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We design a quantum simulator for the Majorana equation, a non-Hamiltonian relativistic wave
equation that might describe neutrinos and other exotic particles beyond the standard model. The
simulation demands the implementation of charge conjugation, an unphysical operation that opens
a new front in quantum simulations, including other discrete symmetries as complex conjugation
and time reversal. Furthermore, we describe how to implement this general method in trapped ions.

A quantum simulator is a device engineered to repro-
duce the properties of an ideal quantum model. This
still-emerging topical area has generated a remarkable
exchange of scientific knowledge between apparently un-
connected subfields of physics. In terms of applications,
it allows for the study of quantum systems that can-
not be efficiently simulated on classical computers [1].
While a quantum computer would also implement a uni-
versal quantum simulator [2], only particular systems
have been simulated up to now using dedicated quan-
tum simulators [3]. Still, there is a wealth of successful
cases, such as spin models [4, 5], quantum chemistry [6]
and quantum phase transitions [7]. The quantum simu-
lation of fermionic systems [8] and relativistic quantum
physics have also attracted recent attention, reproduc-
ing dynamics and effects currently out of experimental
reach. Examples include black holes in Bose-Einstein
condensates [9], quantum field theories [10, 11] and re-
cent quantum simulations of relativistic quantum effects
as Zitterbewegung, Klein paradox and interacting rela-
tivistic particles [12–16] in trapped ions.

In this paper, we show how the Majorana equation [17]
can be simulated in an analog quantum simulator, hav-
ing as a key requirement the implementation of complex
conjugation of the wavefunction. In this manner, we are
able to propose this and other unphysical operations such
as charge conjugation and time reversal, constituting a
novel toolbox of accessible quantum operations in the
general frame of quantum simulations. While quantum
simulators may soon realize calculations impossible for
classical computers, we show here the possibility of im-
plementing quantum dynamics that are impossible for
our quantum world.

The Majorana equation is a relativistic wave equation
for fermions where the mass term contains the charge
conjugate of the spinor, ψc,

i~∂/ψ = mcψc. (1)

Here, ∂/ = γµ∂µ and γµ are the Dirac matrices [18], while

the non-Hamiltonian character stems from the simulta-
neous presence of ψ and ψc. The significance of the Ma-
jorana equation rests on the fact that it can be derived
from first principles in a similar fashion as the Dirac equa-
tion [17, 19]. Both wave equations are Lorentz invariant
but the former preserves helicity and does not admit sta-
tionary solutions. The Majorana equation is considered
a possible model [20] for describing exotic particles in
supersymmetric theories –photinos and gluinos–, or in
grand unified theories, as is the case of neutrinos. In-
deed, the discussion of whether neutrinos are Dirac or
Majorana particles still remains open [21]. Nevertheless,
despite the similar naming, this work is neither related
to the Majorana fermions (modes) in many-body sys-
tems [22, 23], nor to the Majorana fermions (spinors) in
the Dirac equation [20, 24].

In order to simulate the Majorana equation, we have to
solve a fundamental problem: the physical implementa-
tion of antilinear and antiunitary operations in a quan-
tum simulator. Here, we introduce a mapping [25] by
which complex conjugation, an unphysical operation, be-
comes a unitary operation acting on an enlarged Hilbert
space. The mapping works in arbitrary dimensions and
can be immediately applied on different experimental se-
tups. We show how to simulate the Majorana equation
in 1+1 dimensions and other unphysical operations us-
ing two trapped ions. We also give a recipe for measuring
observables and a roadmap towards more general scenar-
ios. In this sense, this work provides a novel toolbox for
quantum simulations.

There are three discrete symmetries [26] which are cen-
tral to quantum mechanics and our understanding of
particles, fields and their interactions: parity, P, time
reversal, T , and charge conjugation, C. None of these
operations can be carried out in the real world: P in-
volves a global change of physical space, while C and
T are antiunitaries. However, there is no apparent fun-
damental restriction for implementing them in physical
systems that simulate quantum mechanics. We will fo-
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FIG. 1. Diagram showing the different steps involved in the quantum simulation of unphysical operations in 1+1 dimensions.

cus on the study of antiunitary operations, which can be
decomposed into a product of a unitary, UC or UT , and
complex conjugation, Kψ = ψ∗. We consider the map-
ping of the quantum states of an n-dimensional complex
Hilbert space, Cn, onto a real Hilbert space [25], R2n,

ψ ∈ Cn → Ψ =
1

2

(
ψ + ψ∗

i(ψ∗ − ψ)

)
∈ R2n. (2)

This mapping can be implemented by means of an auxil-
iary two-level system, such that R2n ∈ H2 ⊗Hn. In this
manner, the complex conjugation of the simulated state
becomes a local unitary VK acting solely on the ancillary
space, Kψ = ψ∗ → VKΨ = (σz⊗11)Ψ, and thus physically
implementable for a wavefunction of arbitrary dimen-
sions. Furthermore, unitaries and observables can also be
mapped onto the real space, O → Θ = 11⊗Or− iσy⊗Oi,
where Or = 1

2 (O + KOK) and Oi = − i
2 (O − KOK),

preserving unitarity and Hermiticity. The proposed sim-
ulator also accommodates the antiunitary operations C =
UCK and T = UT K. To this end, we have to choose a
particular representation that fixes the unitaries UC and
UT , as will be shown below.

We possess now the basic tools to simulate the Majo-
rana equation (1). The expression for the charge con-
jugate spinor is given by ψc = Wγ0Kψ, with W a uni-
tary matrix satisfying W−1γµW = − (γµ)

T
. We illus-

trate now the proposed quantum simulation with the case
of 1+1 dimensions. Here, a suitable representation of
charge conjugation is ψc = iσyσzψ

∗, that is W = iσy,
and the Majorana equation reads

i~∂tψ = cσxpxψ − imc2σyψ∗, (3)

where px = −i~∂x is the momentum operator. Note that
Eq. (3) is not Hamiltonian, (i~∂tψ 6= Hψ). This is due
to the presence of a complex conjugate operation in the
right-hand side of Eq. (3), which is not a linear Hermitian
operator. Surprisingly, through our mapping (2),

(
ψ1

ψ2

)
∈ C2 → Ψ =


ψr1
ψr2
ψi1
ψi2

 ∈ R4, (4)

the Majorana equation for a complex spinor becomes a
3+1 Dirac equation with dimensional reduction, py, pz =
0, and a four-component real bispinor

i~∂tΨ =
[
c(11⊗ σx)px −mc2σx ⊗ σy

]
Ψ. (5)

Here, the dynamics preserves the reality of the bispinor
Ψ and cannot be reduced to a single 1+1 Dirac particle.
In general, the complex-to-real map in arbitrary dimen-
sions transforms a Majorana equation into a higher di-
mensional Dirac equation [27]. Since Eq. (5) is a Hamilto-
nian equation, it can be simulated in a quantum system.

The mapping of wavefunctions into larger spinors also
allows us to explore exotic symmetries and unphysical op-
erations, otherwise impossible in nature. From Eqs. (3),
(4), and (5), for the 1+1 dimensional case, we can deduce
that charge conjugation is implemented in the enlarged
space via the unitary operation VC

ψc = Cψ = UCKψ → VCΨ = −(σz ⊗ σx)Ψ. (6)

We can do something similar with time reversal, defined
as the change t → (−t). In this case, we expect [19]
i~∂τψ′(τ) = Hψ′(τ), where the time variable τ = −t
and the modified spinor ψ′(τ) = T ψ(t). In order to pre-
serve scalar products and distances, the time reversal
operator must be an anti-unitary operator and thus de-
composable as the product T = UT K. In 1 + 1 dimen-
sions, imposing that the Hamiltonian be invariant under
time reversal, T −1HT , implies that the unitary satisfies
U−1
T (iσx∂x)UT = −iσx∂x, with a possible choice being
UT = σz. In other words, in the enlarged simulation space

T ψ = UT Kψ → VT Ψ = (σz ⊗ σz)Ψ. (7)

See Fig. 1 for a scheme of the simulated symmetries. As
mentioned before, quantum simulations of unphysical op-
erations can be straightforwardly extended to higher di-
mensions. In this sense, Eqs. (6) and (7) will be valid for
wave functions ψ of dimension d as long as we consider
the complex conjugation of an arbitrary wavefunction as
VKΨ = (σz ⊗ 11d)Ψ.

The proposed protocol for implementing unphysical
operations onto a physical setup allows us to deal with
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situations that are, otherwise, intractable wih conven-
tional quantum simulations. To exemplify the value of
this novel building block in the quantum simulation tool-
box, we consider the case of an advanced experimental
quantum simulation, impossible to reproduce with classi-
cal computers. We assume that, after a certain evolution
time, it is crucial to realize an unphysical operation such
as charge conjugate or time reversal, before continuing
the unitary (physical) evolution. With existing tools in
quantum simulations, we would need to stop the dynam-
ics, implement a full quantum tomography of the current
quantum state associated to a huge Hilbert space, apply
the unphysical operation in a classical computer, encode
back the modified quantum state into the experimental
setup, and then to go ahead with the quantum simula-
tion. Clearly, this task would be impossible with classical
resources and would become possible with a suitable im-
plementation of our proposed ideas.

In a recent experiment, the dynamics of a free Dirac
particle was simulated with a single trapped ion [13].
Here, Eq. (5) has a more complex structure requiring
a different setup. Moreover, the encoded Majorana dy-
namics requires a systematic decoding via a suitable re-
verse mapping of observables. We can simulate Eq. (5)
in two trapped ions, with lasers coupling their internal
states and motional degrees of freedom. The kinetic
part, cpx(11 ⊗ σx), is created with a laser tuned to the
blue and red motional sidebands of an electronic transi-
tion [12, 14], focussed on ion 2. The second term, σx⊗σy,
is derived from detuned red and blue sideband excitations
acting on each ion. The Hamiltonian describing this sit-
uation reads

H = ~
ω0

2
σz1 + ~

ω0

2
σz2 + ~νa†a+ ~νrb†b

+ ~Ω
[
(ei(qz1−ω1t+φ1) + ei(qz1−ω

′
1t+φ

′
1))σ+

1 + H.c.
]

+ ~Ω
[
(ei(qz2−ω2t+φ2) + ei(qz2−ω

′
2t+φ

′
2))σ+

2 + H.c.
]

+ ~Ω̃
[
(ei(qz2−ωt+φ) + ei(qz2−ω

′t+φ′))σ+
2 + H.c.

]
.

Here z1,2 = Z ± z
2 are the ion positions, measured from

the center of mass, Z, and relative coordinate, z. The
phases of the lasers φi for i = 1, 2, (φ, φ′), are controlled
to perform the interaction term (kinetic term). The fre-
quencies of the center of mass and stretch mode are given
by ν and νr =

√
3ν, while a†, a, b†, and b, are the corre-

sponding creation and annihilation operators. Finally, Ω
and Ω̃ are the laser Rabi frequencies in the rotating-wave
approximation. With the adequate choice of parameters,

ω1 = ω0 + νr − δ
ω′1 = ω0 − νr + δ
ω2 = ω0 − νr + δ
ω′2 = ω0 + νr − δ,

ω = ω0 − ν
ω′ = ω0 + ν
φ = π
φ′ = 0,

φ1 = π/2
φ′1 = π/2
φ2 = 0
φ′2 = 0,

(8)

the Hamitonian in the interaction picture reads

H = ~ηrΩ(σx ⊗ 11− 11⊗ σy)(b†eiδt + be−iδt),

+~ηΩ̃(11⊗ σx)i(a† − a) (9)

where η ≡ ηr3
1/4 ≡

√
~/4m′ν � 1 is the Lamb-

Dicke parameter and m′ the ion mass. In the limit of
large detuning, we have δ � ηrΩ

√
〈b†b〉, ηΩ̃|〈a† − a〉|

and we recover Eq. (5) with the momentum operator
px = i~(a†−a)/2∆ and the equivalences c = 2η∆Ω̃ and
mc2 = 2~η2

rΩ2/δ with ∆ =
√

~/4m′ν. Introducing the

ratio γ = |mc2/〈cpx〉|, with γ = 2(ηrΩ/δ)2

|〈i(a†−a)〉|(ηΩ̃/δ)
, we see it

is possible to tune the numerator and denominator inde-
pendently so as to preserve the dispersive regime, while
exploring simultaneously the range from γ ' 0 (ultrarel-
ativistic limit) to γ →∞ (nonrelativistic limit).

A relevant feature of the Majorana equation in 3+1 di-
mensions is the conservation of helicity. A reminiscent of
the latter in 1+1 dimensions is the observable called here-
after as pseudo-helicity Σ = σxpx. This quantity is con-
served in the 1+1 Majorana dynamics of Eq. (3) but not
in the 1+1 Dirac equation. We will use this observable
to illustrate measurements on the Majorana wavefunc-
tion. The mapping for operators can be simplified if we
are only interested in expectation values. Reconstructing
the complex spinor with the non-square matrix ψ = MΨ
and M =

(
11 i11

)
, associated with Eqs. (4) and (5), we

have 〈O〉ψ = 〈ψ|O|ψ〉 = 〈Ψ|M†OM |Ψ〉 =: 〈Õ〉Ψ. There-
fore, to obtain the pseudo-helicity Σ, we have to measure

Σ̃ = M†σxpx M = (11⊗ σx − σy ⊗ σx)⊗ px (10)

in the enlarged simulation space. In ion-trap experi-
ments, we can use laser pulses to map information about
the pseudo-helicity onto the internal states. The appli-
cation of a state-dependent displacement operation on
ion 2, U2 = exp(−ik(11 ⊗ σy) ⊗ px/2), generated by res-
onant blue and red sidebands, followed by a measure-
ment of 11 ⊗ σz, is equivalent to measuring the observ-
able [13] A(k) = cos(k px)(11 ⊗ σz) + sin(k px)(11 ⊗ σx).
Here, k is proportional to the probe time tprobe. Note
that d

dk 〈A(k)〉
∣∣
k=0
∝ 〈(11⊗σx)⊗px〉. Therefore, the first

term in (10) can be measured by applying a short probe
pulse to the ions and measuring the initial slope of the
observable A(k). To measure the second term in Eq. (10),
we apply the operation U1 = exp(−ik(σx ⊗ 11) ⊗ px/2),
and measure the spin correlation σz⊗σx. We have, then,
d
dk 〈σz ⊗ σx〉

∣∣
k=0

= 2〈(σy ⊗ σx)⊗ px〉.
So far, we have presented a complete toolbox of un-

physical operations, C, T , and K. We can combine all
these tools to study dynamical properties of the trans-
formed wavefunctions. To exemplify the kind of experi-
ments that become available, we have studied the scat-
tering of wavepackets against a linearly growing poten-
tial, V (x) = αx, with conventional numerical tools. It
is known that repulsive potentials can be penetrated by
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FIG. 2. Scattering of a fermion against a linearly growing potential (inset). (a) Ordinary Klein process (b) At an instant of
time we apply the time reversal operator T causing the particle to retrace its own trajectory. (c) Similar to (b) but now we
apply charge conjugation, converting the particle in its antiparticle. (d) Scattering of a Majorana particle, which propagates
through the potential. Parameters are m = 0.5, c = 1 and V (x) = x, in dimensionless units.

Dirac particles [18], due to Klein tunneling [14, 15]. This
is shown in Fig. 2a, where a Dirac particle splits into a
fraction of a particle, that bounces back, and a large an-
tiparticle component that penetrates the barrier. This
numerical experiment has been combined with the dis-
crete symmetries and the Majorana equation. In Fig. 2b
we apply the time reversal operation after the particle
has entered the barrier: all momenta are reversed and
the wavepacket is refocused, tracing back exactly its tra-
jectory. In Fig. 2c we apply charge conjugation, chang-
ing the sign of the charge and turning a repulsive elec-
tric potential into an attractive one, which can be easily
penetrated by the antiparticle. In Fig. 2d, we show the
scattering of a Majorana particle. While there are no
plane wave solutions in the Majorana equation, we can
still see a wavepacket penetrating the barrier, showing a
counter-intuitive insensitivity to the presence of it.

The previous implementation of discrete symmetries is
valid both for Majorana and Dirac equations. Equally
interesting is the possibility of combining both Dirac and
Majorana mass terms in the same equation [20], i~∂/ψ =
mMcψc + mDcψ, which still requires only two ions. It
also becomes feasible to have CP violating phases in the
Dirac mass term, mD exp(iθγ5). Furthermore, we could
study the dynamics of coupled Majorana neutrinos with
a term M̄ψc, where M̄ is now a matrix and ψ = ψ(x1, x2)
is the combination of two such particles, simulated with
three ions and two vibrational modes.

In summary, we have introduced a general method to
implement quantum simulations of unphysical operations
and non-Hamiltonian dynamics, such as the Majorana
equation, in a Hamiltonian system.
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