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Residual entanglement of accelerated fermions is not nonlocal
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We analyze the operational meaning of the residual entanglement in noninertial fermionic systems in terms
of the achievable violation of the Clauser-Horne-Shimony-Holt (CHSH) inequality. We demonstrate that the
quantum correlations of fermions, which were previously found to survive in the infinite acceleration limit,
cannot be considered to be nonlocal. The entanglement shared by an inertial and an accelerated observer cannot
be utilized for the violation of the CHSH inequality in case of high accelerations. Our results are shown to extend

beyond the single-mode approximation commonly used in the literature.
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I. INTRODUCTION

The extension of quantum information theory to relativistic
settings has been a thriving area of research for some time
[1-9]. The effects of relativistic motion on entanglement and
quantum information protocols have been studied extensively
for inertial observers [2-5], as well as for accelerated systems
[1,6-9]. However, while the effects on entanglement have been
analyzed in detail for both cases, the implications for tests of
nonlocality via the violation of Bell inequalities have received
treatment only for the case of inertial motion [2—4]. In the
other situation, i.e., if (at least) one of the observers sharing a
bipartite entangled state is moving with uniform acceleration,
two scenarios naturally arise. The common quantum state can
be entangled with respect to bosonic or, on the other hand,
fermionic modes. The entanglement degradation of such a
two-mode state by accelerated motion, commonly attributed to
the thermalization due to the Unruh effect [10], has been inves-
tigated for bosons [8,9] and fermions [1,6,8], respectively. The
distinguishing feature of the fermionic from the bosonic case
in these results is found to be a nonzero residual entanglement
between the (anti)fermionic modes in the infinite acceleration
limit. The same result has been obtained for the Hawking effect
in eternal black holes [11]. Moreover, the remaining entangle-
ment cannot be attributed to bound entanglement, since, even
in the cases where bound entanglement can feature in principle,
the entanglement persists even when measured by the negativ-
ity, a measure which only detects distillable entanglement [12].

It is the aim of this paper to shed light on this issue
and assign operational meaning to the residual fermionic
entanglement by applying the criterion introduced in Ref. [13]
to quantify the maximally possible violation of the Clauser-
Horne-Shimony-Holt (CHSH) inequality [14]. We find that
the quantum correlations remaining in the infinite acceleration
limit cannot be used by the observers to demonstrate quantum
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nonlocality, showing that acceleration effectively degrades
correlations even in the fermionic case.

II. SETTING

We employ a scheme of two observers, Alice and
(Anti)Rob, one of which, Alice, is inertial (we can assume
without loss of generality that Alice is at rest), while the other
one, (Anti)Rob, is uniformly accelerated, in complete analogy
to the setup used in Ref. [6] (see Fig. 1). To describe the point
of view of an accelerated observer we introduce the so-called
Rindler coordinates (1, x ), which are the proper coordinates
of an accelerated observer moving with fixed acceleration a.
These coordinates relate to Minkowskian coordinates (¢,x) by

. an an
ct = xsinh{ — |, x = xcosh|—). @))
c c

From (1) it can be seen that for constant x these coordinates
describe hyperbolic trajectories in space-time, which asymp-
totically approach the light cone.

Observers eternally in uniform acceleration are always
restricted to either region I or II of the space-time, i.e., the light
cone constitutes an effective event horizon for these observers.
A quick inspection reveals that the Rindler coordinates defined
in (1) do not cover the whole Minkowski space-time. Instead
these coordinates only cover the right wedge (region I in
Fig. 1). To cover the complete Minkowski space-time we
need three more sets of coordinates, ct = —x sinh(%), and
x = —x cosh(%?), for region II, corresponding to an observer
accelerating leftward with regard to the Minkowskian origin,
as well as ¢t = £& cosh(“F), x = £& sinh(%") for regions F
and P. For both relevant regions (I and II), the coordinates
(x,n) take values in the whole domain (—o0, 4+ c0), thus
admitting completely independent procedures of canonical
field quantization.

We can now expand the field in terms of a complete set
of solutions of the Dirac equation in Minkowski coordinates
(iy*9, +m)p =0, or, instead, in terms of a complete set
of solutions of the Dirac equation in Rindler coordinates for
regions (I and II), i.e., [iy*(9, — I'y) + m]¢ = 0, where y*
are the Dirac-Pauli matrices and I', is the spinorial affine
connection.

©2011 American Physical Society
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n = const.
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FIG. 1. The uniformly accelerated observers Rob and AntiRob
are confined to the Rindler wedges I (|| < x) and II (|| < —x),
respectively, which are causally disconnected from each other. Their
worldlines are hyperbolas, which correspond to lines of constant
X = c%/a, where a is their proper acceleration and 0 < x < oo.

Hence, the field operator ¢ can be expressed as

® = Nm Z(Ck,MultM + d]j,M Ui m)
k

= Mr Z(Cj,l”}_,l + d;,lu;l + Cj.lI”;tn + d;,IIu;II)’ 2)
J

where Ny, Nr are normalization constants. The label u,fM
denotes positive and negative energy solutions (particles and
antiparticles) with regard to the Killing vector field 9,, whereas
u,fl and u,fn are the positive and negative frequency solutions
of the Dirac equation in Rindler coordinates with regard to
the corresponding timelike Killing vector field in regions I
and II, respectively. By ¢; 5,d; s with ¥ = M,L,II we denote
the Minkowski and Rindler particle and antiparticle operators,
satisfying the usual anticommutation relations. The label % is
a multilabel including frequency and spin k = {2,s}, where s
is the component of the spin along the quantization axis.

The annihilation operators ¢ m,dk m define the Minkowski
vacuum [0)y which must satisfy ¢ m|0)m = diem|0)m = 0,
Vk. In the same fashion c; 5,d; 5, define the Rindler vacua in
regions ¥ = [,1L.

From (2) we extract the transformation between the
Minkowski and Rindler modes

+ 1o+ - no+ mo-
Ujy = Z [y + Bty + oy + Bt ] 3)
k

The Bogoliubov coefficients that relate both sets of modes
are given by the inner product (uy,u;)= [ d3xu,tuj and
are obtained after some elementary but lengthy algebra (see
Refs. [6,8,15,16]).

For fixed acceleration, combinations of Minkowski modes
can be found, which transform into monochromatic Rindler
modes [6,8]. These modes, which share the same vacuum state
as the standard monochromatic Minkowski modes, are called
Unruh modes, and their associated annihilation operators are

Ck,R = (COS FeCr1 — sin I"kd]ir’H), (48.)

Crr = (cos rcyn — sinryd,] ), (4b)
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where tanr, = e /4 We will go beyond the single-mode

approximation [7] and consider a general Unruh mode in the
same fashion as in Ref. [8], i.e., an arbitrary combination of
the two independent kinds of Unruh modes

chu=quCh ®IR) + gr(lL ® CL o). (5)

The associated single-particle state is obtained by applying
the creation operator (5) to the vacuum. As is common-
place [1,6,8], we will work in the Grassmann scalar case,
which is the simplest case that preserves the fundamental
Dirac characteristics. With the shorthand notation |ijkl)q =
|iQ)I+ ljo)r |kg)ﬁ|lg)l_l, the Unruh vacuum state of mode €2 can
be expressed as

10g)u = cos? rg|0000)g — sinrg cos ro|0110)g

+ sinrg cosrg|1001)q — sin® ro|1111)g  (6)

(see Ref. [6]). Likewise, the particle and antiparticle states of
Unruh mode €2 in the Rindler basis are found to be

o)l = qr(cosrq|1000)q — sinrg|1110)q)
4+ q1(cosre|0010) g + sinrg|1011)g),

I1a)g = qr(cos rql0100)q + sinrq|1101)q)
—i—qL(cos VQ|OOO])Q — SinrQ|01]1)Q).

III. ENTANGLEMENT AND NONLOCALITY

Following the same notation as in Ref. [6] we are endowing
the fermionic Fock space with a particular tensor product struc-
ture. This can be problematic when working with entanglement
measures, as shown in Ref. [17]. However, our procedure
is free from any ambiguity because we correctly treat the
tensor product structure and anticommutation relations when
we compute expectation values.

Let us then consider the following initial states

L
V2

where the tensor product structure refers to two distinct inertial
observers, Alice and Bob, in Minkowski space-time. We have
explicitly assumed here that Bob’s mode is a positive (i) or
negative frequency (¢ _) Unruh mode, while Alice’s mode
(labeled by the subscript “A”) can be either a Minkowski
or Unruh mode of positive (¢ = “+”) or negative frequency
(e = “—"), respectively. Let us now replace the second ob-
server Bob by the previously discussed accelerated observers
Rob or AntiRob. Due to their noninertial motion, access to
Minkowski space is limited. In particular, Rob is causally dis-
connected from region II, while AntiRob cannot interact with
region I, which implies tracing over the unaccessible space-
time regions. We additionally make the assumption that each
observer is concerned only with the (positive or negative
frequency) mode originally considered. For each of the initial
states we thus obtain four different reduced two-qubit density
matrices, computed in Ref. [6]. Tracing over region II and the
antiparticle sector (i.e., the negative frequency mode) of the

¥2) = —=(10,)al0)u + [1)4110){), ®)
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state ¥ in Eq. (8) results in
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cos?ro 0 0 g} cosrg
110 sin? rg 0 0
Pars =5 2 2 : ©
210 0 lgL|” cos” rq 0
greosrg 0 0 lgr|* + lgL|* sin® rq

Likewise, the reduced state ,oXR ., for AntiRob, when he is only able to detect positive frequency modes is obtained by exchanging
qr and gy, in Eq. (9). Similarly, the reduced state for Alice and Rob, when Rob’s detector registers only antiparticles is given by

cos? ro 0
p :1 0 sin? rq
AR="9210 —qg sinrg
0 0

and the corresponding state pjﬁ_ for AntiRob is obtained
from Eq. (10) by the interchange of g and —gg. Analogously,
this procedure can be repeated for the initial state y_ [see
(8)], where the roles of positive and negative frequency modes
are exchanged in the reduced density matrices, €.g., o4, i8
related to p1, by a simple sign change of g, . For these states
a tradeoff in entanglement (in terms of the negativity) between
the particle and antiparticle sector has been demonstrated
in Ref. [6]. We illustrate this behavior by studying another
common entanglement measure, the concurrence [18]. The
concurrence of a two-qubit density matrix p is given by
Clp] = max[0,/A] — ~/A2 — /A3 — /4], where A; are the
eigenvalues of the matrix p(o, ® 0,)p* (02 ® 0,) in decreasing
order, o, is the second Pauli matrix, and the asterisk denotes
complex conjugation. As can be seen in Fig. 2, a change in
entanglement in the particle sector of Alice and (Anti)Rob for
increasing rq is accompanied by an opposite change in the
corresponding antiparticle sector, and vice versa.

C
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FIG. 2. (Color online) Concurrence of the reduced states p .,
(blue/gray solid), pi,_ (blue/gray dashed), p:\rl.;, , (red/light gray
dotted-dashed), pXR_ (red/light gray dashed) for gz = 0.85. Entan-
glement decreases in the particle sector, which is accompanied by
(overall) increases of entanglement in the antiparticle sector. In the

infinite acceleration limit rq — 7, entanglement only vanishes for
certain special cases.

0 0
—qj sinrg 0 (10)
lgi|* + |qr|* cos® ro 0 ’
0 lgr|?sin® rg

To better understand the surviving correlations in the the
limit ro — 7 we want to infer how the entanglement of the
reduced states can be utilized by the observers in an experiment
to test Bell inequalities, in particular, the CHSH inequality
[14], which is a suitable inequality for two qubits to test local-

realistic theories. Any such theory must satisfy the bound

(Beush) p| < 2, (11)

where Begsu=a-c®@((b+b)-c+a -0 b-V)-o,
a,a’.b, and b’ are unit vectors in R3, and o is the vector
of Pauli matrices. It is known that for some choices of
a,a’,b,b’ inequality (11) can be violated by certain states p
up to the value 2+/2. For a general two-qubit state Ref. [13]
provides a criterion for the maximally possible violation of
(11). The maximally possible value (Bp,x), of the Bell-CHSH
expectation value [left-hand side of (11)] for a given state p is
determined by

(Bmax)p =2/ 11 + ua, (12)

where i,y are the two largest eigenvalues of U(p) =
T)T,. The matrix T = (t;), where f;; = Tr[po; ® 0], is
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FIG. 3. (Color online) Maximal Bell-CHSH parameter (8B,,.x) for
the states i, + (blue solid, second from the top), 05z (blue dashed),
0Oz, (red dotted-dashed), o (red dashed) for gz = 0.85,and p;,,
(purple solid, topmost) for gg = 1. No nonlocality remains in any of

T

the reduced states in the limit ro — 7.
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the so-called correlation matrix of the generalized Bloch
decomposition of the density operator p. For the reduced state
(9) we find

|qR|2coser 0 0
Upl..)=10 lgr|? cos® r 0
AR+ R Q
0 0 |qR|4cos4rQ

(13)

Since 0 < rq < % and |gg| < 1, the first two identical eigen-
values |gg|? cos? rq are always larger than the third eigenvalue.
From (12) we thus obtain

(Buax) o, = 2/2Iqr| cos rg. (14)

Similarly, the maximally possible value of the Bell-CHSH
parameter for the antiparticle sector of Alice and Rob is

(Bumax) 1, = 2v2lqy | sinrq. (15)

while the corresponding results for AntiRob are obtained by
exchanging gr and g, in (14) and (15). For the initial state 1/_
the results of the particle and antiparticle sectors are simply
switched. As can be instantly seen from (14) and (15), the
bound for local realism [right-hand side of (11)] cannot be
surpassed in the infinite acceleration limit ro — %. In fact, for
the initial state v, the entanglement in the antiparticle sector
cannot violate (11) for any choice of gg,qy, i.e., (Bmax) ,+

2 and (Bnax) e < 2, and vice versa for the initial state _.
Moreover, the CHSH inequality can only ever be violated in the
particle sector of either Alice and Rob, or Alice and AntiRob,
but never at the same time by both, i.e.,

((Bmax) pt, + (Bmax) o1, )/2 < 2. (16)

This can be easily proven by inserting (14) and its counterpart
for AntiRob into (16). Because the left-hand side of (16) is
strictly positive, we can consider the square of this expression
to get 2cos®ro(1 +2|grllgr]) < 2(1 4 2|ggllg.]). Finally,
the absolute values can be parametrized as |gg| = cosa and
lgr] = sine, with 0 < o < % and we get 2(1 + sin2«) < 4,
which, in turn, implies (16). Again, the analogous inequality
holds for the antiparticle sector if the state _ is considered.

This exclusiveness of nonlocality matches the physical
requirements to test a Bell inequality in the accelerated
frame. Both observers are required to perform measurements
independently of each other and communicate their results.
However, in order for (Anti)Rob to be able to receive Alice’s
measurement results, she has to send these results to (Anti)Rob
while still being inside region I (II). Assuming Alice needs
a finite time for this procedure, it is impossible for her
to satisfy this requirement for Rob as well as AntiRob
simultaneously.

Pk S

"
Par+
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Another requirement for such a test of local realism is
the ability to use different measurement bases. We assume
this to be possible by swapping entanglement to another
system, e.g. photons. This can be thought of as a device which
produces photons of horizontal polarization when no fermion
is incident, while it rotates the photon polarization by 7, when
a (anti)fermion interacts with the apparatus.

IV. CONCLUSIONS

We have provided an operational explanation for the sur-
viving fermionic entanglement in infinitely accelerated frames,
bridging the gap to the bosonic case, where no entanglement
remains in this limit. We have shown that in the fermionic
case, the surviving entanglement cannot be used to violate
the CHSH inequality, which is the optimal Bell inequality for
this situation [19]. Therefore, no quantum information tasks
using these correlations can outperform states with appropriate
classical correlations. This claim holds if the observers are
not allowed to manipulate the final state by local operations
or classical communication (LOCC). In particular, maximally
entangled, nonlocal states could be distilled from the residual
entanglement, if several copies of the state were supplied
and the observers could freely communicate. However, this
communication is severely limited in the infinite acceleration
limit, such that any schemes of recurring local operations
(see, e.g., Ref. [20]) based on the classically transmitted
measurement outcomes are excluded.

This is especially important not only for the results in the
infinite acceleration limit but also if we identify this limit with
a black hole situation where an observer is freely falling and
another observer is resting arbitrarily close to the event horizon
(see Ref. [11]). Alice, when falling into a black hole, cannot
communicate on a quantum information level with an observer
who is resting near the horizon.

We have further found that the choice of Unruh mode
(i.e., gg and g ) crucially influences which of the accelerated
observers, Rob or AntiRob, can in principle test the nonlocality
of the initial state.

Note added. Recently, Ref. [21] appeared, in which similar
results, in accordance with this paper, are presented.
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