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1. Introduction

The establishment of a gauge symmetry lies on the empirical evidence of a
locally invariant property related to a group of transformations. In this sense
the existence of a continuous ten-parameter group (Poincaré) giving rise to
the conservation of the fundamental dynamical variables, strongly suggests
the existence of a relevant link between dynamics and the basic properties of
the space-time i.e geometry.

From the geometrical point of view Poincaré can be defined as the group of
isometries of Minkowsky space, so that, being essentially gravity a dynamical
theory of the space-time, it seems natural to consider the group of isometries
of a given space as the gauge group of such a theory.

Minkowsky is the simplest case (zero curvature) of a maximally 3+1 sym-
metric space and thus it excludes the presence of a cosmological constant. On
the other hand, our knowledge of the geometrical properties of the space-time
is only phenomenological and therefore it is approximate. Strictly speaking
what we observe is that the space is approximately homogeneous and isotro-
pic, and that it is endowed with the kinematical Lorentz group of Relativity
so that we can assume that the symmetry group of space-time seems to be
very close to Poincaré. Consequently we assume that the general candida-
te for a gauge theory of gravity is the group of isometries of a maximally
symmetric space (the limit of zero curvature being the Poincaré group).

Lastly, the evidence that elementary matter is fermionic strongly supports
the hypothesis that gravity couples to it through the vierbein. The assum-
ption that the vierbein is the connection of the local translations makes it
to transform as a tensor under diffeomorphisms and under the (even local)
Lorentz group. These properties are obtained by defining the vierbeins as a
NLR of Poincaré group (cosets with respect to lorentz).

The need to couple the fermionic matter to gravity stems from the at-
tempts to enlarge the geometrical framework of General Relativity with the
introduction of a suitable internal group [1][2][3][4][5][6][7][8][9].

The search for an unified description seems to suggest, as reasonable star-
ting point, the adoption of a common and general gauge scheme for all inter-
actions including the gravity itself. These ideas gave raise to the programm
of finding approaches in which gravity is mediated by gauge connections as
it happens for the remaining fundamental forces [10][11][12]. The appearance
of tetrads, an object with holonomic and nonholonomic indices, is, to this
purpose, an unavoidable requirement. We claim that tetrads are the finger-
print of the presence of translations in the Gauge Group, a natural feature
in a theory like gravity which can be essentially considered as a dynamical
theory of the space-time itself. As we have mentioned in a previous paper
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this reminds the Feynman’s words ”Gravity is that field which corresponds
to a gauge invariance with respect the displacement transformations”. We
stress that, as it shall be shown in what follows, the natural way to realize a
symmetry containing translations is precisely a non linear realization where
the cosets have the form eipiϕ

i

, where the set of fields ϕi, which becomes
isomorphic to the coordinates, acts as the parameters which characterize the
coset. In this way the fields ϕi introduce a dynamical interpretation of an
ingredient like the coordinates which is present in any field theory. On the
other hand,it can be seen that, from the group theoretical point of view, they
behave as the Goldstone bosons with respect the gauged translations.

To make the paper as self contained as possible we include in Section 2 a
brief review sketching the general lines of the non linear local realizations of
the space-time groups. In Section 3 we deduce, starting from first principles
and definitions, the integrability conditions which determine the structure of
the gauge theory, serving, at the same time, as a link between the gauge and
the geometrical description. Section 4 is devoted to establish the structure of
the gauge theory which provides us the underlying background of the cano-
nical geometrical description, allowing, for instance, alternative and simpler
choices of the dynamical variables, an essential question in gravity theories.
We conclude with some final remarks on the possible extensions and open
problems.

2. The structure of the tetrads

We briefly review here some fundamental tools and results from previous
works.

A maximally four dimensional symmetric space admits a maximal number
of Killing vectors supporting a semisimple Lie algebra described by the ten
generators:

Pi = i {∂i +
k

4
(2xix

j − δji r
2)∂j} (1)

Lij = i (δki xj − δkj xi)∂k (2)

where r2 = ηijx
ixj and being k the sectional curvature. The commutation

relations can be written in the form:

[Pi, Pj] = i kLij (3)

[Lij , Pk] = i ηk[iPj] (4)

[Lij , Lkl] = −i {ηi[kLl]j − ηj[kLl]i} (5)
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which reduces to Poincaré when k → 0. The occurrence of ”translational-
like”transformations rises the problem of realizing a local symmetry of this
kind in which the Lorentz subgroupH still be linearly represented, as dictated
by the particle phenomenology. The natural choice is given by a local non
linear realization with cosets defined as eiϕ

iPi [13][14][15][16], which is the
most general one preserving the linear action of the subgroup H .

The non linear gauge realizations of space-time symmetry groups contai-
ning translations have been the object of several papers [17][19][20][21][22][23][24]
in the past. Nevertheless, in order to make this work more readable we include
here a brief review of the methods and main results.

Let G be a Lie group having a subgroup H , we assume that the elements
C(ϕ) (cosets) of the quotient space G/H can be characterized by a set of
parameters say ϕ. Let us denote by ψ an arbitrary linear representation of
the subgroup H .

The non linear realization can be derived from the action of a general
element ”g” of the whole group on the coset representatives defined in the
form:

g C(ϕ) = C(ϕ′)h(ϕ, g) (6)

where h(ϕ, g) ∈ H . It acts linearly on the representation space ψ according
to:

Ψ′ = ̺[h(ϕ, g)] Ψ, (7)

being ̺[h] a representation of the subgroup H .
The next step to construct a non linear local theory is to define suitable

gauge connections. They can be obtained by substituting the ordinary Cartan
1-form ω = C−1dC by a generalized expression of the form:

Γ = C−1DC (8)

where D = d + Ω is the covariant differential built with the 1-form connec-
tion Ω defined on the algebra of the whole group and having the canonical
transformation law:

Ω′ = gΩg−1 + gdg−1 (9)

The generalized local Cartan 1-form is:

Γ = C−1DC = e−iϕiPi(d+ iT iPi +
i

2
AijLij)e

iϕiPi (10)

where T is the linear translational connection and Aij the corresponding one
for the Lorentz group.
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Using Hausdorff-Campbell formulas to deal with exponentials, after a
little algebra (the details can be found in [25][26]) we obtain:

Γ = i êiPi +
i

2
ÂijLij (11)

where êi and Âij are the 1-form non linear local connections given by the
following expressions:

êi = NDϕi +
1−N

µ2
(ϕjDϕj)ϕ

i +M T i +
1−M

µ2
(T jϕj)ϕ

i (12)

and

Âij = Aij +
1−M

µ2
ϕ[iDϕj] + k Nϕ[iT j] (13)

whereDϕi ≡ (dϕi+Ai
jϕ

j) is the Lorentz covariant differential, µ2 ≡ ηij ϕ
iϕj ≡

ϕiϕ
i, and M and N are given by the following series:

M = 1−
kµ2

2!
+

(kµ2)2

4!
+ ... ∼ cos

√

kµ2 (14)

and

N = 1−
kµ2

3!
+

(kµ2)2

5!
+ ... ∼

1
√

kµ2
sin

√

kµ2 (15)

In (10), the translational connection 1-form T i has dimensions of length.
In order to have a dimensionless connection γi homogeneous with the ordi-
nary Lorentz connection Aij , we introduce a constant characteristic length,
say λ , and define T i = λγi. We notice that the occurrence of a fundamen-
tal length is a common feature in gravity theories [27][28][29][30][31][32], as
for instance the Planck scale, at the basis of string theory, or the spacing
parameter in lattice theories. In our scheme, we claim that a characteristic
length finds its natural place in the translational connection above. Then the
smallness of λ emphasizes the interpretation of gravity as a perturbation of
a background (usually supposed flat) metric.

In order to express all the objects in terms of only the non linear connec-
tions we introduce in (12) the value of Aij worked out from (13) in terms of

Âij , obtaining

êi =
N

M
D̂ϕi +

1

µ2
(1−

N

M
)(ϕjdϕj)ϕ

i + λ(
1

M
γ̄i +

ϕiϕj

µ2
γj) (16)

where D̂ stands for the Lorentz covariant differential in terms of Âij , and

γ̄i = (δij −
ϕiϕj

µ2 ).
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Our focus now is on the structure of the non-linear vierbein (16). In its
limit for λ→ 0 one has

ê(0)i =
N

M
D̂ϕi +

1

µ2
(1−

N

M
)(ϕjdϕj)ϕ

i . (17)

whereas in the limit k → 0 we have M = N = 1, so that it becomes

ei = Dϕi + λγi ≡ e(0)i + λγi , (18)

which is the expression for the Poincaré case, where ei and its non-linear
version êi coincide.

Now we remind that the essential feature of a tetrad is given by its dou-
ble character, transforming as general vector in the Greek indices and as a
Lorentz vector in the Latin ones, so that it provides a link between both
spaces.

Now we observe that the covariant derivative of a Lorentz vector like ê(0)iµ
in (17) and (18) is the minimal structure able to take the role of a tetrad, so
we shall call it ”minimal tetrad”. We stress that the difference between ê(0)iµ
and êiµ regards the behavior under local translations, due to the presence of
the connection γiµ .

3. Integrability conditions

The passage to the geometrical description can be made with the help of
the general tetrad (16) defining, as usual, a metric tensor of the form:

gµν = êiµê
i
ν = g(0)µν + λγ(µν) + λ2γµργνσ g(0)

ρσ , (19)

where g(0)µν = ê(0)iµê(0)
i
ν is the corresponding ”minimal metric tensor”,

and we have used ê(0)iµ and its formal inverse ê(0)νj to transform indices.
Two comments are now in order. The first one concerns equation(19)

that imitates a weak field expansion over a background metric g(0)µν . It
must be emphasized however that it is not a perturbation approach but an
exact result derived from the underlying gauge structure, which is apparent
only at the vierbein level. Secondly, the decomposition (16) implies a non-
trivial structure for the formal inverse êµi present in the definition of the
contravariant metric tensor. We explicitly assume that the theory is analytical
in the characteristic length λ, so that the formal inverses are given by an
expansion in powers of λ. Strictly speaking a similar question arises with the
definition of g(0)ρσ present in (19), and we are to show that the structure
and properties of this minimal metric tensor can be derived from general
integrability conditions.
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In a previous work [25] we have seen that the field equations of gravity in
the vacuum can be interpreted as a gauge theory of translations defined in
the metric of a maximally symmetric background space. Now we are going
to show that this result holds without making recourse to the field equations
even in the presence of matter, or, in other words, as a consequence of the
underlying gauge structure of the theory which is previous to any dynamics.

The analyticity in λ lets to work out the existence conditions and ensuing
properties of the solutions in the limit λ→ 0 (minimal tetrads). To this end
we first redefine the Lorentz connection Âij

µ as follows:

Âij
µ = êαiDµê

j
α +Bij

µ , (20)

where Dµ is the ordinary Christoffel covariant derivative acting on the coor-
dinate index α of the tetrad êjα . The first term of this redefinition, usual
in gauge theories of gravity, describes the value of the Lorentz connection
in the absence of matter, whereas the second one Bij

µ takes into account the
coupling with the spin densities present in the matter terms, so that Bij

µ = 0
in the vacuum.

Now we shall see that the background metric can be derived from integra-
bility conditions which are previous to the equations of motion. This requires
some rather involved algebra that we briefly outline in the following.

For λ = 0, contracting (20) with ϕj we get

Âi
µjϕ

j = [e(0)αiD(0)µ[e(0)αjϕ
j]− ∂µϕ

i +Bi
µ], (21)

where D(0)µ is the Christoffel covariant derivative constructed with the me-
tric tensor g(0)µν , and Bi

µ = Bi
µjϕ

j . Using (21) and the notation χ ≡ k µ2 ,
(17) becomes

ê(0)iµ =
N

M
[ê(0)αi

1

2k
D(0)µD(0)αχ+Bi

µ] + (1−
N

M
)
1

2k
D(0)µχϕ

i (22)

Contracting it with ê(0)iν one obtains

g(0)µν =
1

2k

N

M
[D(0)µD(0)νχ+ (

N

M
− 1)

1

2k
D(0)µχD(0)νχ] +

N

M
Bµν (23)

The square bracket in (23)can be brought to the form H(χ)D(0)µD(0)νF (χ).
Exploiting the explicit values (14) and (15), the function F and the integra-
tion factorH turn out to beM and (cN)−1 respectively, where c is a constant.
With c = (2k)−1 we obtain

g(0)µν =
1

M
D(0)µD(0)ν M +

N

M
Bµν (24)
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Taking the trace of (24) we have:

M =
1

4
(2(0)M +B) , (25)

where B is the trace of Bµν and 2(0) is the covariant d’Alembertian corres-
ponding to g(0)µν . Substituting in (24) we finally obtain

D(0)µD(0)νM =
1

4
2(0)M − B̄µν , (26)

being B̄µν ≡ Bµν −
1
4
g(0)µνB.

Taking now symmetric and antisymmetric parts of (26) we get:

D(0)µD(0)νM =
1

4
g(0)µν2(0)M −

1

2
B̄(µν), (27)

and
B̄[µν] = B[µν] = 0 , (28)

which in Lorentz indices gives

B[µν] = e(0)k[µe(0)
i
ν]Bkijϕ

j = 0 ⇒ B[ki]jϕ
j = 0 (29)

We recall that the fields ϕj are by definition independent functions as
long as, being the Goldstone bosons of the gauged translations, there are not
dynamical relations among them. Otherwise stated, their motion equations
are satisfied identically since they yield the null covariant divergence of the
Einstein tensor. Therefore (29) is verified only when B[ki]j = 0 . Taking into
account the antisymmetry of Bkij in the last two indices we can write

Bkij = Bikj = −Bijk, (30)

so that symmetrizing in ij one gets finally

B(ij)k = 0 . (31)

As a consequence, at least at zeroth order in λ , equation (27) reduces to

D(0)µD(0)ν M =
1

4
g(0)µν2(0)M . (32)

It must be emphasized here that the question is not finding a solution M
to (32), which we know a priori, but acknowledging that its mere existence
implies, as a well known integrability condition, the maximally symmetric
character of the space. Thus g(0)µν is determined from first principles and
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previously to any dynamics. As a particular case, for k → 0 equation (32) is
replaced by [25][26]

g(0)µν = D(0)µD(0)ν σ (σ ≡
1

2
µ2) , (33)

which leads us to a Minkowskian metric. As we shall see, it suffices to adopt
ϕi as coordinates to verify that g(0)µν reduces to the flat metric ηij .

Consequently the geometrical description is given in terms of the finite
expansion (19), which depends on the translational connection (the true gra-
vitational dynamical variable) γµν and a background maximally symmetric
metric tensor g(0)µν .

4. Gauge structure and dynamical variables

In this scheme, the dynamical gravitational variables in the geometri-
cal approach are embodied in the translational connection γµν defined on
a background metric g(0)µν. Once g(0)µν has been determined prior to any
dynamics by integrability conditions, it is of uppermost interest to pinpoint
the structure of the minimal tetrad e(0)iµ associated to it, which shall provide
us with very useful tools for the identification of the dynamical variables, a
fundamental problem in gravity theories.

The passage from the gauge description to the geometrical one is cano-
nically accomplished by using (20) for Bij

µ = 0 in the Field Strength Tensor,
which becomes:

F ij
µν = eiαe

j
βR

αβ
µν (34)

Starting from this relationship we first consider the Poincaré case where
the cancelation of the Riemann tensor at zero order in λ stems from the
integrability conditions, so that, being R(0)αβµν = 0, we conclude that also
F (0)ijµν = 0 and then Aij

µ must be a pure gauge. The structure of such a
connection is given by the inhomogeneous part of the formal variation of a
gauge connection, thus we write:

A(0)ijµ = U ik∂µU
j
k , (35)

where U ik is an arbitrary pseudo-orthogonal matrix describing a general Lo-
rentz transformation. Putting this in the zeroth order of (18) we obtain:

e(0)iµ = ∂µϕ
i + U ik∂µUkjϕ

j , (36)

so we can write:

e(0)iµ = ∂µϕ
i + U ik∂µ[Ukjϕ

j]− ∂µϕ
i = U ik∂µ[Ukjϕ

j ] = U ik∂µϕ̂k (37)
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where ϕ̂k = Ukjϕ
j . Then the background metric may be written as follows:

g(0)µν = U ik∂µϕ̂kU
il∂νϕ̂l = ∂µϕ̂k∂νϕ̂

k (38)

It is immediate to check that (38) satisfies the condition (33). In a non
linear realization of the Poincaré group the fields ϕi transform as the carte-
sian coordinates, thus in a Minkowskian space they can be properly used as
coordinates.

To reproduce the usual geometrical approach we note that the translatio-
nal connection γµν = eiµγije

j
ν exhibits an underlying invariance under Lorentz

transformations U in the Latin indexes, so that we can fix the gauge to ren-
der γij (and consequently γµν) symmetrical, thus recovering the usual ten
degrees of freedom of canonical gravity.

Now we recover the expression (19) of the general metric tensor, taking
the symmetric and antisymmetric parts of γµν :

γµν =
1

2
sµν +

1

2
aµν , (39)

being sµν = γ(µν) and aµν = γ[µν] , so (19) becomes:

gµν = g(0)µν + λ sµν +
λ2

4
[sµρsνρ + s(µρaν)σ + aµρaνσ]g(0)

ρσ. (40)

Steering to Lorentz indices, namely sµν = e(0)iµ sij e(0)
j
ν and aµν = e(0)iµ aij e(0)

j
ν

, and adopting the coordinates xµ for the cartesian Goldstone ones ϕi, the
metric tensor g(0)µν reduces to ηij . Now we can choose U such that sij
becomes Uk

i sklU
l
j = dij diagonal, and aij → Uk

i aklU
l
j = âij , obtaining:

gij = ηij + λ dij +
λ2

4
[dikdjl + d(ikâj)l + âikâjl]η

kl. (41)

We then have the usual ten degrees of freedom of canonical gravity, al-
beit in quite a different arrangement: the four eigenvalues of the symmetric
part of γµν and the six elements of an antisymmetric matrix. We stress that
these d.o.f. appear in (41) at different orders in λ so that, for instance, the
calculations at first order get highly simplified.

The case of a maximally symmetric space is slightly more complicated
because Aij

µ is not a pure gauge. We again start from the limit λ→ 0 of (12)
that can be written as:

e(0)iµ = NDµϕ
i +

1−N

2χ
∂µχϕ

i (42)
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where χ ≡ kµ2. Taking into account (37) and using the relation ϕ̂k = Uk
j ϕ

j

in (42) we obtain:

e(0)iµ = U i
k(N∂µϕ̂

k +
1−N

2χ
∂µχ ϕ̂

k) . (43)

A more compact and convenient notation is obtained by redefining the
fields ϕ̂k according to

ϕ̃k = F (χ)ϕ̂k , (44)

which substituted in (43) lead us to

e(0)iµ = U i
k

N

F
∂µϕ̃

k + (
1−N

2χ
−
NF ′

F
)∂µχ ϕ̃

k. (45)

The value of F is chosen so as to cancel the second term on the right
hand side of (45), namely:

1−N

2x
−
NF ′

F
= 0, (46)

where the prime denotes differentiation with respect to χ. Using (15) we

obtain F = c√
χ
Tan

√
χ

2
, so that

e(0)iµ = U i
k

1 +M

c
∂µϕ̃

k. (47)

where c is an integration constant.
Writing now F (χ) in terms of the redefined fields ϕ̃k and choosing c = 2,

the tetrad finally reads

e(0)iµ = U i
k(1 +

1

4
χ̃)−1∂µϕ̃

k . (48)

Taking again, as in the Poincaré case, the Goldstone fields ϕ̃k as coordinates,
we derive the metric tensor

g(0)ij = (1 +
1

4
χ̃)−2ηij , (49)

in which we recognize the so called Riemannian form of the metric for a space
of constant curvature.
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5. Concluding remarks and first order equa-

tions

The choice of the dynamical variables given in equation (41) simplifies
the structure of the theory. This allows us to find out the general form and
properties of the vacuum equations of gravity at first order in λ . To do
this we start from the Einstein’s equations Gij = Λ

4
gij in the presence of a

cosmological constant, that can be alternatively written:

Rij +
Λ

4
gij = 0 (50)

There exists,when two different metric tensors gµν and g(0)µν are involved,
a useful relation between the Christophel’s connections which highly simplify
the calculations, namely:

Γρ
µα = Γ(0)ρµα +∆ρ

µα, (51)

where Γ̺
µα is the Christophel symbol constructed with gµν and Γ(0)̺µα the

corresponding one to g(0)µν, being

∆ρ
µα =

1

2
gλρ[D(0)µgλα +D(0)αgλµ −D(0)λgµα] (52)

with D(0)µ the covariant derivative in terms of Γ(0)ρµα.
According with (41) we are going to use in the following Latin indexes,

being g(0)ij the background metric and gij = g(0)ij + λdij the first order
expansion of the general metric.

The relation between the corresponding Ricci tensors is then given by the
following expression:

Rij = R(0)ij +D(0)j∆
k
ki −D(0)k∆

k
ij +∆l

ik∆
k
jl −∆l

ij∆
k
kl, (53)

where D(0)i and R(0)ij are respectively the covariant derivative and the Ricci
tensor constructed with the background metric.

A brief calculation leads to the value of ∆i
jk which reads:

∆i
jk =

λ

2
(D(0)jd

i
k +D(0)kd

i
j −D(0)idjk), (54)

where the indexes are raised and lowered using the background metric.
From (56) we see that the zero order terms are satisfied when R = −Λ.

So that the first order equations becomes:

2(0)dij +D(0)jD(0)id
k
k −D(0)kD(id

k
j) +

Λ

2
dij = 0, (55)
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and its trace:

2(0)dkk −D(0)kD(0)id
ki +

Λ

4
dkk = 0 (56)

It is not the aim of this paper to include a general survey of the first order
solutions, which merit by themselves a more detailed and specific study. Not-
withstanding we are going to briefly comment some features of the problem
relevant in this choice of the dynamical variables. In fact being dij a diagonal
matrix equation (58) contains, when i 6= j additional information with res-
pect to the usual treatments,namely the second order analytical restrictions:

DkD(id̂
k
j) = 0, (57)

where i 6= j and:

d̂kj = dkj −
1

2
δkj d

l
l. (58)

Obviously these restrictions are absent in any other choice of the dynamical
variables and gives an important input in the search of the general scheme
of the first order solutions.

Summarizing, our proposal describes the space-time physics by a twofold
assumption, one is the gauge nature of the translations, which introduces a
characteristic length λ interpretable as the ”true”gravitational interaction,
and the other is the structure of empty space, attained in the limit λ → 0,
which is taken to be a maximally symmetric background space. This geo-
metrical assumption is equivalent to adopt the existence of a cosmological
constant Λ as a phenomenological observation on the same footing of the
approximate planarity (homogeneity and isotropy) of space-time.

The role played by λ in this approach, together with a principle of eco-
nomy, strongly suggests to relate this characteristic length to the gravitatio-
nal constant. In fact, in natural units, having a dimensionless vacuum gravity
action requires the introduction of a constant factor with dimensions L−2 ,
namely the inverse Newton constant, and it becomes natural its identification
with λ−2.

Therefore the free gravitational lagrangian eµi e
ν
jF

ij
µν should include a de-

pressing factor λ2 with respect to the matter terms. Thus we observe that
when (19) is used, the motion equations stemming from the variation δAij

µ

become purely algebraical so that Bij
µν = 0 in the absence of matter, while

Bij
µ becomes equal to the matter spin densities coupled linearly to Aij

µ . Being
the matter terms the only ones contributing to the value of Bij

µ , they are evi-
dently depressed by at least the same factor λ2 existing between the matter
Lagrangian and the vacuum term. This obviously implies that the term B(µν)

do not contributes to the zeroth order equation (28), the structure of which
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agrees with the results of the ordinary dynamical treatment of gravity as a
local field theory. In a gauge field theory only the fermions give rise to these
kind of contributions, and the fermion spin densities are completely antisym-
metric when all indexes are of the same (either tensor or Lorentz) nature, so
that a symmetric part B(µν) should be absent in any case.

Therefore we conclude that the identification of the characteristic length λ
with the gravitational constant is not only an economical and natural assum-
ption but, at the same time, fully consistent with well established theoretical
results.

As it is seen, the appearance of the cosmological constant is, in this sche-
me, an initial condition related to the gauge space-time group considered, so
that it constitutes an initial ingredient of the background space of the theory.
From this point of view revisiting the Quantum Field Theory on maximally
symmetric spaces appears as a very promising topic.
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