep).
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2.3.2. Turbulence Mixing
[17] Changes in pressure, temperature and water vapor are

larger below the planetary boundary layer (<1–4 km). In the
lower troposphere, water vapor is the largest source of
changes in the refraction index and consequently in the radar
delay [Zebker et al., 1997; Williams et al., 1998]. The water
vapor is transported and redistributed both vertically and
horizontally by both, local and large‐scale atmospheric cir-
culation. The atmospheric circulation is governed by low
Reynolds number fluid dynamics, and such fluid flow causes
turbulences [Tatarski, 1961], which are reflected in the spa-
tial and temporal fractal water vapor distribution [Hanssen
et al., 1999; Hanssen, 2001].
[18] High non‐linear turbulent fluid flows are difficult to

model in a deterministic way [Middleton and Wilcock, 1994].
Commonly, such flows are described from a stochastic
approach, describing their statistical properties. Stochastic
modeling can be performed using well‐known tools, such
spectral analysis, fractal analysis, geostatistics, etc. Using
frequently used assumptions (stationary isotropic random pro-
cess), the turbulent water vapor delay can be described with
the covariance function:

C’’ rð Þ ¼ 1

m

Xm
i¼1

’ x ið Þ � ’ x i þ rð Þ; ð3Þ

which only depends on distance (r) and m is the number
of data points separated by a certain range of r. Atmospheric
gravity waves are a clear exception to these assumptions
[Lyons and Sandwell, 2003, and references therein], that
recently have been modeled [Knospe and Jonsson, 2010].
However, most of the interferograms show more homoge-
neous atmospheric delay structures. Empirical covariance
functions can be computed from the autocorrelation function
or interferogram power spectra indirectly, or directly from
a large sample of randomly selected points. The empirical
covariance functions can be fitted to theoretical covariance
functions to construct the covariance matrix that define the
tropospheric turbulent phase errors. There are a large number

of theoretical covariance models, some of which are shown
in Figure 2. We selected the zero‐order Bessel + exponential
function [Barzaghi and Sansò, 1983]:

C’’ rð Þ ¼ aJo brð Þe�cr; ð4Þ

where a, b and c are model parameters that control the
initial amplitude, the damping effect of the bessel function
and the exponential decay, respectively. This model can
take into account the hole effect (anticorrelation) commonly
observed in interferograms. The cosine + exponential func-
tion (C’’(r) = a e−r/b cos(r/c)) can also model the hole effect
[Sudhaus and Jonsson, 2009], but it can be numerically
unstable, if the parameter c tends to zero. We can easily
determine the variance‐covariance matrix S’’, using the fitted
parameters of the theoretical covariance function [González
et al., 2010].

2.4. Unwrapping

[19] Phase unwrapping errors are particularly problematic.
In general, phase unwrapping is an ill‐posed problem and is
non‐trivial in the presence of decorrelation areas and phase
noise [Massonnet and Feigl, 1998; Hanssen, 2001]. Usai
[2003] proposed a method based on closed‐loop conditions,
following that

’ t1t2 þ ’ t3 t1 þ ’ t2t3 ¼ 0; ð5Þ

for the case of 3 interferograms. This method is not limited
to such triangular configuration (loops around 4 interfero-
grams or more can be done). However, the method is
extremely elaborated and has not been used often [Biggs
et al., 2007]. So, we will assume that phase unwrapping will
not contribute significantly to the phase, because poor quality
interferograms will be rejected.

3. Ground Displacement Error Estimation
in Multitemporal SB Method

[20] We choose the basic SB approach because our target
regions are volcanoes and/or fault systems commonly located
in non‐urban areas. SB minimizes baseline decorrelation
and topographic residuals (short spatial baselines), and also
reduces the temporal correlation through a multilooking
process. The SB multitemporal interferometric model has
been extended with a rigorous Gauss‐Markov mathematical
model (a common geodetic data analysis model ‐ observa-
tions adjustment and hypothesis testing). The model is used
to rigorously establish observations and problem unknown
uncertainties. The model is composed of a functional or
deterministic model used to characterize the physical or geo-
metrical problem relationships between observations and
unknowns and a stochastic model useful for describing the
stochastic properties of observations, unknowns and even
their relationships [Vanicek and Krakiwsky, 1986; Hanssen,
2001; Teunissen, 2003].

3.1. Determinist or Functional Model

[21] We assume that the differential interferometric phase
for the x‐pixel in the k‐interferogram is unwrapped (’x,unw

k ),

Figure 2. Theoretical covariance models [Isaaks and
Srivastava, 1989]. Parameter b at zero‐order Bessel +
exponential function take value of 1 and 2 to illustrate its
flexibility to account for the hole effect. Other model param-
eters are set to unity in the cosine + exponential, exponential
and gaussian covariance functions.
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and unwrapping is error‐free. So, the phase can be repre-
sented as the sum of phase contributions:

’ k
x;unw ¼ ’ k

x;topo þ ’ k
x;defo þ ’ k

x;atm þ ’ k
x;orb þ ’ k

x;"; ð6Þ

where ’x,topo
k is the residual topographic differential phase;

’x,defo
k is the differential phase due to displacement between

acquisition times (i, j); ’x,atm
k is the differential phase due to

relative atmospheric delay at acquisition times (i, j); ’x,orb
k rel-

ative phase contribution due to satellite orbits; and ’x,"
k are

other error contributions due to processing, decorrelation, etc.
[22] The model presented in (6) relating an observation

(’x,unw
k ) with, at least, 5 unknown parameters (’x,topo

k , ’x,defo
k ,

’x,atm
i , ’x,atm

j , and ’x,orb
k ) is clearly rank‐deficient and cannot

be solved. The classical differential interferometric approach
assumes that all contributions are negligible except some
interest‐parameter (deformation, topography or atmospheric
delay). An alternative for overcoming the rank deficiency
can be to remove/reduce parameters or combine observa-
tions (’x,unw

k , where k ≥ 5). The latter leads to the alternative
model known as advanced, stack, multibaselines and/or time
series interferometric methods.
3.1.1. Unknown Parameters
[23] The SB multitemporal interferometric method deals

basically with the estimation of terrain deformation evolu-
tion and residual topography. In our approach, other phase
contributions in (6) have been properly removed with pre-
processing (atmospheric stratification and orbital trends) or
have been included into the stochastic model (atmospheric
turbulent delay). So, the observed differential phase is related
to the two unknown parameters, for the deformation:

’ k
x;defo ¼ � 4�

�
� uj

x;los � ui
x;los

� �
¼ � 4�

�
�Duk

x;los; ð7Þ

where Dux,los
k is the displacement in los between two time

acquisitions (i, j) forming in the interferogram, k. For the
residual topography

’k
x;topo ¼ � 4�

�

Bk
?;x

Ri
x sin �

i
x

 !
�Dhx; ð8Þ

where B?,x
k is the perpendicular baseline, Rx

i is the slant
angle between antenna position and pixel x, and �x

i is the
local incidence angle. Unlike with deformation, which var-
ies with time, the residual topography (Dhx) for each pixel
would remain the same as long as we use the same DEM
during the differential interferometric processing.
3.1.2. Problem Formulation
[24] Consider n + 1 SAR images over a study area,

acquired in chronological order at epochs t = [to, t1, ..tn].
These images can be combined to form K interferograms.
So, assuming that the unwrapped phase of each differential
interferogram (’x,unw

k , with k = 1, .., K) is referred to a
certain pixel (xo) of stable deformation history, and to the
first epoch for which the deformation of all pixels is zero
(’x,unw

to = 0, 8 x). The K observations ’x,unw
k can be related to

N + 1 unknown parameters (x). So, for each pixel we can
construct a linear model such as

Ax ¼ ’; ð9Þ

where ’ is the observation vector of length K, A is a design
matrix with dimensions K × N + 1, and x is an unknown
parameter vector, which contains the deformation in the N
epochs and the residual topography. According to the rule
of using the older SAR image as master, we have ’x,unw

k =
’x
tj − ’x

ti, where tj > ti, therefore, the matrix A fills for each
row (useful interferogram k) with −1 for master epoch (ti)
and 1 for the slave (tj), and zeros for the remaining epochs.
For the additional residual topography parameter we add the
last column, resulting in a matrix of the following kind:

A ¼ � 4�

�

�1 1 0 0 0 � � �j B
t1
?;x

Ri
x sin �

i
x

0 �1 1 0 0 � � �j B
t2
?;x

Ri
x sin �

i
x

0 �1 0 0 1 � � �j B
t3
?;x

Ri
x sin �

i
x

0 0 �1 1 0 � � �j B
t4
?;x

Ri
x sin �

i
x

0 0 0 �1 1 � � �j B
t5
?;x

Ri
x sin �

i
x

..

. . .
. ..

.
���� ..

.

. . . . . . . . .j B
tk
?;x

Ri
x sin �

i
x

2
6666666666666666666666664

3
7777777777777777777777775

: ð10Þ

[25] As previously seen, if we assume that observations
contains errors, this model becomes

Ax� ’ ¼ v; ð11Þ

where v is the residual vector of length K. For subsequent
treatment in the least squares formalism, we assume that
errors are normally distributed and E{v} = 0. If we have
used all SAR images to form interconnected interferograms,
the rank of A ≥ N + 1, and the system is compatible [Teunissen,
2003].

3.2. Stochastic Model

[26] Whereas the functional model relates observations with
unknown parameters, the stochastic model characterizes the
a priori precision of the observations through its variance‐
covariances matrix. This characterization directly affects the
precision of the estimated unknown parameters of the func-
tional model. So, the stochastic model is defined generically
as [Hanssen, 2001]

S’’ ¼ �2
oQ’’; ð12Þ

where Q’’ is the cofactor matrix of dimensions K × K, and
so
2 the a‐priori variance factor of the unit weight, which is

considered so
2 = 1.

3.2.1. Spatial Variance‐Covariance Matrix
(Intrainterferogram)
[27] For convenience, we divide the variance‐covariance

matrix of the observations (S’’) into spatial and temporal
matrices. As presented in section 2, each interferogram is
affected by spatially correlated and uncorrelated errors:

S’’ ¼ S’decorr þ S’res�topo þ S’orb þ S’atm ; ð13Þ
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where the phase error components S’decorr
and S’res–topo

can be
safely considered uncorrelated and S’orb

as well, assuming
correct inteferogram preprocessing. However, the atmo-
spheric phase error (S’atm

) is clearly correlated in space. If
we consider the spatial correlations, the full spatial variance‐
covariance matrix (S’’

s ) would have the form of a block
diagonal matrix, as

Ss
’’ ¼

Sk1
’’ 0 0 � � � 0

0 Sk2
’’ 0 � � � 0

0 0 Sk3
’’ 0 ..

.

..

. � � � 0 . .
.

0
0 � � � � � � 0 SkK

’’

2
66666664

3
77777775
; ð14Þ

where each block corresponds to each interferogram variance‐
covariance matrix. Assuming, typical existing databases with
dozens of SAR images from which hundreds of interfero-
grams can be formed. This approach leads to vectors and
matrices of enormous sizes which mean that resolving such
problems remain challenging. Its solution will involve the
use of optimized/recursive matrix algebra algorithms or sub-
spaces solutions, that should be explored in the future.
[28] Consequently, we will maintain a typical pixel‐by‐

pixel treatment that does not include the intrainterferogram
spatial correlations. So, the spatial variance‐covariance matrix
of observations can be written as

Ss
’’ ¼ diag �2

decorr;k þ �2
res�topo;k þ �2

orb;k þ �2
atm;k

� �
; ð15Þ

where diag(·) represents the diagonal matrix of dimensions
K × K, whose main diagonal elements are the sum of phase
variances, for k = 1, .., K.

3.2.2. Temporal Variance‐Covariance Matrix
(Interinterferogram)
[29] Considering K interferograms with temporal separa-

tion longer than a day (tj − ti ≥ 1 day), phase observations
can largely be assumed temporally uncorrelated [Williams
et al., 1998; Hanssen, 2001]. However, the multiple use of
a specific SAR image to form several interferograms intro-
duce an observation correlation, which can be taken into
account in the parameter estimation [Emardson et al., 2003].
So, equation (12) becomes the sum of two components:
the spatial and temporal variance‐covariance matrices:

S’’ ¼ Ss
’’ þ Stmp

’’ ; ð16Þ

where S’’
tmp accounts for temporal correlated terms (data

redundancy).
[30] To account for data redundancy correlation, we assume

the same rationale as Emardson et al. [2003]. Thus, if e.g.
we have two interferograms (K = 2,[’t1t2, ’t2t3]) formed by
3 time‐separated SAR images (t1 < t2 < t3), the variance of
interferograms can be expressed as

�2
’t1 t2 ¼ �2

’t1 þ �2
’t2

�2
’t2 t3 ¼ �2

’t2 þ �2
’t3

ð17Þ

so, it is automatic that the only common factor is the com-
mon use of t2. If we assume the covariance between both
measurements (’t1t2, ’t2t3) is

Cov ’t1t2 ; ’t2 t3ð Þ ¼ �2
’t2 ; ð18Þ

we can form the temporal variance‐covariance, for this
case, as

Stmp
’’ ¼

�2
’t1 t2 �2

’t2

�2
’t2 �2

’t2 t3

2
4

3
5: ð19Þ

[31] Therefore, to obtain the temporal correlations (covar-
iances), we should estimate the phase error (variance) of each
SAR image (s’tn+1

2 ). We propose to estimate it as the mean
of the estimated variances of each interferogram (Figure 3a).
The phase variance of each interferogram is obtained from
a best‐fitting covariance model at zero‐lag (e.g., the pro-
posed zero‐order Bessel and exponential decay model). It
assumes that the major common phase variance source is
the turbulent atmospheric delay at each specific epoch.
Once estimated, we can fill out the off‐diagonal elements
of the temporal variance‐covariance matrix (Figure 3b), zeros
elsewhere except for interferograms sharing a SAR image,
where we introduce the estimate of SAR phase variance
(equation (18)). In Figure 3, we illustrate this using actual data
from the simulated SAR data set in section 4. This approach
allows us to take into account the temporal distribution of a
set of non‐independent interferograms (SB‐like methods).
[32] However, the SAR phase variance estimation method

can only approximate the relative weight of each SAR image
phase in a set of interferograms. Thus, we propose adding
a Montecarlo resampling method to avoid biasing the esti-
mated uncertainties. We use the bootstrap method, which

Figure 3. (a) Interferogram phase variances obtained as the
estimated zero‐lag covariance function value, at first instance,
we attributed the same level of noise to both SAR images.
(b) Estimated SAR image phase variance, those values com-
pare well with the simulated atmospheric screen phases
for each SAR image (Figure S3 of the auxiliary material).
(c) Temporal interferometric phase variance‐covariance matrix
(equation (19)). All given units are in cm2. The abbreviation
var. stands for variance.
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implies the perturbation of the observations with realistic
noise simulations [Efron, 1979]. It iterates a sufficiently
large number of times until a searched probability density
function is well characterized. Our tests indicates that at
least 100 samples should be carried out, with minor differ-
ences as increasing the number of iterations (<10% in the
estimated standard deviations, for 1000 samples). We intro-
duce the bootstrap method over the vector of observations
instead of perturbing equation (16) to avoid likely non‐
positive definite matrices resulting in poorly conditioned
and unstable solutions. To generate the noise, we impose a
uniform probability density function with standard deviation
as the mean of the standard deviations of all interferograms
used as computed using the best‐fitting covariance models.

3.3. Least Squares Solution

[33] For each bootstrapped observation vector (’*), we
solve the linear system of equations by means of the least
squares method, which minimizes the following norm of the
residuals, v t Pv [Teunissen, 2003]; with the solution estimate:

x̂ ¼ AtPAð Þ�1AtP’*; ð20Þ

where P = Q’’
−1 is the weighting matrix, and the estimated

unknown parameters variance‐covariance matrix is

Sx̂x̂ ¼ �2
o AtPAð Þ�1

: ð21Þ

[34] Finally, the global model test is applied to check if
the problem is complete and consistent with the observa-
tions. It is also known as c2 test [Usai, 2003], and it com-
pares the a‐priori and posteriori variances, such as so

2 = �̂o
2

given a certain level of significance (typically 95%). How-
ever, other statistical hypothesis tests can also be applied
[Teunissen, 2006].
[35] In Figure 4, we summarize the main steps in the

proposed processing chain. Starting from unwrapped inter-
ferograms and their coherence maps, we correct each inter-

ferogram for possible trends (orbital or long‐wavelength
atmospheric, see sections 2.2 and 2.3) and for the phase‐
topography gradients (section 2.3.1). For each corrected inter-
ferogram, we compute its empirical covariance function and
we obtain the estimated interferogram phase variance as
the prediction of the best fitting covariance model at lag
zero (section 2.3.2). Then, the compound variance‐covariance
(VCV) matrix is calculated (according to sections 3.2.1
and 3.2.2) as a sum of spatial and temporal matrices. Then,
in a pixel‐by‐pixel basis, we simulate n times the vector
of corrected interferogram phases using a bootstrap method
using a uniform random probability density function with
standard deviation, the mean of the estimated interferogram
phase variances. We solve n times linear system of equa-
tions, and populate the posteriori marginal probability func-
tions of the estimated deformation time series. Finally, time
filtering might be applied.

4. Simulation Tests

[36] We used two sets of synthetic data to test the correct
implementation and robustness of the proposed method. We
simulated realistic conditions with temporal baseline dis-
tributions of SAR images similar to the ERS and ENVISAT
European satellites. Simulations are progressively complex
by adding different types of noise, due to atmospheric dis-
turbances (spatially correlated noise) at the acquisition times
and due to temporal decorrelation noise (white noise).

4.1. Linear Rate Test

[37] We started with a simple simulation with displacement
constant rate and no errors. Three‐dimensional displacement
fields were simulated using a constant volume‐change rate of
−0.25 × 10−3 km3/yr of an isotropic expansion center in an
elastic half‐space [Mogi, 1958] at a depth of 3.5 km (X:
5 km; Y: −5 km) for an area of 20 × 20 km2. 3D displace-
ments were simulated for 31 randomly selected epochs for
a period of 9 years (1992–2001) and projected onto a des-
cending orbit and � = 23° (Figure S1 of the auxiliary
material).1 Then, we added a random atmospheric phase
signal for each scene with the spectral power following a
−5/3 for wavelength larger than 2 km and a spectral index
of −8/3 for wavelength smaller than 2 km. Atmospheric
phase signals were multiplied by a constant randomly selected
between 0 and 4, to take into account the temporal vari-
ability of up to an order of magnitude of the atmospheric
phase signals [Hanssen, 1998] (Figure S2 of the auxiliary
material). We also added white noise (decorrelation and pro-
cessing errors), with a standard deviation of 5 mm, which is
equivalent to 30° for a SAR system with C‐band wave-
lengths. Finally, simulated interferograms were obtained by
differentiating the displacement fields at master and slave
epochs. We generated all interferograms with a common
selected temporal baseline constraint, T < 4 years, [Fernández
et al., 2009], leading to 234 simulated interferograms.
[38] In Figure 5, we show the results of the linear rate tests.

Estimations were obtained applying the proposed method
and a temporal Gaussian low‐pass filter (width of 0.5 years).
Figures 5a–5c show the linear velocity maps fitting a linear

Figure 4. Schematic program flowchart of multitemporal
InSAR processing with error estimation model (see text for
details).

1Auxiliary materials are available in the HTML. doi:10.1029/
2011JB008412.
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model to the time series of displacements for the three
simulated scenarios (no noise; atmospheric; and atmospheric
and decorrelation). Maps show consistent results with the
increasing noise simulation. We show the estimated time
series of displacements and the estimated errors of two
points (Figures 5d–5i).
[39] In Figures 5d and 5g, the estimated time series of

displacements and associated errors of the two points illus-
trate the example without noise. As expected, the disagree-
ment is very small, and only slightly differences occur at the
end of the time series in the case of the maximum defor-
mation area. It is due to border effects of the temporal low‐
pass filter. We would point out that the estimated standard
deviations computed using the bootstrap method are con-
sistently small, based on the small mean and standard devi-
ation of the calculated empirical variances. Figures 5e and 5h
show the test case with atmospheric noise, and here the asso-
ciated errors are much larger, but also the displacement esti-
mations remain within the estimated errors. Finally, the last
linear test case is shown in Figures 5f and 5i, where white
noise errors were added. Also the estimated error bounds
increase accordingly with the addition of the noise (∼20%
with respect to only atmospheric noise, in accordance with

the increased simulated error). A significant result is that
despite the magnitude of the signal, displacement estima-
tions largely fall inside the estimated error bounds.
[40] In addition, we also checked the goodness of the error

estimation by comparing the standard deviation of the resi-
duals between the estimated displacement time series and
the real simulated signal for each epoch and simulation test
of all points (white data, inset graph in Figures 5a–5c), and
the mean of the estimated standard deviations for all epochs
and points (red data, inset graph in Figures 5a–5c). For the
three linear simulation tests, the agreement is good. We also
highlight that the largest differences are in the third scenario,
with the actual residuals underestimated by about 10%.

4.2. Non‐Linear Rate Test

[41] Here we simulated a more complex scenario with a
nonlinear temporal displacement evolution using the fol-
lowing arbitrary expression (based on the vertical compo-
nent of the Mogi model):

u ¼ a
�bt þ ct3

d2 þ 3:5r2ð Þ3=2
; ð22Þ

Figure 5. Synthetic linear temporal model tests: Fitted linear velocity maps of (a) the no noise simula-
tion; (b) the atmospheric noise simulation; and (c) the atmospheric and decorrelation noise simulation
(open circle, non‐deforming point; cross, a deforming point). Insets in Figures 5a–5c illustrate, first
the standard deviation of the residuals between the estimated and simulated time series (white points and
its mean white line) and second the mean of the estimated standard deviations (red points and its mean red
line). Time series results of the estimated displacements (red triangles) and bootstrap estimated 2‐sigma
uncertainties (gray area) and simulated (black line) for (d–f) a non‐deforming point and (g–i) the max-
imum deforming point. Additional results in Figure S4 of the auxiliary material.
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where u are displacements depending on time (t) with
respect to the first epoch, a is a constant to modulate the
displacement magnitude, b and c modify the displacement
temporal evolution, d is a source depth parameter, and r is
source radial distance (d and r change the displacement
decay distance). The values used for these parameters are
shown in the caption of Figure 6. This function allows us to
simulate two periods of uplift ground displacement accel-
eration (in analogy with two volcanic unrest periods). The non‐
linear displacements were simulated at the same 31 epochs
(1992–2001). As in the case of the linear displacements,
three different simulations were performed using the same
temporal combination of epochs (234 interferograms) and
the same noise realization as in previous tests (atmospheric
and decorrelation). However, in this case, we simulate the
displacements affecting a relatively small area, smaller than
the spatial scale of the atmospheric noise (Figures 6a–6c and
Figure S3 of the auxiliary material).
[42] In Figure 6, we show the results of the non‐linear rate

tests. Estimations were obtained applying the proposed
method and the same previous temporal filter. Figures 6a–6c

show the non‐linear velocity maps fitting a linear model
to the time series of displacements for the three simulated
scenarios (no noise; atmospheric; and atmospheric and
decorrelation). Lower panels show the estimated time series
of displacements and the estimated errors of two points
(Figures 6d–6i). Figures 6d–6f show the results for a non‐
deforming region, while Figures 6g–6i show the results of the
maximum deformation point (central point). In Figures 6d
and 6g, results of the example without noise indicate good
agreement. However, the effect of the temporal low‐pass
filter at the end of the time series tends to reduce them in all
cases. The larger the deformation rates, the stronger this
effect is (Figures 6g–6i). Figures 6e and 6h show results
of the non‐linear deformation with atmospheric noise, and
the evolution of the displacements around 1994 is clearly
underestimated. Finally, the displacement time series in the
last simulation (non‐linear deformation with atmospheric and
decorrelation noise) remains clearly within the estimated
errors bounds (2‐sigma confidence interval).
[43] The goodness in the error estimation was checked as

in the case of the linear simulation tests. The results of the

Figure 6. Synthetic non‐linear temporal model tests: Fitted linear velocity maps of (a) the no noise
simulation; (b) the atmospheric noise simulation; and c) the atmospheric and decorrelation noise simula-
tion (open circle, non‐deforming point; arrow, maximum deformation point). Insets in Figures 6a–6c
illustrate, first the standard deviation of the residuals between the estimated and simulated time series
(white points and its mean white line) and second the mean of the estimated standard deviations (red
points and its mean red line). Time series results of the estimated displacements (red triangles) and
bootstrap estimated 2‐sigma uncertainties (gray area) and simulated (black line) for (d–f) a non‐deforming
point and (g–i) the maximum deforming point. Additional results in Figure S4. Used parameters were
a = 100000, b = −0.015, c = 0.002, d = 1.5 km, and r = 0.25 km.
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non‐linear case are also in agreement. We must point out that
the testing results are based on the same error simulations,
so it is not surprising that only small differences are present.
It shows that the error estimation procedure is largely insen-
sitive to the temporal behavior of the deformation signal
and somewhat of the area affected (if the percentage of
imaged area affected by deformation is small). We would
also like to note that this approach is valid as long as the
empirical covariance functions are not significantly biased
by any other phase coherent signal (e.g., orbital ramps or
large extension of signals), in that case the computation of
the empirical covariance function can be constrained to a
non‐deforming area.

5. Application to Lanzarote Island

[44] This section presents the results from applying the
new error estimation multitemporal method in Lanzarote
Island (Figure 7). Lanzarote island is a volcanic oceanic
island characterized by low volcanic activity and good con-
ditions for interferometry [Romero et al., 2003]. The Lan-
zarote Island hosted two of the 12 historic eruptions in the
Canary Islands archipelago and in particular the 1730–1736
eruption, the longest (2055 days) and largest in volume of
erupted material (∼3 km3, see caption Figure 7) in the last
500 years [Araña and Ortíz, 1991]. Eruptive activity is char-
acterized by fissural eruptions of low‐explosive basaltic mag-
mas. Currently, superficial volcanic manifestation is limited to
high temperature anomalies (around Montañas del Fuego,
Timanfaya) [Fernández et al., 1992]. Existing instrumentation
(in particular, the Laboratorio de Geodinámica de Lanzarote,

LGL, http://www.iag.csic.es/LGL/Index.html), has been used
to study weak seismic signals (seismic swarms of low mag-
nitude, <2), high heat flow and earth tide anomalies [Arnoso
et al., 2001; Correig and Vila, 1993; Fernández et al., 1992].
More recently, Romero et al. [2003] analyzed a set of 6 ERS
SAR images and showed the good conditions for interfer-
ometry (climate dry conditions and large extension of recent
lava flows). They distinguished relatively important atmo-
spheric contributions in the differential interferograms and
no large ground deformations during the studied period (1992–
2000). For this reason a multitemporal analysis of interfer-
ometric products and the assessment of the errors will be
needed to resolve such small displacements.

5.1. Multitemporal Analysis

[45] Here, we used a set of 14 SAR scenes from the Euro-
pean Space Agency (ESA) of satellites ERS‐1 and ERS‐2,
descending orbit (Table S1 of the auxiliary material), acquired
in the period 1992–2000. We coregistered all scenes to a
common master geometry (August 12, 1995), and further
computed differential interferograms using the DORIS soft-
ware [Kampes et al., 2003]. We used a Shuttle Radar Topog-
raphy Mission DEM to remove the topographic contribution.
A spatial multilooking factor of 4 looks in range and 20 looks
in azimuth produced pixel sizes on the ground of about 80 ×
80 m. Due to the exceptionally good conditions for interfer-
ometry and a pre‐selection of the SAR images (with small
perpendicular baselines), we were able to make all possible
interferogram combinations (91 differential interferograms,
see Table S2 of the auxiliary material). In addition, we com-
puted the coherence maps and the empirical covariance func-
tion for each interferogram (2500 data points were randomly
selected to compute it).
[46] A subset of pixels (82619) was selected based on the

average spatial coherence (� ≥ 0.25), thus reducing post‐
processing to ∼20% of the total cropped pixels. Then, all
unwrapped interferograms were analyzed using the pro-
posed method to determine the spatial and temporal surface
displacements. We took into account the phase variance
depending on the decorrelation (equation (2)), phase variance
due to turbulent troposphere (fitted zero‐lag, equation (4))
and temporal distribution (redundancy) of the observations
(equation (16)). To solve the problem, we fixed the defor-
mation at the first epoch to zero. Finally, the inverted time
series were filtered using a Gaussian low‐pass filter with a
window of 0.75 years, assuming that most of the atmo-
spheric effects are uncorrelated with time.

6. Results

[47] In Figure 8a, we show the map of the linear velocity
map from the estimated time series of displacements for
each coherent pixel in mm/year. In addition, the mean square
root of the residuals with respect to the linear model for all
time series is of the order of ∼±1 mm/year. First, most of the
area of Lanzarote (and northern islets) is stable at the level
of ∼±1 mm/year during the studied period. Second, two
areas (central part and northwestern coast) show significant
lengthening displacement rates (most likely a subsidence
signal). The largest deformation rates are associated to the
Timanfaya eruption area (Montañas del Fuego) with linear

Figure 7. Geographic and sketch of the Lanzarote geology:
1) A tilted tabular basal formation, 2) Pleistocene volcanism
and 3) the recent historic and sub‐historic eruptive material
(area with black contour indicates those erupted material dur-
ing 1730–1736 eruption). Upper left inset indicates the loca-
tion in the Atlantic Ocean. Lower right inset, the location in
the Canary Islands archipelago (grey rectangle SAR images
coverage).
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velocities of 4–6 mm/year, and affecting an area of ≈7 km2.
The second deformation area is smaller in magnitude (3–
4 mm/year) and located on the northwestern coast. Despite
the low magnitude of the deformation rate measured along
the points between both deformation areas, points indicate
systematic positive(subsidence) deformation rates. It could
indicate spatial continuity and a possible connection between
both areas (and the generating sources).
[48] In Figure 8a, we show the location of some selected

time series (Figures 8b–8i). Time series represent the esti-
mated displacement evolution and associated estimated error
(displayed as 2‐sigma error bars) for 8 coherent pixels.
Figures 8b–8e show four time series of points around the
Montañas del Fuego, Figure 8f shows a point in the north-
western coast deformation area and Figures 8g–8i three exam-
ples from non‐deforming areas. Results around Timanfaya area
show a complex spatial pattern of deformation (Figure 8a,
inset). However, temporal evolution of displacements is
rather monotonically linear in time. The maximum defor-
mation areas is located west of the crater rim of the Timanfaya
volcano (Figure 8b), where subsidence reached 5 ± 0.4 cm.
In Figure 8c we show a point located at the Islote del Hilario
(highest heat flux area, IH in Figure 9) showing a subsi-
dence of 3.8 ± 0.5 cm. An additional point is selected close
to the location of the Timanfaya module of the LGL with
∼2 cm of displacement (Figure 8d), but only significantly
deformed after the middle of 1995. The last selected point
(Figure 8e) shows more than 2 cm of subsidence, a point
located in an area of high density of hornitos from the 1730–

1736 eruption [Carracedo et al., 1990]. An example of time
series from the northwestern deformation area is shown in
Figure 8f. The displacements are linear with time with accu-
mulated displacement 1.8 ± 0.7 cm, together with an increase
of the estimated errors. Finally, we show three time series of
non‐deforming areas (Figures 8g–8i), in particular the time
series shown in Figure 8h corresponds to a point close to the
Cueva de los Verdes and Jameos del Agua modules of LGL.
These time series illustrate that the estimated errors are in the
range of 5–8 mm, although the repeatability is slightly higher
(∼1 cm). This observation is in accordance with previous
results about the reliability of SB techniques [Casu et al.,
2006]. Unfortunately, for the Lanzarote test case no inde-
pendent ground deformation estimates are available to us.
However, we also provide briefly another example of SAR
data set processed with the presented technique, where we
report the comparison with independent GPS data, corrobo-
rating the validity of the technique under the aforementioned
assumptions (see Appendix A).

6.1. Interpretation

[49] The complex spatial pattern of deformation detected
in the Montañas del Fuego area is composed by an E‐W
trending subsidence signal and two elongated roughly par-
allel NW‐SE subsidence signals (Figures 8a and 9). Maxi-
mum deformation rates are located at Islote del Hilario (IH)
and Hoya de los Camelleros‐Timanfaya crater rim (HC), in
Figure 9, both along the easternmost NW‐SE trending sub-
sidence signal. The first (IH) is located at the area of highest‐

Figure 8. (a) Estimated descending linear deformation rate between 2 September 1992 to 8 January
2000. The black rectangle shows the location of Figure 9, as well the figure inset, which is a zoom
into the Montañas del Fuego area (Timanfaya eruptive centers)). (b–i) Time series of displacements and
associated estimated errors of 8 selected points. See text for details.
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heat flux and superficial temperature and the second area
(HC) is located at the intersection of the easternmost NW‐
SE and E‐W trending signals.
[50] The ground deformation location of the three prefer-

entially directed signals seems to closely follow the struc-
tural pattern of the 1730–1736 eruptive fissures and emission
centers [Carracedo et al., 1990], and spatially coincides with
the focused vertical conduit beneath Timanfaya volcano
center (the longest‐lived emission center of the 14‐km long
eruptive system), in the proximity of HC (Figure 9). In
addition, the current spatial pattern of measured surface
temperature anomalies (with up to ≈600°C at 13 m depth)
reflects a volcanic origin, either due to magmatic processes
(cooling and crystallization of a molten remnant in the 1730–
1736 magmatic reservoir), a shallow hydrothermal‐controlled
fluid circulation, compaction of lavas or thermal‐controlled
deformation of a highly fractured media.
[51] To validate some of those hypothesis would require

additional information and numerical models. In particular,
we can discard the compaction of lavas because even in
the case of thick lava flow accumulations can occur, the
age and the fact that some deformation occur outside lava
flows suggest that it is unlikely. So, our preferred solution is
the existence of a long‐lived thermally contracting shallow
magma reservoir. It is also based on geophysical studies,
which have inferred the presence of a partly molten magmatic
chamber underneath Timanfaya area, at a depth of around
4 km [Araña et al., 1984; Fernández et al., 1992; Camacho

et al., 2001]. An additional constraint is the ∼2700 m deep
Lanzarote‐1 borehole stratigraphy succession (Figure 9),
where thickness of the volcanic material were determined to
around 2400 meters. So, we speculate that the magmatic
chamber might be located in or at the top of the sedi-
mentary lid succession, where a magma negative buoyancy
limit should be located and magma stagnation could be
focused. Those depth ranges could explain the area affected
by the deformation, because assuming a point source in an
isotropic media (thermoelastic, elastic, ..), the radial distance
affected by the deformation scales with the source depth.
However, a model able to simulate the detected ground
deformation and the presence of a high heat flow and tem-
perature anomalies would require a more detailed analysis in
the future.

7. Conclusions

[52] A novel method for the estimation of errors in mul-
titemporal interferometric techniques (in particular, SB) has
been presented. The method analyzes and quantifies the
error contributions in each interferogram to invert the inter-
ferograms and obtain the displacement time series, follow-
ing an appropriate weighting scheme. In addition a Monte
Carlo method (bootstrapping) is used to improve the esti-
mation of realistic error bounds in the unknown parameters
(time displacement evolution). The simulation tests presented
in section 4 confirm the goodness of the method and its

Figure 9. Interpolated and contoured linear velocity deformation (in mm/yr) over a local orthophoto of
the Montañas del Fuego area (approximate location of the inset in Figure 8a). Red closed polygons mark
high heat flux and anomalous temperature areas according to Araña et al. [1984]. IH and HC are indi-
cating the Islote de Hilario and Hoya de los Camelleros, where maximum temperature anomalies are
located. Lanzarote‐1 marks the approximated location of a 2700 m deep geothermal exploration borehole.
Mta. Rajada and Timanfaya are the major independent volcanic centers. White lines indicate asphalt
paving roads.
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Figure A1
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correct implementation. The main advantage of the proposed
method is to provide more realistic error assessment than
previous techniques.
[53] The algorithm was applied to Lanzarote Island, for an

interval period in which no magmatic activity occurred, and
a time series for the displacement field and its uncertainty
was retrieved. We detected deformation around Timanfaya
volcano (Montañas del Fuego), where the last major erup-
tion occurred (300 years ago). The deformation is consistent
in time and indicates lengthening of distance to the satellite
(a likely subsidence). The displacement field very closely
follows the eruptive fissure pattern of the 1730–1736 erup-
tion (the main E‐W and a secondary NW‐SE structural
direction). The spatial extent of surface high temperature
and high heat flux areas also support a generating process
related with the magma crystallization (cooling and con-
traction) of the partly molten 300 year‐old shallow (2–4 km
depth) magmatic body under Timanfaya volcano, that fed
the 1730–1736 eruption.

Appendix A: Comparison With GPS Data

[54] In this appendix, we present briefly results in another
test case obtained with the presented multitemporal analysis
technique. It is done, because unfortunately, for the Lan-
zarote test case no ground deformation estimates are avail-
able to us. So, it is in place to make a comparison/validation
between potential results in other areas where ground true
data is available. For that, we have selected Envisat SAR
data from a descending pass (track 200) over the Big Island
of Hawaii (SAR data from http://supersites.earthobservations.
org/hawaii.php). At Hawaii, we have obtained daily GPS time
series of some stations between 2006 to 2010 processed
using a local reference frame approach [Palano et al., 2010].
GPS stations estimates provide us with continuous three‐
dimensional measurements of the ground deformation, whereas
the multitemporal analysis results give dense spatial maps of
one‐dimensional information for coherent areas. Both data
sets allow for comparison of time series of surface ground
deformation and their uncertainties (Figure A1).
[55] In Figure A1, we show the MTInSAR linear velocity

estimated and the location of available GPS stations.
Although, misleading due to temporal changing behavior of
the volcanic sources, the obtained linear deformation field
for the studied period is characterized by prominent signals
of shortening of LOS (uplift) at Mauna Loa summit and LOS
increase (subsidence) at Kilauea summit area (Figure A1a);
subtle signals of subsidence on both volcanoes Southwest-
ern rift zones (Figure A1b); Motion toward satellite in the
Southern flank of Kilauea volcano (Figure A1c), and sub-
sidence above the East Rift Zone. The deformation field

shows no LOS ground motions in the Northern flank areas
of Mauna Loa, and Mauna Kea and Hualalai volcanoes
(Figure A1d).
[56] In Figure A1b, we correlate the linear velocity of

the individual pixels (closest to the GPS stations) and com-
pare with the best‐fitting linear velocity model adjusted to
the GPS time series data projected onto the satellite LOS
direction to Envisat descending track. A linear correlation
is obtained, however data scatters, indicating that results
do not fully agree. It contrasts with previous comparison
between both techniques (GPS‐InSAR), a partial explanation
is that due to the large displacements and the highly non‐
linear ground deformation evolution a comparison between
linear velocities will disagree in a larger amount, than com-
parison with low magnitude and steady state behavior test
cases (as well avoidable unwrapping errors). In addition,
another problem is that not all GPS stations cover the
same period so it can bias the linear velocity estimation.
Therefore, it is convenient to show a representative sample
of the agreement between time series at individual sites
(Figures A1c–A1n). Because MTInSAR results are relative
measurements of displacements, we consider a stable ref-
erence area for comparison with respect to GPS, where
nearby GPS stations also show minor displacement trends
(we selected the black rectangle area in Figure A1a). Then,
we assume zero deformation at the beginning of analyzed
period 2006–2010. It was done by averaging the 10 initial
daily solutions, when GPS data do not extend to the initial
observation period a extrapolation of the first available
epochs were performed, if not stable trends were present
zero deformation was assumed at the time of the initial
available epoch. Performing, these adjustment the agree-
ment in the vast majority of the stations was obtained. It is
particularly remarkable that even when the magnitude of
displacement estimated by MTInSAR deviates with respect
to the GPS one, the estimated 1‐s standard deviations indi-
cate fairly good statistical agreement.
[57] Hawaii test case helps to further shown the potentials

and limitations of the presented technique (assumptions and
unsolved problems). It is particularly severe for areas north-
ward or on the Eastern part the Kilauea East Rift Zone,
which will require special attention during phase unwrap-
ping prior to carry out the presented analysis. Those coherent
areas are quite isolated and affected by intense ground defor-
mation related to the Father’s Day Intrusion episode (19–
21 June 2007) and the vigorous activity of the lava lake at
Pu’u’O’o vent. Therefore, results exhibit poor correlation
with respect to near GPS station estimates (not shown
here). It is noteworthy that the unwrapping process require
future developments of the technique to account for or
mitigate it.

Figure A1. (a) Mean LOS deformation velocity map overlaying a shaded DEM of Hawaii (in cm/yr, also contoured with
gray lines at each cm/yr). Small black circles mark GPS stations sites (letters indicate stations displayed in Figures A1c–A1n).
Blue rectangle is the area used to estimate orbital trends, topographic phase gradients and turbulent tropospheric effects.
Labels indicate major volcanoes and the Pu’u O’o vent locations. (b) InSAR LOS velocities versus project GPS LOS
velocities comparison for a point close to each station. Line 1:1 agreement is shown in black. (c–n) Comparisons of time
series of displacement in cm for the analyzed period (2006–2010). MTInSAR ENVISAT results are represented as red
dots with 1‐s estimated standard deviations black error bars. GPS project displacement time series and the propagated
LOS uncertainties (error bars) are marked in gray.
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