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In this work, we obtain isotropic extensions of the usual spherically symmetric vacuum geometries in

general relativity. Exact and perturbative solutions are derived. The classes of geometries obtained include

black holes in compact and noncompact universes, wormholes in the interior region of cosmological

horizons, and anti-de Sitter geometries with excess/deficit solid angle. The tools developed here are

applicable in more general contexts.
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I. INTRODUCTION

Spacetimes described by spherically symmetric solu-
tions of Einstein’s equations are of paramount importance
both in astrophysical applications and theoretical consid-
erations. And among those, black holes are highlighted.
They are relevant sources of gravitational radiation, offer-
ing possible observational signatures of general relativity
extensions. The current and upcoming gravitational wave
experiments and the possibility of detecting black holes in
accelerators are strong motivations for the investigation of
such models.

In a vacuum, Birkhoff’s theorem and its generali-
zations to nonasymptotically flat cases uniquely fix the
metric as the Schwarzschild, Schwarzschild–de Sitter, or
Schwarzschild–anti-de Sitter geometries, the vacuum so-
lutions of the usual general relativity with zero, positive or
negative values for the cosmological constant, respectively.
Nevertheless, our universe is not in a vacuum state, even if
its dynamics could principally be driven by an (at least)
effective cosmological constant [1,2]. Therefore, it is in-
teresting to consider how the compact solutions in general
relativity are modified in a cosmological scenario. In a dif-
ferent direction, anti-de Sitter geometries gained interest
due to the proposed anti-de Sitter (AdS)–conformal field
theory (CFT) correspondence [3,4]. This conjecture pro-
poses a duality between gravity in AdS spaces and CFTs.
A better understanding of AdS backgrounds plays an im-
portant role in this program.

In this work, we are mainly interested in black holes
in a cosmological environment. Of the two main assump-
tions of the cosmological principle, homogeneity is lost
when compact objects are considered. Nevertheless, iso-
tropy is still possible, and we enforce this condition. With-
in this context, we investigate spatially isotropic solutions
close—continuously deformable—to the usual vacuum
solutions.

From a more mathematical point of view, isotropy is a
condition that can be implemented in a purely coordinate
invariant way, and as a simple linear constraint in the usual
coordinate system ðt; r; �; �Þ. This geometrical condition is
somewhat akin to the imposition of a constant Ricci scalar,
natural in a Randall–Sundrum brane world context [5,6].
Solutions of this constraint can also be expressed as a linear
deformation of the general relativity vacuum solutions,
whose extensions were treated in [7–10].
The present work deals with the problem of extending

the usual Einstein’s equation solutions in a similar man-
ner. While one practical approach to general relativity is
to specify the matter content and from that the spacetime
structure, this is not the only possible treatment. For in-
stance, one can specify the spacetime metric based on
physical and geometrical considerations, and later follow
its implications for the energy-momentum tensor [7–15].
In fact, currently, the cosmological scientific community
is attempting to adjust the energy density and pressure
needed to produce an accelerated FLRW cosmology. We
favor here this latter approach.
The structure of this paper is presented in the following.

In Sec. II, we develop the basic formalism to be used. In
Sec. III, we apply this formalism, deriving linear solutions
which exactly satisfy the isotropy constraint. A large class
of structures appear in the process. In Sec. IV, we go
beyond the linear cases, obtaining more general back-
grounds which are approximately isotropic. Some final
comments are made in Sec. V.

II. GENERAL FORMALISM

In this work, we are interested in spherically symmetric
and static geometries. With these conditions, the metric
can be written as

ds2 ¼ �AðrÞdt2 þ 1

BðrÞdr
2 þ r2ðd�2 þ sin2�d�2Þ: (1)

In the coordinate system ðt; r; �;�Þ, the stress-energy ten-
sor has generally the form
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We assume spacial isotropy, that is, a linear constraint
among pr and pt as

pr ¼ pt � p: (3)

An eventual non-null cosmological constant is written in
the Einstein equations as

R�
� � 1

2
R��

� þ���
� ¼ 8�T�

� : (4)

The field Eq. (4) implies that the stress-energy components
are related with the functions A and B as
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� B
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; (5)
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A00B
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: (7)

where ‘‘0’’ denotes differentiation with respect to r. The
Schwarzschild (� ¼ 0), Schwarzschild–de Sitter (�> 0),
and Schwarzschild–anti-de Sitter (�< 0) are the vacuum
solutions of the Einstein equations, trivially satisfying the
condition (3) with pt ¼ pr ¼ � ¼ 0 and an integration
constant proportional to a nonvanishing M; whereas for
M ¼ 0, these solutions reduce to the Minkowski, de Sitter,
and anti-de Sitter spacetimes. We are interested in more
general solutions of Eq. (3) which are close to the

Schwarzschild-like solutions, in a natural sense discussed
in the following.
An equation-of-state in the form of (3), together with the

Einstein Eq. (4), implies a functional relation between the
functions AðrÞ, BðrÞ and their derivatives. Using Eqs. (6)
and (7), the constraint (3) can be written as

rAA0ð�2Bþ rB0Þ þ 2r2AA00B� r2ðA0Þ2B
þ 2A2ð2� 2Bþ rB0Þ ¼ 0: (8)

We now consider the conditions so that our solutions are
continuous deformations of the usual vacuum geometries.
Namely, we assume that the stress-energy tensor Tðr; �Þ
in the form (2) is a smooth function of a deformation
parameter � such that if � ¼ 0 we recover the vacuum
solutions. We assume that the functions A and B are
smooth functions of �, but otherwise unspecified. There-
fore, the stress-energy tensor (2) and the metric compo-
nents can be written as

½T�
� � ¼

X
n¼1

�n½T�
� �n; (9)

A ¼ X
n¼0

�nAn; (10)

B ¼ X
n¼0

�nBn: (11)

The expansions are written so that the constant � is
dimensionless.
Substituting the form suggested by the stress-energy and

metric elements in the equation of state (3), we obtain for
the zero and first order in �, respectively:

rA0A
0
0ð�2B0 þ rB0

0Þ þ 2r2A0A
00
0B0 � r2ðA0

0Þ2B0

þ 2A2
0ð2� 2B0 þ rB0

0Þ ¼ 0 (12)

and

A0ð2A0 þ rA0
0ÞB0

1 �
�
4A2

0

r
þ 2A0A

0
0 þ rA02

0 � 2rA0A
00
0
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¼ �2rA0B0A
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�
2B0 þ 2rB0A

0
0

A0

� rB0
0

�
A0
1 �

�
2rA00

0B0 � 2A0
0B0 þ rA0

0B
0
0 þ

8A0

r
� 8A0B0

r
þ 4A0B

0
0

�
A1: (13)

The requirement that we are dealing with extensions of the
vacuum solutions sets the zero-order elements of the ex-
pansion as

B0ðrÞ ¼ A0ðrÞ ¼ 1� 2M

r
��

3
r2; (14)

which identically solve Eq. (12). Taking into account the
form of A0 and B0, we treat Eq. (13) writing A1 and B1 as

A1ðrÞ ¼
�
1� 2M

r
��

3
r2
�
aðrÞ; (15)

B1ðrÞ ¼
�
1� 2M

r
��

3
r2
�
bðrÞ: (16)

Substituting in Eq. (13), we have

P1ðrÞb0 þ 6bþ P2ðrÞa00 þ P3ðrÞa0 ¼ 0 (17)

with

P1ðrÞ ¼ � 3r

2
ð2A0 þ rA0

0Þ ¼ 2�r3 � 3rþ 3M (18)
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P2ðrÞ ¼ �3r2A0 ¼ rð�r3 � 3rþ 6MÞ (19)

P3ðrÞ ¼ � 3r

2
ð3rA0

0 � 2A0Þ ¼ 2�r3 þ 3r� 15M (20)

At this point, the relation (17) does not fix a particular
group of solutions which satisfy the isotropy condition.
The complete characterization of a and b is not possible
without additional information. We will develop some
possible classes of solutions in the following sections.

III. EXACT LINEAR SOLUTIONS

Within the presented formalism, we will investigate
exact linear solutions of spherically symmetric and iso-
tropic geometries. They will provide a rich set of compact
structures.

In addition to the already specified requirements—
spherical symmetry, staticity, isotropy, and a stress-energy
tensor ½T�

� � in the form (9)—we will further require that
½T�

� � is strictly linear in �, that is, there are no second-order
corrections. Since the exact constraint, Eq. (8), is nonlinear
in A, a smooth deformation of A from A0 by a small term
�A1 would induce higher-order corrections in ½T�

� �.
Assuming strict linearity, and therefore excluding these
higher-order corrections, implies that A1 � 0.

On the other hand, in terms of B the exact relation (8) is a
linear first-order differential equation. Therefore, a smooth
deformation of B from B0 by an arbitrarily term �B1

induces strictly linear corrections in ½T�
� �. Indeed, setting

aðrÞ � 0 in Eq. (17), the general solution for bðrÞ can be
obtained. We have that

bðrÞ ¼ DblinðrÞ ¼ D exp

�
�6

Z dr

P1ðrÞ
�
; (21)

where D is a dimensionless and positive integration con-
stant. Thus, the functions AðrÞ and BðrÞ can be written as

AðrÞ ¼ A0ðrÞ; (22)

BðrÞ ¼ A0ðrÞ½1þ CblinðrÞ�: (23)

with C ¼ D � �. The specific choice of � is a matter of
convention, since it can be incorporated into C. In the
present work, we will be careful to keep the constant C
dimensionless.

It is straightforward to verify that the solution (22) and
(23) is exact (pr � pt). Both pressures will be denoted p as
in Eq. (3). Although Eqs. (22) and (23) are valid for any C,
we will see that the metric associated with this solution will
describe static and Lorentzian manifolds for C, taking
values in a proper subset of R only.

One common feature of the obtained spacetimes is that
they are characterized by energy densities and pressures
which are r-dependent, and become constant in the asymp-
totic region. This qualitative behavior is the expected
one for compact solutions immersed in backgrounds which

are asymptotically flat, de Sitter or anti-de Sitter. Ex-
cluding cosmological constant effects, this phenomenon
is also seen when ‘‘hairs’’ are present (for example, see
[16–20]). Still, the precise form and properties of the
obtained geometry are strongly determined by the sign of
�. We will treat it then case-by-case in the following
subsections.

A. Linear solutions with � ¼ 0

Considering a null cosmological constant, we get for the
function b

bðrÞ ¼ ðr�MÞ2
M2

; (24)

and for the metric functions

AðrÞ ¼ A0 ¼ 1� 2M

r
; (25)

BðrÞ ¼
�
1� 2M

r

��
1þ C

�
r

M
� 1

�
2
�
: (26)

In order for the geometry described by the functions A
and B to have a static region (with A > 0 and B> 0), the
dimensionless parameter C must be bounded from below:
�1<C<1. The energy density and pressures associated
with the metric given by Eqs. (25) and (26) are

8�� ¼ �C
ðr�MÞð3r� 5MÞ

ðMrÞ2 ; (27)

and

8�p ¼ C
ðr�MÞ2
ðMrÞ2 ; (28)

respectively. We also define an equation of state parameter
w ¼ p=� which is

w ¼ � r�M

3r� 5M
: (29)

As we will show considering particular cases in the
following subsections, the energy density and pressure
given by Eqs. (27) and (28) would generally correspond
to the total energy density and pressure which can be ob-
tained when more than one fluid is present. Moreover, as
expected from Eq. (21), one can recover the case without
deformation with C ¼ 0. That is, the functions resulting
when C ¼ 0 is taken in Eqs. (25) and (26) reduce to the
Schwarzshild metric, which corresponds to the vacuum
case.

1. Spatially homogeneous and isotropic
universes (M¼0)

If M ¼ 0, the metric components are given by

AðrÞ ¼ 1; (30)
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BðrÞ ¼ 1� Kr2 with �1<K <1: (31)

We have redefined the parameter C into a real parameter K
with dimension of Length�2. The metric describes a
homogeneous and isotropic background with spacial cur-
vature K.

It can be noted that if we consider K > 0, we obtain a
closed static model that is the cosmological model studied
by Einstein. In fact, the energy density and pressure given
by Eqs. (27) and (28) can be seen as the total energy den-
sity and pressure of a universe filled with two fluids, usual
matter with 8��m ¼ 2K and a cosmological constant with
8��� ¼ K, which cancels the gravitational collapse due to
the matter component. Therefore, although we are consid-
ering general relativity without cosmological constant,
i.e., � ¼ 0 in Eq. (4), we recover the Einstein universe
as a deformation of the vacuum case with M ¼ 0, the
cosmological constant appears as a fluid which composes
part of the universal content originated by the deformation.

An argument similar to that mentioned above could be
applied to the case K < 0, which corresponds to an infinite
static universe. Nevertheless, in this case, the fluid origi-
nated by the deformation could be decomposed into a
negative cosmological constant and matter with �s < 0
and ws ¼ 0. On the other hand, for K ¼ 0, we recover
the case where no deformation is considered, the
Minkowski spacetime.

As we will see, the geometries presented here corre-
spond to the asymptotic limit of the solutions withM � 0.

2. Black holes in an isotropic and noncompact
universe (M > 0 and C > 0)

For positive values of C, the only zeros of the functions
A and B are given by rþ ¼ 2M. Moreover, these functions
are analytic and positive-definite for rþ < r <1. There-
fore, the coordinate system ðt; r; �;�Þ is well defined in the
region rþ < r <1.

The analytic continuation beyond rþ is possible with the
standard techniques, and the surface r ¼ rþ is a Killing
horizon. It is a simply connected surface for the most
simple choice of topology. The interior region has a cur-
vature singularity for r ! 0. On the other hand, in the limit
of very large r, or equivalently taking the limit of zero
mass, we obtain an static universe with a negative spacial
curvature. Therefore, the resulting geometry is a black hole
in a noncompact universe.

It must be emphasized that we have a static black hole
in a nonempty environment. One possible interpretation of
this geometry can be found noting that the equation of
state parameter, given by Eq. (29), is equal to minus one for
r ¼ rþ, and that a black hole in an asymptotically de Sitter
scenario would not accrete a fluid with such a value of the
equation of state parameter (behaving as a cosmological
constant) on its horizon [21]. Therefore, when the test-fluid
approach used to study the accretion process [22] (and in

Ref. [21]) is broken, the most important characteristics of
the fluid are those in the vicinity of the black hole in any
scenario, that is pþ � on the horizon and not at infinity.
In such a case, a static configuration can be reached be-
cause a black hole would not accrete a cosmological con-
stant, or any fluid with wðrþÞ ¼ �1. Nevertheless, it must
be pointed out that this would be a sufficient but not a
necessary nonaccretion condition.

3. Black holes in a compact universe
(M > 0 and �1 < C < 0)

For negative C, that is �1<C< 0, the geometry is
more elaborate. The function B has a second zero rmax

(besides rþ ¼ 2M) given by

rmax ¼ M

�
1þ 1ffiffiffiffiffiffiffijCjp �

; (32)

such that (i) rþ < rmax; (ii) AðrmaxÞ> 0; (iii) AðrÞ> 0 and
BðrÞ> 0 for rþ < r < rmax; (iv) AðrÞ and BðrÞ are analytic
for rþ � r � rmax. As a side remark, we point out that rmax

can be arbitrarily large, tending to infinity as C tends to
zero (the Schwarzschild case), or arbitrarily close to rþ for
jCj ! 1 (an extremal geometry).
The surface r ¼ rþ is a Killing and outer trapping

horizon, and the surface r ¼ rmax is an inner trapping
horizon. It can be seen that at r ¼ rmax the ‘‘flaring-out
condition’’ which characterizes wormholes [13,14], imply-
ing the existence of an outer trapping horizon [23,24], is
replaced by a ‘‘flaring-in condition’’ for this inner horizon
case. In order to understand the behavior of the geometry
close to rmax, we can consider the proper length ‘, which is

‘ðrÞ ¼ �2MjCj�1=2�

�
�

2jCj�1=2

jCj�1=2 � 1
�ð�ðrÞ;��;�Þ � Fð�ðrÞ; �Þ

�
;

(33)

with

� ¼ jCj�1=2 � 1

jCj�1=2 þ 1
; (34)

�ðrÞ ¼ arcsin

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�jCj�1=2 þ 1

jCj�1=2 � 1

��jCj�1=2 þ 1� r=M

jCj�1=2 � 1þ r=M

�vuut ;

(35)

where F and � denote the incomplete elliptic integrals of
first and third kind, following the conventions in Ref. [25],
and the expression for ‘ðrÞ is well defined for values of
r � rþ. We have chosen a function ‘ðrÞ such that
‘ðrmaxÞ ¼ 0 and the� sign in the r.h.s. of Eq. (33) analytic
continues the geometry to negative values of the pro-
per length; thus, one can use the chart ðt; ‘; �; �Þ, with
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�‘max < ‘<þ‘max and ‘max ¼ ‘ðrþÞ taking a finite
value.

Now that we have established the good behavior of the
geometry at ‘ ¼ 0, we can equivalently describe this ex-
tension of the space by two identical charts ðt; r; �;�Þ, both
with rþ � r � rmax, which should be matched at rmax.
In order to visualize this geometry, we can consider that
a section of our spacetime, with constant t and � ¼ �=2, is
embedded in an extra dimension z. Therefore, a function
zðrÞ would describe this section of the spacetime in a
higher-dimensional space. The derivative of such a func-
tion would tend to infinity at rþ and rmax, and zðrÞ ful-
fills the ‘‘flaring-in condition’’ in rmax (see Fig. 1). Thus,
this maximal radius would be a surface of the same kind
as that appearing in the equator of the Einstein static
universe, where the light rays are parallel. In fact, one of
the cases appearing in Sec. III A 1 was just the Einstein
universe. It can be seen that also in that case there is an

inner trapping horizon, at r	 ¼ ðKÞ�1=2, which is hidden

when one applies the usual change of coordinates, r ¼
ðKÞ�1=2 sin�, in order to obtain an extension reflecting
the initial geometry, which corresponds to a spatially
spherical geometry, ds2 ¼ �dt2 þ K�1d�2

ð3Þ. On the

other hand, in Fig. 2 the embedded diagram of this section
of the space is depicted, showing that the geometry corre-
sponds to a closed universe with two Killing horizons, the
initial one and its reflected image, which plays the role of
upper and lower limits of the figure, respectively. As in the
Einstein model, the region covered by the initial chart is
reflected in an identical region, closing the universe.

The Carter–Penrose diagram of the maximal extension
of this geometry can be obtained by considering also
values of r such that 0 � r � rþ for both charts, as shown
in Fig. 3. As in the Schwarzschild case, for each chart, one
obtains a constant radial line at r ¼ rþ which would
denote the black (white) hole horizon in the upper (lower)
region of the diagram, showing a connection between the
corresponding line of each chart.

The difference between this diagram and that of a
Schwarzschild spacetime is that, in the present case, the
left-hand and right-hand regions are not ending in the
spatial infinity, but they are identified at a finite maximum
radial radius. Therefore, whereas in the maximal extension
of the Schwarzschild space, one has two asymptotically flat
exterior spaces which present a black hole horizon, in this
case, due to the identification at rmax, there is only one
exterior space. Assuming the maximal extension proposed,
an observer in the exterior region can reach the black hole
interior region by crossing two different horizons (each one
parametrized by a different chart of coordinates). Thus, this
geometry can be interpreted as two black holes in a com-
pact universe (see Ref. [26] where a similar interpretation
is considered for dynamical geometries resembling this
one). A one black hole interpretation is also sensible, based
on topological considerations.
Finally, it can be noted that the energy density, pressure

and equation of state parameter, given by Eqs. (27)–(29),
respectively, take finite and nonvanishing values outside

FIG. 1. Function zðrÞ which describes the behavior of a section
of the spacetime embedded in an extra dimension. It can be seen
that the geometry flares in at r ¼ rmax.

FIG. 2. Embedded diagram of a section with constant t and
� ¼ �=2. Both charts used to obtain this diagram have rþ �
r � rmax, therefore the embedded diagram only shows regions
with r � rþ. r ¼ rþ (top and bottom of the figure) is the limit of
validity of this description.

r
max

r
max

+
r

+
r

+
r

+
r

FIG. 3. Conformal diagram of the maximal extension of the
considered geometry. Lines with arrows are identified. The
zigzag and straight lines denote the interior singularities and
the horizons, respectively.
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the black hole, i.e., for r � rþ. Moreover, wðrþÞ ¼ �1 as
in the previous studied geometry (Sec. III A 2), which
could be interpreted as a nonaccretion sufficient condition
for an stationary solution. One could follow an argument
similar to that presented in the case of the Einstein uni-
verse studied in Sec. III A 1, considering that these quan-
tities represent the total energy density and pressure and
the effective equation-of-state parameter, respectively. In
such a case, a possible decomposition would be to consider
one component with wm ¼ 0 and another with w� ¼ �1,
although this second component would not properly be
a cosmological constant because its energy density varies
through the space, � ¼ �ðrÞ. Thus, one would have
�mðrþÞ ¼ 0 and ��ðrþÞ ¼ jCj=ð4M2Þ; and if jCj< 1=2,
then �m would start to dominate at r	 ¼ 3M, whereas
this radius would not be reached for jCj> 1=2, because
r	 > rmax.

B. Linear solutions with � > 0

If the cosmological constant is non-null and positive, the
solutions are more complicated. If 0<�< 1=9M2, then
the functions AðrÞ and BðrÞ have two real positive roots rþ
and rc (rþ < rc), which are the usual black hole and
cosmological horizons of the Schwarzschild–de Sitter ge-
ometry, and a negative root r�. This is the condition for
the Schwarzschild–de Sitter geometry to be nonextreme,
and we will assume it from now on. For M> 0, the poly-
nomial P1ðrÞ has three real zeros r0, r0�, rn, with rn < 0<
r0� < r0, and therefore can be written as

P1ðrÞ ¼ 2�ðr� r0Þðr� r0�Þðr� rnÞ: (36)

The important point is that r0� < rþ < r0 < rc. In terms
of these constants, the function b can be analytically
calculated as

bðrÞ ¼ C
ðr� r0�Þc0�

ðr� r0Þc0ðrþ r0 þ r0�Þcn� ; (37)

where the positive constants c0, c0� and cn� are written in
terms of r0, r0� and rn� as

c0 ¼ 3=�

ðr0 � r0�Þð2r0 þ r0�Þ ; (38)

c0� ¼ 3=�

ðr0 � r0�Þð2r0� þ r0Þ ; (39)

cn� ¼ 3=�

ð2r0 þ r0�Þð2r0� þ r0Þ : (40)

The functions AðrÞ and BðrÞ are expressed as:

AðrÞ ¼ A0 ¼ �

3r
ðrc � rÞðr� rþÞðr� r�Þ; (41)

BðrÞ ¼ A0

�
1þ C

ðr� r0�Þc0�
ðr� r0Þc0ðrþ r0 þ r0�Þcn�

�
: (42)

Since the coefficient c0 in Eqs. (38) and (42) is positive,
the function BðrÞ diverges near r ¼ r0, inside the static
region rþ < r < rc. This result might suggest that the
geometry might not be well-behaved if �> 0. Indeed,
we will see in the following that this is so if C> 0, when
a naked singularity is present. But for negative values of C,
we will also see that the geometry is regular everywhere,
describing a wormhole-like spacetime.

1. Naked singularities (� > 0 and C > 0)

If C> 0, A and B are positive-definite for rþ < r < rc.
Moreover, B is divergent at r0. The geometry is well
defined and static for r > r0, but its curvature in-
variants are not bounded, as seen by the behavior of the
Kretschmann scalar near r0:

lim
r!r0

jR	
��R
	
��j ! 1: (43)

Therefore, for this case, a naked curvature singularity is
present at r ! r0.

2. Wormholes within a cosmological
horizon (� > 0 and C < 0)

If C< 0, the function BðrÞ is not positive-definite
between rþ and rc: it has a third zero at r ¼ rthr. The
relevant points are: (i) rþ < r0 < rthr < rc; (ii) AðrÞ> 0
and BðrÞ> 0 for rthr < r < rc; (iii) the functions AðrÞ and
BðrÞ are analytic for rthr < r < rc. Therefore, the chart
ðt; r; �; �Þ is valid in the region rthr < r < rc. The analytic
continuation of this geometry gives us a wormhole struc-
ture, with a throat at r ¼ rthr. The surface r ¼ rc is a
Killing horizon in the maximal extension, and can be
interpreted as a cosmological horizon.
The main characteristics of this class of solutions are

captured by the simpler case M ¼ 0. The metric functions
are given by

AðrÞ ¼ 1� r2

r2c
; (44)

and

BðrÞ ¼ ð1� r2=r2cÞðr2=r2thr � 1Þ
r2=r20 � 1

; (45)

where r2c ¼ 3=�, r0 ¼ rc=
ffiffiffi
2

p
,

r2thr ¼
3=�

2ð1� jCjÞ ; (46)

and C has to take values on the interval �1=2<C< 0,
in order that rthr < rc. In the limiting case C ¼ 0, which
corresponds to the case without deformation, one has
r0 ¼ rthr and, therefore, BðrÞ ¼ AðrÞ, consistently recover-
ing the usual de Sitter metric.
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The coordinate system ðt; r; �; �Þ is valid for rthr<
r < rc. An analytic extension beyond r ¼ rthr can be
made with the proper length ‘ as a radial function, where

‘ðrÞ ¼ � 2jCjrc
1� jCj�

�
�ðrÞ; 1� 2jCj

1� jCj ;
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2jCj

p �
; (47)

�ðrÞ ¼ arcsin

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
1� jCj
1� 2jCj

��
r2 � r2thr
r2 � r20

�s
: (48)

We observe that the geometry described by Eqs. (25) and
(26) is compact as expected, that is�‘max < ‘< ‘max with
a finite value for ‘max. The function � is the incomplete
elliptic integral of a third kind, following the conventions
in Ref. [25]. We have chosen ‘ðrÞ such that ‘ðrthrÞ ¼ 0.

Following a similar procedure to that presented in
Sec. III A 3, once we have checked the good behavior of
the geometry at ‘ ¼ 0, we can describe this extension by
two identical charts ðt; r; �; �Þ, both with rthr � r � rc.
The function zðrÞ describing the embedding of a section
of this geometry in an additional dimension is shown in
Fig. 4. It can be noted that this function fulfills the ‘‘flaring-
out condition’’ and that whereas the embedding function of
an asymptotically flat wormhole has a radial derivative
which tends to zero for infinitely large values of r, in this
case, zðrÞ is defined only to a finite value of r, rc, where its
derivative diverges. In Fig. 5, the embedded diagram is
depicted; it shows that the surface r ¼ rthr can be consid-
ered as a throat connecting two spatially finite spaces.

In Fig. 6, we present the Penrose–Carter diagram of the
maximal extension of this geometry. It can be seen that the
surface r ¼ rthr (‘ ¼ 0) acts as a wormhole throat and r ¼
rc (‘ ¼ ‘max) is the cosmological horizon. Therefore, this
geometry can be interpreted as a wormhole-like structure
in an asymptotically de Sitter universe. That is because the
throat connects two universes with a cosmological horizon

at rc ¼
ffiffiffiffiffiffiffiffiffi
3=�

p
which behave as two de Sitter universes for

large (but still smaller than rc) values of r.

On the other hand, the energy density and pressure can
be obtained taking into account Eqs. (44) and (45) in
Eqs. (5) and (6). These are

8�� ¼ �2jCj�2�2r4 � 7�r2 þ 9

ð2r2�� 3Þ2 ; (49)

and

8�p ¼ 2jCj� �r2 � 1

2r2�� 3
; (50)

respectively, leading to the equation-of-state parameter

w ¼ � 2�2r4 � 5�r2 þ 3

2�2r4 � 7�r2 þ 9
: (51)

These quantities are finite and nonvanishing in the interval
rthr � r � rc, and they describe matter with � < 0. On the
other hand, we have wðrcÞ ¼ �1 and �1<wðrthrÞ< 0.
That is not in contradiction with the violation of the null
energy condition around and on the throat of a wormhole
needed to maintain such a structure (which is equivalent to
the fulfillment of the flaring-out condition), since a nega-
tive energy density allows pþ � < 0 having an equation

FIG. 4. Function zðrÞ which describes the behavior of a section
(with t ¼ constant and � ¼ �=2) of the spacetime embedded
in an extra dimension. It can be seen that the geometry flares out
at r ¼ rthr and that the radial derivative of zðrÞ diverges at both
r ¼ rthr and r ¼ rc.

FIG. 5. Embedded diagram of a section with constant t and
� ¼ �=2. Both charts used to obtain this diagram have rthr �
r � rc.

FIG. 6. Conformal diagram of the wormhole solution inside a
cosmological horizon. Dashed line denotes the wormhole throat.
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of state parameter bigger than minus one. Therefore, the
fluid behaves as dual dark energy [27] around the worm-
hole throat and as a negative cosmological constant on
the cosmological horizon. It should be kept in mind that
we are considering a nonvanishing cosmological constant
entering in the Einstein equations, Eq. (4), through the geo-
metrical part; thus, it is not appearing in the material
content, Eqs. (49) and (50), which vanishes for C ¼ 0.
Nevertheless, that is not in contradiction with a hypotheti-
cal decomposition of the material in two fluids, one of
which may be a positive or negative cosmological constant.
In any case, that second cosmological constant would have
a different nature, because it would be originated by the
deformation.

C. Linear solutions with � < 0

If �< 0, the polynomial P1ðrÞ in Eq. (17) has one real
positive root (r0) and two complex roots. Therefore, it can
be written as

P1 ¼ � 6

L2
ðr� r0Þðr2 þ prþ qÞ; (52)

where we have expressed the (negative) cosmological

constant in terms of the AdS radius L ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi�3=�
p

, and
4q� p2 ¼ 3r20 þ L2 > 0. Using the previous results, we

obtain for the function b:

bðrÞ¼
ðr�r0Þc0 exp

h
� 3r0c0ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3r2
0
þ2L2

p arctan
�

2rþr0ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3r2

0
þ2L2

p
�i

ðr2þr0rþr20þL2

2 Þc0=2
; (53)

where

c0 ¼ 2L2

6r20 þ L2
: (54)

The isotropic linear deformation of the
Schwarzschild–anti-de Sitter geometry is given by

AðrÞ ¼ A0 ¼ 1� 2M

r
þ r2

L2
; (55)

BðrÞ ¼ A0ðrÞ
8><
>:1þ C

ðr� r0Þc0 exp
h
� 3r0c0ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3r2
0
þ2L2

p arctan
�

2rþr0ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3r2

0
þ2L2

p
�i

ðr2 þ r0rþ r20 þ L2

2 Þc0=2

9>=
>;: (56)

Because of the complexity of this class of solutions, we
initially consider the case with M ¼ 0, where

AðrÞ ¼ 1þ r2

L2
; (57)

BðrÞ ¼
�
1þ r2

L2

��
1þ C

r2

2r2 þ L2

�
: (58)

The energy density and pressure associated with this ge-
ometry are

8��ðrÞ ¼ �C
6r4 þ 7r2L2 þ 3L4

L2ð2r2 þ L2Þ2 ; (59)

8�pðrÞ ¼ C
3r2 þ L2

L2ð2r2 þ L2Þ : (60)

1. Asymptotically anti-de Sitter space with deficit/excess
solid angle (� < 0, M ¼ 0 and C � �2)

If C � �2, then the function BðrÞ is positive-definite
and the spacetime is noncompact. Its asymptotic limit is
not the pure anti-de Sitter geometry though. Taking the
limit r ! 1, the line element can be expressed as

ds2¼�
�
1þ �r2

‘2

�
dt2þ

�
1þ �r2

‘2

��1
d�r2þð1þC=2Þ �r2d�2

(61)

after rescaling the radial coordinate as �r ¼ ð1þ C=2Þ�1=2r

and defining ‘ ¼ ð1þ C=2Þ�1=2L, which is the new AdS
radius. For spacetime described by Eq. (61), the solid angle
of a sphere of unity radius is 4�ð1þ C=2Þ. Therefore, it
presents a solid deficit or excess angle, if the sign of C is
positive or negative, respectively, [28]. The asymptotic
behavior shown in Eq. (61) is of a global monopole in an
asymptotic anti-de Sitter spacetime [29,30].
On the other hand, the matter content which leads to this

geometry, Eqs. (59) and (60), strongly depends on the sign
of C. If �2 � C< 0, then this material has a positive
energy density and fulfills the null energy condition in
the whole spacetime.

2. Compact static universe
(� < 0, M ¼ 0 and C <�2)

If C<�2, the function BðrÞ will have a single positive
zero rmax given by

rmax ¼ Lffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffij2þ Cjp ; (62)

with BðrÞ> 0 for 0 � r < rmax. Analytic extension can be
made with the proper length as a radial coordinate. In the
maximal extension, the surface r ¼ rmax is an inner trap-
ping horizon, analogous to the already presented case in
Sec. III A 3, which also in this case implies a reflection of
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the geometry. Therefore, this spacetime can be interpreted
as a compact static universe.

As in the previous case with �2 � C< 0, the matter
content of this spacetime fulfills the null energy condition.

3. Geometries with a black hole (M > 0)

Considering M> 0, the new feature is the presence of a
black hole. The functions A and B have a simple positive
root at rþ, with 0< r0 < rþ. The analytic extension can be
made with the usual techniques and, in the maximal ex-
tension, the surface r ¼ rþ is a Killing horizon. It can
also be seen that there is a curvature singularity at r ! 0.
On the other hand, the asymptotic behavior of the space-
time depends, of course, on the value of C.

If C is positive, then the functions AðrÞ and BðrÞ are
positive for r > rþ. The geometry is noncompact with
asymptotic geometry described by the metric (61). As in
the case M ¼ 0, we observe a solid deficit angle in the
asymptotic limit [28–30], whereas for smaller values of r
there is a black hole. Therefore, this geometry can be
interpreted as a black hole in an asymptotically anti-de
Sitter space with deficit/excess solid angle.

For negative values of C, the function BðrÞ has another
positive root rmax, with rþ < rmax and BðrÞ> 0 for rþ <
r < rmax. As in case discussed for � ¼ 0 and C< 0, an
analytic continuation is possible but the spacetime is com-
pact. The resulting geometry describes an anti-de Sitter
black hole in a compact universe.

Finally, the energy density and pressure of the fluids
filling these spacetimes can be obtained by inserting
Eqs. (57) and (58) in Eqs. (5) and (6). Although the
obtained functions can not be expressed in a simple
form, it can be seen that they are such that wðrþÞ ¼
pðrþÞ=�ðrþÞ ¼ �1. Therefore, our hypothesized nonac-
cretion condition is again fulfilled.

IV. BEYOND THE LINEAR SOLUTION

The developed formalism allows for a great deal of
flexibility. We will focus here on corrections to the linear
black hole solutions discussed in the previous section.

One approach to obtain more general black hole geome-
tries, which are (approximately) isotropic, is to select an
specific choice of correction function aðrÞ which satisfies
certain physical criteria. Having aðrÞ as input, the general
solution of Eq. (17) is given by

bðrÞ ¼ CblinðrÞ þ b1ðrÞ; (63)

b1ðrÞ ¼ blinðrÞ
Z P2ðrÞa00 þ P3ðrÞa0

P1ðrÞblinðrÞ dr: (64)

The polynomials P2 and P3 are defined in Eqs. (19) and
(20). The component blin denotes the linear solution pre-
sented in Eqs. (24), (37), and (53) for null, positive, and
negative cosmological constant, respectively.

With the result in Eq. (63), the general forms for A and B
are

AðrÞ ¼ A0ðrÞ½1þ �aðrÞ� þOð�2Þ; (65)

BðrÞ ¼ A0ðrÞ½1þ CblinðrÞ þ �b1ðrÞ� þOð�2Þ: (66)

where A0 is presented in Eq. (14). In Eq. (66), the constant
C was redefined to absorb a � term. We have effectively
two deformation parameters: C, assuming values in an
open set of the real numbers; and �, such that j�j 
 1 to
make the perturbative expansion meaningful.
We proceed to the specification of the general form of

the perturbation a. We will restrict ourselves to the case of
null�. Extensions to� � 0 are straightforward (but some-
what cumbersome). To ensure that corrections to be intro-
duced do not modify the global proprieties of the solutions
already derived in Sec. III, we require that: (i) a should
be smooth for r � rþ ¼ 2M; (ii) limr!1aðrÞ ! 0; (iii) a
should be bounded.
Boundedness of a ensures that the perturbative approach

is feasible for small enough values of �, as will be dis-
cussed in the following. If the spacetime spatial section is
noncompact, Eq. (25) gives the component gtt ¼ �AðrÞ of
the exact linear metric for r > 2M. Since the perturbation a
is assumed to be bounded, the more general function AðrÞ
in Eq. (65) will remain positive-definite for r > 2M, which
is a necessary condition for the staticity of the geometry. In
the compact case, the linear solution for AðrÞ is valid for
2M< r < rmax, but rmax can be arbitrarily large. A func-
tion aðrÞ which remains bounded with rmax ! 1 ensures
that the more general perturbative AðrÞ is non-negative.
Within these premises, the function aðrÞ can be written in
terms of a set of dimensionless constants fa1; a2; a3; . . .g as
an (convergent) inverse power series in the form:

aðrÞ ¼ X1
n¼1

an

�
M

r

�
n
; (67)

with j�anj 
 1. This latter condition is compatible with
the requirement that the perturbation parameter � must be
small.
The linearity of the perturbative Eq. (17) allow us to

solve it term-by-term. Using the results (63) and (64), the
solution for bðrÞ is given by

b1ðrÞ ¼
X1
n¼1

anbðnÞðrÞ; (68)

where the functions fbðnÞðrÞg are

bðnÞðrÞ ¼ an

�
�ð�1Þnðn2 þ 9nþ 14Þ

�
r�M

r

�
2
B

�
�
� r

r�M
; nþ 2; 1� n

�
þ ð2nþ 7Þ

�
M

r

�
n
�
;

(69)
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with B in Eq. (69) being the incomplete beta function,
according to the notation in Ref. [25]. To illustrate the
result, the following shows the first few functions in fbðnÞg:

bð1ÞðrÞ ¼ a1

�
24r2 � 36Mrþ 9M2

Mr
þ 24

�
r�M

M

�
2

� ln

�
r�M

r

��
; (70)

bð2ÞðrÞ ¼ a2

�
108r3 � 162Mr2 þ 36M2rþ 11M3

Mr2

þ 108

�
r�M

M

�
2
ln

�
r�M

r

��
; (71)

bð3ÞðrÞ¼a3

�
300r4�450Mr3þ100M2r2þ25M3rþ13M4

Mr3

þ300

�
r�M

M

�
2
ln

�
r�M

r

��
;

..

.

(72)

Although the series in Eq. (67) is assumed to be con-
vergent, it is not obvious that the sum in Eq. (69) should
also converge. But it indeed does, as can be seen taking the
limit of large n. We have in this limit

lim
n!1

bðnþ1Þ
bðnÞ

¼ anþ1

an

M

r
<

1

2

anþ1

an
< 1; (73)

which is a sufficient condition for convergence.
We finally point that, as required when Eq. (67) was

proposed, the derived perturbation functions a and b1 do
not alter the causal and asymptotic characteristics of the
linear exact function derived in the previous section.

V. CONCLUSIONS AND FURTHER COMMENTS

In this work, we have shown that the vacuum spheri-
cally symmetric geometries, Minkowski, Schwarzschild,
de Sitter, Schwarzschild–de Sitter, anti-de Sitter and
Schwarzschild–anti-de Sitter, can be isotropically de-
formed to take into account the existence of some material
content. Even considering linear deformations, in the sense
that the physical quantity ½T�

� � is strictly linear in �, we
have obtained a zoo of geometries containing usual or
exotic astronomical objects with different asymptotic
behaviors.

In particular, when considering linear deformations of
the Minkowski solution (� ¼ 0 and M ¼ 0), we have
obtained spatially homogeneous and isotropic universes
which are spatially closed (Einstein universe) and open,
for negative and positive values of the deformation pa-
rameter (�, which in Sec. III is included in D, with
signð�Þ¼ signðDÞ and, in Sec. III A 1, signð�Þ� signðKÞ),
respectively. It is well known that, usually in order to
consider those models, a cosmological constant is needed.

Nevertheless, in this case the cosmological constant is not
appearing through the Einstein equations, but it is part of
the fluid related to the deformation.
The deformation of a Schwarzschild geometry could

lead to a spacetime where a black hole is in a noncompact
universe or two black holes, the original one and the
reflected one, in a compact universe, depending on the
sign of C (which is the same that the sign of �). About
this second solution, it must be pointed out that we have
been able to obtain a closed structure with two black holes,
because the deformation implies that we are no longer
considering a vacuum background where Birkhoff’s theo-
rem holds (as studied in Ref. [31]).
We have also shown that both de Sitter and

Schwarzschild–de Sitter spacetimes can be smoothly de-
formed into a geometry which can be interpreted to de-
scribe a wormhole-like structure in an asymptotically
de Sitter universe if C< 0. Such a wormhole would con-
sistently be supported by a material content, originated by
the deformation, which violates the null energy condition
on and around its throat.
The deformation of the anti-de Sitter geometry leads to a

spacetime which asymptotically behaves as an anti-de
Sitter space with a deficit or excess of a solid angle, or
a compact static universe, depending on the value of C. A
black hole should be considered in those geometries when
one is deforming a Schwarzschild–anti-de Sitter space.
The above mentioned spacetimes which show the pres-

ence of black holes are examples of structures in nonvac-
uum spacetimes which are in equilibrium with their
environment. We have noted that in all the studied cases,
the fluid originated by the deformation is such that its
equation-of-state parameter is equal to minus one in the
black hole Killing horizon. Therefore, we have hypothe-
sized a nonaccretion condition, in some sense inspired in
Refs. [21,22], which state that a fluid which behaves as a
cosmological constant on the black hole horizon would not
be accreted by it. It must be emphasized that this seems to
be a sufficient but not necessary condition in order to have
no accretion, at least in principle.
All the geometries obtained consistently reduce to the

vacuum cases when C ! 0. The material content origi-
nated by the deformation seems to have complicated func-
tional forms in some of the considered backgrounds.
Nevertheless, as we have seen in some cases, the energy
densities and pressures can be interpreted as resulting from
the sum of two or more fluids with simpler forms.
On the other hand, we have also briefly considered the

application of the deformation formalism relaxing the
strict isotropy constraint. As we have shown, in this case
additional specifications are necessary to obtain unique
solutions. We have considered possible choices of the
perturbation based on physical grounds. Nevertheless, it
must be pointed out that this is a powerful formalism which
could provide us with new interesting solutions.
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Moreover, although isotropy is the key point in the
present work, extensions of usual solutions in general
relativity subjected to other constraints can be explored
within the same approach. For example, a constraint equa-
tion in the form pr ¼ wr� with a constant value of wr

admits as an exact linear solution (with � ¼ 0)

AðrÞ ¼ 1� 2M

r
; (74)

BðrÞ ¼ 1� 2M

r
þ �

r
ðr� 2MÞ�1=wr : (75)

A rich set of structures can be obtained for the different
values of wr taken. This constraint could be relevant in
physical scenarios.
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