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I. INTRODUCTION

Understanding entanglement in noninertial frames has
been central to the development of relativistic quantum
information [1–19]. The main aim of this field is to implement
quantum information tasks (such as quantum teleportation)
in relativistic settings. Quantum correlations are an important
resource in most quantum information applications; therefore,
it has been of interest to understand how entanglement can be
degraded [4,5,19–21] or created [22–25] by the presence of
horizons or space-time dynamics.

It is well known that the entanglement between modes of
bosonic and fermionic fields is degraded from the perspective
of observers being uniformly accelerated. Interestingly, en-
tanglement is completely degraded in the infinite-acceleration
limit in the bosonic case while for fermionic fields a finite
amount of entanglement remains in the limit. However, the
reasons for these differences are not completely clear. In
this paper we show that a redistribution of entanglement
between particle and anti-particle modes plays a key role
for the preservation of fermionic field entanglement in the
infinite-acceleration limit.

In our analysis we consider entangled states which involve
particle and antiparticle field modes from the perspective
of inertial observers. Previous studies considered entangled
states involving exclusively particle modes from the inertial
perspective. To study particle and antiparticle entangled states
we develop a generalization of the formalism introduced in
[26] which relates general Unruh and Rindler modes. This
formalism refines the single-mode approximation [1,11] which
has been extensively used in the literature. In particular, we will
consider in our analysis a fermionic maximally entangled state
which has no bosonic analog. This state which is entangled in
the particle-antiparticle degree of freedom can be produced,
for example, in conjugated pair creation or in the production
of Cooper pairs. The analysis of such states is only possible
under the mode transformations we introduce here since the
single approximation [1,11] does not hold in this case.

Considering a more general set of states from the inertial
perspective allowed us to understand that in noninertial frames
entanglement redistributes between particle and antiparticle
modes. This is a somewhat similar effect to that observed in
the inertial case: entanglement redistributes between spin and

*Previously known as Fuentes-Guridi and Fuentes-Schuller.

position degrees of freedom from the perspective of different
inertial observes [27,28]. Interestingly, one can conclude
that femionic entanglement remains finite in the infinite-
acceleration limit due to this redistrubution of entanglement,
which does not occur in the bosonic case. Our results are
in agreement with previous results which show that main
differences in the behavior of entanglement in the bosonic
and fermionic case are due to Fermi-Dirac and Bose-Einstein
statistics, contrary to the idea that the dimension of the Hilbert
played an important role [29].

This paper is organized as follows: In Sec. II we introduce
transformations between Minkowski, Unruh, and Rindler
modes for fermionic fields. This section extends results
from [26] by including antiparticle modes. In Sec. III, we
analyze the entanglement transfer between the particle and
antiparticle sectors in different kinds of maximally entangled
states when one of the observers is uniformly accelerated.
Finally, conclusions and a discussion are presented in Sec. IV.

II. DIRAC FIELD STATES FORM THE PERSPECTIVE OF
UNIFORMLY ACCELERATED OBSERVERS

We consider a Dirac field in 1 + 1 dimensions. The
field can be expressed from the perspective of inertial and
uniformly accelerated observers. In this section we introduce
the transformations which relate the mode operators and
states from both perspectives. Such transformations have been
introduced in [26] for particle states. Here we extend those
results including transformations for antiparticle modes which
will be needed in our analysis.

Minkowski coordinates (t,x) are an appropriate choice
of coordinates to express the field from the perspective for
inertial observers. However, in the uniformly accelerated case
Rindler coordinates (η,χ ) must be employed. The coordinate
transformation is given by

η = atanh

(
t

x

)
, χ =

√
x2 − t2, (1)

where 0 < χ < ∞ and −∞ < η < ∞. The transformation is
defined in two space-time regions |t | < x and x < −|t | called
regions I and II, respectively. The curve χ = 1/a, where a is a
positive constant of dimension inverse length, is the world line
of a uniformly accelerated observer whose proper acceleration
equals a (see Fig. 1). The proper time of this observer is given
by η/a in region I and by −η/a in region II. Note that ∂η is a
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EDUARDO MARTÍN-MARTÍNEZ AND IVETTE FUENTES PHYSICAL REVIEW A 83, 052306 (2011)

FIG. 1. Rindler space-time diagram: Lines of constant position
χ = const. correspond to hyperbolas and all curves of constant η

correspond to straight lines that converge at the origin. A uniformly
accelerated observer Rob travels along a hyperbola constrained to
either region I or region II.

timelike Killing vector in both I and II, and it is future-pointing
in I and past-pointing in II.

The Dirac field φ satisfies the equation {iγ µ(∂µ − �µ) +
m}φ = 0, where γ µ are the Dirac-Pauli matrices and �µ are
spinorial affine connections. The field expansion in terms of
the Minkowski solutions of the Dirac equation is

φ = NM

∑
k

(ck,M u+
k,M + d

†
k,M u−

k,M), (2)

where NM is a normalization constant. The label ± denotes
positive and negative energy solutions (for particles and
antiparticles, respectively) with respect to the Minkowskian
Killing vector field ∂t . The label k is a multilabel including
energy and spin k = {Eω,s}, where s is the component of the
spin on the quantization direction. ck and dk are the particle and
antiparticle operators that satisfy the usual anticommutation
rules

{ck,M,c
†
k′,M} = {dk,M,d

†
k′,M} = δkk′ , (3)

with all other anticommutators vanishing. The Dirac field
operator in terms of Rindler modes (solutions of the Dirac
equation in Rindler coordinates) is given by

φ= NR

∑
j

(cj,Iu
+
j,I + d

†
j,Iu

−
j,I + cj,IIu

+
j,II + d

†
j,IIu

−
j,II), (4)

where NR is again a normalization constant. cj,	,dj,	 with
	 = I,II represent Rindler particle and antiparticle operators.
Note that operators in different regions 	 = I,II do not
commute but anticommute. j = {E
,s ′} is again a multilabel
including all the degrees of freedom. Here u±

k,I and u±
k,II

are the positive and negative frequency solutions of the
Dirac equation in Rindler coordinates with respect to the

Rindler timelike Killing vector field in regions I and II,
respectively. The modes u±

k,I (u±
k,II) do not have support outside

the right (left) Rindler wedge. The annihilation operators
ck,M,dk,M define the Minkowski vacuum |0〉M, which must
satisfy

ck,M|0〉M = dk,M|0〉M = 0, ∀k. (5)

In the same fashion cj,	,dj,	 define the Rindler vacua in
regions 	 = I,II:

cj,	|0〉	 = dj,	 |0〉	 = 0, ∀j,	 = I,II. (6)

The transformation between the Minkowski and Rindler
modes is given by

u+
j,M =

∑
k

[
αI

jku
+
k,I + βI∗

jku
−
k,I + αII

jku
+
k,II + βII∗

jk u−
k,II

]
,

u−
j,M =

∑
k

[
γ I

jku
+
k,I + ηI∗

jku
−
k,I + γ II

jku
+
k,II + ηII∗

jk u−
k,II

]
.

The coefficients which relate both sets of modes are given by
the inner product

(uk,uj ) =
∫

d3x u
†
kuj , (7)

so that the Bogoliubov coefficients yield [26,30,31]

αI
jk = eiθE


1 + i

2
√

πEω

cos r
 δss ′ ,

βI
jk = −eiθE


1 + i

2
√

πEω

sin r
 δss ′ ,

γ I
jk = −βI∗

jk, ηI
jk = αI∗

jk, (8)

αII = (αI)∗, βII = (βI)∗, γ II = (γ I)∗, ηII = (ηI)∗,

where tan r
 = e−πE
 , E
 is the energy of the Rindler mode k,
Eω is the energy of the Minkowski mode j , and θ is a parameter
defined such that it satisfies the condition E
 = m cosh θ and
|k
| = m sinh θ (see [30]). Finally, taking into account that
cj,M = (u+

j,M,φ) and d
†
j,M = (u−

j,M,φ), we find

cj,M =
∑

k

[
αI∗

jkck,I + βI
jkd

†
k,I + αII∗

jk ck,II + βII
jkd

†
k,II

]
,

(9)
d
†
j,M =

∑
k

[
γ I∗

jkck,I + ηI
jkd

†
k,I + γ II∗

jk ck,II + ηII
jkd

†
k,II

]
.

We now consider the transformations between states in
different basis. For this we define an arbitrary element of the
Dirac field Fock basis for each mode as

|Fk〉 = |Fk〉R ⊗ |Fk〉L, (10)

where

|Fk〉R = |n〉+I |m〉−II ,
(11)

|Fk〉L = |p〉−I |q〉+II .
Here the plus and minus signs denote particle and antiparticle,
respectively. It is now convenient to introduce a new basis
for inertial observers which corresponds to a superposition
of Minkowski monochromatic modes. The reason for this is
that the new modes, called Unruh modes [26], and Rindler
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modes have a simple Bogoliubov transformation: each Unruh
mode transforms to a single-frequency Rindler mode. This
transformation is given by

Ck,R = (cos rk ck,I − sin rk d
†
k,II),

Ck,L = (cos rk ck,II − sin rk d
†
k,I),

D
†
k,R = (sin rk ck,I + cos rk d

†
k,II), (12)

D
†
k,L = (sin rk ck,II + cos rk d

†
k,I),

were Ck,R,L and Dk,R,L are the Unruh mode operators.
The corresponding transformation between Minkowski and

Unruh modes are given by

cj,M = Nj

∑
k

[χ∗(Ck,R ⊗ 1L) + χ (1R ⊗ Ck,L)], (13)

d
†
j,M = Nj

∑
k

[χ (D†
k,R ⊗ 1L) + χ∗(1R ⊗ D

†
k,L)], (14)

where

Nj = 1

2
√

πEω

, χ = (1 + i)eiθE
 . (15)

Here we have written the tensor product structure (10)
explicitly.

For massless fields it can be shown [32] that the Unruh
operators have the same form as Eq. (12); however, in this
case tan rk = e−π
/a .

In the massless case, to find the Minkowski vacuum in the
Rindler basis we consider the following ansatz:

|0〉M =
⊗




|0
〉M, (16)

where |0
〉M = |0
〉R ⊗ |0
〉L. We find that

|0
〉R =
∑
n,s

(Fn,
,s |n
,s〉+I |n
,−s〉−II ),

(17)
|0
〉L =

∑
n,s

(Gn,
,s |n
,s〉−I |n
,−s〉+II ),

where the plus and minus labels denote particle and antiparticle
modes, respectively, and s labels the spin. The minus signs on
the spin label in region II show explicitly that spin, as all the
magnitudes which change under time reversal, is opposite in
region I with respect to region II.

We obtain the form of the coefficients Fn,
,s,Gn,
,s for the
vacuum by imposing that the Minkowski vacuum is annihilated
by the particle annihilator for all frequencies and values for
the spin third component.

Since the simplest case that preserves the fundamental
Dirac characteristics corresponds to Grassman scalars, we
study them in what follows. In this case, the Pauli exclusion
principle limits the sums (17) and only the two following terms
contribute:

|0
〉R = F0|0
〉+I |0
〉−II + F1|1
〉+I |1
〉−II ,
(18)

|0
〉L = G0|0
〉−I |0
〉+II + G1|1
〉−I |1
〉+II .

Due to the anticommutation relations we must introduce the
following sign conventions:

|1
〉+I |1
〉−II = c
†

,Id

†

,II|0
〉+I |0
〉−II

= −d
†

,IIc

†

,I|0
〉+I |0
〉−II ,

|1
〉−I |1
〉+II = d
†

,Ic

†

,II|0
〉−I |0
〉+II

= −c
†

,IV d

†

,I|0
〉−I |0
〉+II . (19)

For the case of Grassman scalars [26], after imposing that
cω,M|0
〉M = 0 for all ω we obtain C
,R|0
〉R = C
,L|0
〉L =
0 for all 
. The vacuum state then yields

|0
〉 = (cos r
|0
〉+I |0
〉−II + sin r
|1
〉+I |1
〉−II )

⊗(cos r
|0
〉−I |0
〉+II − sin r
|1
〉−I |1
〉+II ). (20)

Using Eq. (14), we find that this vacuum state also satisfies
dω,M|0
〉M = 0 ∀ω, which is equivalent to D
,R|0
〉R =
D
,L|0
〉L = 0 ∀
. For convenience, we introduce the fol-
lowing compact notation:

|ijkl〉
 ≡ |i
〉+I |j
〉−I |k
〉+II |l
〉−II , (21)

which is slightly different from the one employed in [26]. In
this notation the vacuum state is written as

|0
〉 = cos2 r
|0000〉
 − sin rj cos r
|0110〉

+ sin r
 cos r
|1001〉
 − sin2 r
|1111〉
. (22)

The Minkowskian one-particle state is obtained by applying
the creation operator of particles or antiparticles to the vacuum
state |1j 〉+U = c

†

,U|0〉M, |1j 〉−U = d

†

,U|0〉M, where the Unruh

particle-antiparticle creator is a combination of the two Unruh
operators,

c
†
k,U = qR(C†


,R ⊗ 1L) + qL(1R ⊗ C
†

,L),

(23)
d
†
k,U = pR(D†


,R ⊗ 1L) + pL(1R ⊗ D
†

,L).

Here qR, qL, pR, and pL are complex numbers satisfying
|qR|2 + |qL|2 = 1, |pR|2 + |pL|2 = 1.

The parameters pR,L are not independent of qR,L. We
demand that the Unruh particle and antiparticle operators are
referred to particle and antiparticle modes in the same Rindler
wedges. Therefore to be coherent with a particular election of
qR and qL, we have to choose pL = qR and pR = qL, and so

c
†
k,U = qR(C†


,R ⊗ 1L) + qL(1R ⊗ C
†

,L),

(24)
d
†
k,U = qL(D†


,R ⊗ 1L) + qR(1R ⊗ D
†

,L).

The Unruh L and R field excitations are given by

|1
〉+R = C
†

,R|0
〉R = |1
〉+I |0
〉−II ,

|1
〉+L = C
†

,L|0
〉L = |0
〉−I |1
〉+II ,

|1
〉−R = D
†

,R|0
〉R = |0
〉+I |1
〉−II , (25)

|1
〉−L = D
†

,L|0
〉L = |1
〉−I |0
〉+II

and therefore

|1k〉+U = qR|1
〉+R ⊗ |0
〉L + qL|0
〉R ⊗ |1
〉+L ,
(26)

|1k〉−U = qL|1
〉−R ⊗ |0
〉L + qR|0
〉R ⊗ |1
〉−L .
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In the short notation we have introduced the state reads

|1k〉+U = qR[cos rk|1000〉
 − sin r
|1110〉
]

+qL[cos r
|0010〉
 + sin r
|1011〉
],

|1k〉−U = qL[cos rk|0001〉
 − sin r
|0111〉
]

+qR[cos r
|0100〉
 + sin r
|1101〉
]. (27)

III. PARTICLE AND ANTIPARTICLE ENTANGLEMENT IN
NONINERTIAL FRAMES

Having the expressions for the vacuum and single-particle
states in the Unruh and Rindler bases enables us to analyze
the degradation of entanglement from the perspective of ob-
servers in uniform acceleration. Let us consider the following
maximally entangled states from the inertial perspective:

|�+〉 = 1√
2

(|0ω〉M|0
〉U + |1ω〉σM|1
〉+U), (28)

|�−〉 = 1√
2

(|0ω〉M|0
〉U + |1ω〉σM|1
〉−U), (29)

|�1〉 = 1√
2

(|1ω〉+M|1
〉−U + |1ω〉−M|1
〉+U), (30)

where the modes labeled with U are Grassman Unruh modes
and the label σ = ± denotes particle and antiparticle modes.
The first two states correspond to entangled states with particle
and antiparticle Unruh excitations, respectively. These two
states are analogous to the bosonic state 1√

2
(|0〉M |0〉U +

|1〉M |1〉U ) which is entangled in the occupation number degree
of freedom. The third state has no analog in the neutral
bosonic scenario since in this case the state is entangled in the
particle or antiparticle degree of freedom. Although fermionic
entanglement in noninertial frames has been extensively
studied in the literature [5], states (29) and (30) have not been
considered before.

We consider Alice to be an inertial observer with a detector
sensitive to ω modes while her partner Rob, who is in uniform
acceleration, carries a detector sensitive to 
 modes. To study
the entanglement in the states from their perspective we must
transform the 
 modes to Rindler modes. Therefore, Unruh
states must be transformed into the Rindler basis. The state in
the Minkowski-Rinder basis becomes effectively a tripartite
system. As is commonplace in the literature, we define the
Alice-Rob bipartition as the Minkowski and region I Rindler
modes while the Alice-anti-Rob bipartitions corresponds to
Minkowski and region II Rindler modes. To study distillable
entanglement we will employ the negativity N , defined as
the sum of the negative eigenvalues of the partial transpose
density matrix. Two cases of interest will be considered. In
the first case we assume that Alice and Rob have detectors
which do not distinguish between particle and antiparticles. In
this case, particles and antiparticles together are considered
to be a subsystem. In the second case we consider that
Rob and anti-Rob have detectors which are only sensitive
to particles (antiparticles); therefore, antiparticle (particle)
states must be traced out. Our results will show that when
Rob is accelerated, the entanglement redistributes between
particles and antiparticles as a function of his acceleration.
This effect is a unique feature of fermionic fields and plays an

important role in the behavior of fermionic entanglement in
the infinite-acceleration limit.

A. Entanglement in states |�+〉 and |�−〉
To compute Alice-Rob partial density matrix in (28) we

trace over region II in |�+〉〈�+| and obtain

ρ+
AR=1

2 [C4|000〉〈000| + S2C2(|010〉〈010| + |001〉〈001|)
+ S4|011〉〈011| + |qR|2(C2|110〉〈110| + S2|111〉〈111|)
+|qL|2(S2|110〉〈110|+C2|100〉〈100|) + q∗

R(C3|000〉〈110|
+S2C|001〉〈111|) − q∗

L(C2S|001〉〈100| + S3|011〉〈110|)
−qRq∗

LSC|111〉〈100|] + (H.c.)nondiag., (31)

where C = cos r
 and S = sin r
.
The density matrix for the Alice-anti-Rob modes is obtained

by tracing over region I,

ρ+
AR̄

=1
2 [C4|000〉〈000| + S2C2(|001〉〈001| + |010〉〈010|)
+ S4|011〉〈011| + |qR|2(C2|100〉〈100| + S2|110〉〈110|)

+|qL|2(S2|111〉〈111|+C2|110〉〈110|) +q∗
L(C3|000〉〈110|

+S2C|001〉〈111|) + q∗
R(C2S|001〉〈100| + S3|011〉〈110|)

+qRq∗
LSC|100〉〈111|] + (H.c.)nondiag.. (32)

To calculate the entanglement considering that Rob and
AntiRob are able to detect both particles and antiparticles
(with calculations that follow from [26]), we first obtain
the Alice-Rob and Alice-anti-Rob partial transpose density
matrices and their negative eigenvalues. The partial transpose
matrix (ρ+

AR)pT is block diagonal and only the following two
blocks contribute to negativity:

(i) basis |100〉,|010〉,|111〉:

1

2

⎛
⎜⎝

C2|qL|2 C3q∗
R −q∗

RqLSC

C3qR S2C2 −qLS3

−qRq∗
LSC −q∗

LS3 |qR|2S2

⎞
⎟⎠ , (33)

(ii) basis {|000〉,|101〉,|011〉}:

1

2

⎛
⎜⎝

C4 −qLC2S 0

−q∗
LC2S 0 q∗

RS2C

0 qRS2C S4

⎞
⎟⎠ , (34)

where the basis used is |ijk〉 = |i〉σM
Rob︷ ︸︸ ︷

|j 〉+I |k〉−I . Notice that
although the system is bipartite, the dimension of the partial
Hilbert space for Alice is smaller than the dimension of
the Hilbert space for Rob, which includes both particle and
antiparticle modes. The eigenvalues only depend on |qR| and
not on the relative phase between qR and qL.

We can carry out a similar calculation for the Alice-anti-Rob
subsystem. In this case we need to compute (ρ+

AR̄
)pT , the blocks
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of the partial transpose density matrix which contribute to the
negativity:

(iii) basis {|111〉,|010〉,|100〉}:

1

2

⎛
⎜⎝

S2|qL|2 S3q∗
R q∗

RqLSC

S3qR C2S2 qLC3

qRq∗
LSC q∗

LC3 |qR|2C2

⎞
⎟⎠ , (35)

(iv) basis {|011〉,|101〉,|000〉}:

1

2

⎛
⎜⎝

S4 qLS2C 0

q∗
LS2C 0 q∗

RC2S

0 qRC2S C4

⎞
⎟⎠ , (36)

where we have considered the basis |ijk〉 = |i〉σM
anti-Rob︷ ︸︸ ︷

|j 〉+II |k〉−II .
Once more, the eigenvalues only depend on |qR| and not on
the relative phase between qR and qL.

We see that, as discussed in [26], when the acceleration
increases the entanglement between Alice-anti-Rob modes
is created, compensating for the entanglement lost between
Alice-Rob. If |qR| < 1 the entanglement lost is not entirely
compensated by the creation of entanglement between Alice-
anti-Rob, resulting in a less entangled state in the infinite-
acceleration limit. An analysis of the quantum entanglement
between Alice’s modes and particle and antiparticle modes of
Rob and anti-Rob will be useful to disclose why correlations
present this behavior.

We now analyze the entanglement when Rob’s and anti-
Rob’s detectors are not able to detect antiparticles. In this
case the entanglement is between their particle modes and
Alice’s subsystem. Since Rob cannot detect antiparticles we
must trace over all antiparticle states and therefore, from (31),
ρ+

AR+ = ∑
n=0,1〈n|−I ρ+

AR|n〉−I . This yields

ρ+
AR+ = 1

2 [C2|00〉〈00| + S2|01〉〈01| + q∗
RC|00〉〈11|)

+(|qR|2 + |qL|2S2)|11〉〈11| + |qL|2C2|10〉〈10|)]
+(H.c.)nondiag., (37)

which is the partial state of Alice and the particles sector of
Rob.

The partial transpose (ρ+
AR+)pT has only one block whose

negative eigenvalue contributes to negativity:
(v) basis {|10〉,|01〉}:

1

2

(|qL|2C2 q∗
RC

qRC S2

)
. (38)

The same procedure can be carried out for the system AR̄ by
tracing over the antiparticle sector in (32), yielding

ρ+
AR̄+ = 1

2 [C2|00〉〈00| + S2|01〉〈01| + q∗
LC|00〉〈11|

+(|qL|2 + |qR|2S2)|11〉〈11| + |qR|2C2|10〉〈10|]
+(H.c.)nondiag.. (39)

The partial transpose (ρ+
AR̄+)pT has only one block whose

negative eigenvalue contributes to negativity:
(vi) basis {|10〉,|01〉}:

1

2

(|qR|2C2 q∗
LC

qLC S2

)
. (40)

A similar calculation can be carried out by considering that
Rob and anti-Rob detectors are only sensitive to antiparticles,
i.e., tracing over particle states. In this case we obtain, from
(31), ρ+

AR− = ∑
n=0,1〈n|+I ρ+

AR|n〉+I , and therefore

ρ+
AR− = 1

2 [C2|00〉〈00| + S2|01〉〈01| − q∗
LS|01〉〈10|

+(|qL|2 + |qR|2C2)|10〉〈10| + |qR|2S2|11〉〈11|)]
+(H.c.)nondiag. (41)

is the partial state of Alice and the particles sector of Rob.
The only block giving negative eigenvalues is

(vii) basis {|11〉,|00〉}:
1

2

(|qR|2S2 −q∗
LS

−qLS C2

)
. (42)

The density matrix for the Alice-anti-Rob antiparticle modes
is obtained by tracing over the particle sector in (32):

ρ+
AR̄− = 1

2 [C2|00〉〈00| + S2|01〉〈01|
+(|qR|2 + |qL|2C2)|10〉〈10| + |qL|2S2|11〉〈11|
+q∗

RS|01〉〈10|)] + (H.c.)nondiag. (43)

Again only one block of the density matrix contributes to
negativity:
(viii) basis {|11〉,|00〉}:

1

2

(|qL|2S2 q∗
RS

qRS C2

)
. (44)

The analysis of entanglement in the state (29) is done in
a completely analogous way. We find that the entanglement
behaves exactly the same way as in state (28) only that the role
of particles is replaced by antiparticles. Therefore negativities
are related in the following way:

N+
AR+ = N−

AR− , N+
AR̄+ = N−

AR̄− ,

N+
AR− = N−

AR+ , N+
AR̄− = N−

AR̄+ ,

N+
AR = N−

AR, N+
AR̄

= N−
AR̄

.

We see in Fig. 2 that the total entanglement between Alice
and anti-Rob starts decreasing and presents a minimum before
starting to grow again for higher accelerations. If |qR| < 1
the entanglement in the limit a → 0 is distributed between
the bipartitions AR and AR̄ [26]. The entanglement lost
in the bipartition AR̄ is not entirely compensated by the
creation of entanglement in AR̄ and, therefore, this results in a
state containing less entanglement in the infinite-acceleration
limit.

Interestingly, the correlations between Alice and the particle
sector of Rob and anti-Rob always decrease (Fig. 3) while the
correlations between Alice and the antiparticle sector of Rob
and anti-Rob always grow (Fig. 4). This behavior explains why
entanglement always survive the infinite-acceleration limit for
any election of qR and qL. As Rob accelerates there is a process
of entanglement transfer between the particle and antiparticle
sector of his Hilbert space. The same happens with anti-Rob,
such that neither for AR nor for AR̄ does the entanglement
vanish for any value of the acceleration.

For the simplest case |qR| = 1 we see that all the en-
tanglement is initially (a → 0) in the particle sector of the
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FIG. 2. (Color online) Full negativity for the Alice-Rob (blue
continuous) and Alice-anti-Rob (red dashed) bipartitions as a function
of r
 = arctan e−π
/a for various choices of |qR|. The blue continuous
(red dashed) curves from top to bottom (from bottom to top)
correspond to |qR| = 1,0.9,0.8,0.7, respectively.

bipartition AR. As the acceleration increases the entanglement
is transferred to the antiparticle sector of the bipartition AR̄

such that, in the limit of infinite acceleration, entanglement
has been equally distributed between these two bipartitions.

The tensor product structure of the particle and antiparticle
sectors (20) plays an important role in the behavior of
entanglement in the infinite-acceleration limit. In the case
of neutral scalar fields there are no antiparticles and entan-
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FIG. 3. (Color online) Negativity in the particle sector (in which
Rob and anti-Rob can only detect particle modes) for the bipartition
Alice-Rob (blue continuous) and Alice-anti-Rob (red dashed) for the
state (28) as a function of r
 = arctan e−π
/a for various choices
of |qR|. The blue continuous (red dashed) curves from top to
bottom (from bottom to top) correspond to |qR| = 1,0.9,0.8,0.71,
respectively. For |qR| = 1 the Alice-anti-Rob curve is zero ∀a
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FIG. 4. (Color online) Negativity in the antiparticle sector (in
which Rob and anti-Rob can only detect antiparticle modes) for
the bipartition Alice-Rob (blue continuous) and Alice-anti-Rob (red
dashed) for the state (28) as a function of r
 = arctan e−π
/a for
various choices of |qR|. The red dashed (blue continuous) curves
from top to bottom (from bottom to top) correspond to |qR| =
1,0.9,0.8,0.71, respectively.

glement is completely degraded. Note that in the case of
charged bosonic fields there are indeed charged conjugate
antiparticles. However, in this case the Hilbert space has a
similar structure to the uncharged field [4]. The existence of
bosonic antiparticles simply adds another copy of the same
Hilbert space and no entanglement transfer is possible between
particle and antiparticles. Clearly, the Hilbert space structure
in the fermionic case (20) is different and thus we observe the
differences in the entanglement behavior.

Now, if we move to less trivial cases where qR �= 1 the
situation gets more complicated. In these scenarios we initially
start with some entanglement in the particle sector of AR̄, and
there can also be an entanglement transfer between this sector
and AR antiparticle sector. However, no entanglement at all
is transferred to the antiparticle sector of the subsystem AR

unless the acceleration reaches a threshold given by

cos2 r = |qL|2
|qR|2 = 1

|qR|2 − 1. (45)

The maximum value of cos[r(a)] is cos[r(a → ∞)] → 1/
√

2;
therefore for |qR|2 > 2/3 entanglement is not transferred to the
antiparticle sector of Alice-Rob for any value of the accelera-
tion. This explains why when qR �= 1 the entanglement loss in
the bipartition AR in the limit a → ∞ is smaller than in the
extreme case qR = 1.

It is evident that the choice of Unruh modes influences
the transfer of entanglement between particle and antiparticle
sectors. When the acceleration is larger than that given in
(45), when |qR| grows closer to 1/

√
2 more entanglement is

transferred from the particle sector of AR̄ to the antiparticles of
AR. In the limit qR = 1/

√
2 the same amount of entanglement

is transferred to the antiparticle sector of both AR and AR̄.
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The particle entanglement (which is always monotonically
decreasing) resembles the behavior of bosonic entanglement
studied in [26]. Bosonic entanglement is monotonically de-
creasing for both AR and AR̄ subsystems. In the neutral
bosonic case there are no antiparticles and, hence, there is
no possibility of entanglement transfer to antiparticle sectors
of AR̄. This is the origin of the differences in entanglement
behavior for neutral bosons and fermions.

B. Entanglement in state |�1〉
This state has no neutral bosonic analog since it is entangled

in the particle and antiparticle degrees of freedom. Therefore,
the analysis of entanglement in this state reveals interesting
features which are of genuinely fermionic nature.

To study this type of state we employ our generalization
of the formalism developed in [26] which relates general
Unruh modes with Rindler modes. This formalism refines the
single-mode approximation introduced in [1,11], which has
been extensively used in the literature. For this type of state the
single approximation used in [5] does not hold and attempting
to use it leads to misleading results: one finds that maximally
entangled states from the inertial perspective appear disentan-
gled from the accelerated perspective, irrespective of the value
of acceleration. Using the mode transformation introduced
in our first section leads to sensible results: acceleration
behaves regularly for accelerated observers and approaches
a maximally entangled state in the inertial limit.

For convenience we will introduce a new notation for this
case. For Alice, we denote the states by |+〉 if they correspond
to particles and |−〉 for antiparticles. Therefore the state is
written as

|�1〉 = 1√
2

(|+〉M|1
〉−U + |−〉M|1
〉+U). (46)

The density matrix for the subsystem Alice-Rob is obtained
from |�1〉〈�1| tracing over region II:

ρ1
AR = |qR|2C2|+10〉〈+10| + |qR|2S2|+11〉〈+11|

+|qL|2C2|+00〉〈+00| + |qL|2S2|+10〉〈+10|
−SCqRq∗

L|+11〉〈+00| + |qL|2C2|−00〉〈−00|
+|qL|2S2|−01〉〈−01| + |qR|2C2|−01〉〈−01|
+|qR|2S2|−11〉〈−11| + SCq∗

RqL|−00〉〈−11|
+(|qR|2C2 − |qL|2S2)|+10〉〈−01| + (H.c.)nondiag.,

(47)

and for the Alice-anti-Rob partition we obtain

ρ1
AR̄

= |qR|2C2|+00〉〈+00| + |qR|2S2|+10〉〈+10|
+|qL|2C2|+10〉〈+10| + |qL|2S2|+11〉〈+11|
+SCqRq∗

L|+00〉〈+11| + |qL|2C2|−01〉〈−01|
+|qL|2S2|−11〉〈−11| + |qR|2C2|−00〉〈−00|
+|qR|2S2|−01〉〈−01| − SCq∗

RqL|−11〉〈−00|
+(|qL|2C2 − |qR|2S2)|+10〉〈−01| + (H.c.)nondiag..

(48)
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FIG. 5. (Color online) Particle-antiparticle maximally entangled
state (30): Negativity for the bipartition Alice-Rob (blue con-
tinuous) and Alice-anti-Rob (red dashed) as a function of r
 =
arctan e−π
/a for various choices of |qR|. The blue continuous
(red dashed) curves from top to bottom (from bottom to top)
correspond to |qR| = 1,0.9,0.8,0.7, respectively. The curves for the
Alice-anti-Rob entanglement have a minimum where the negativity
vanishes.

Assuming that the observers cannot distinguish between
particle and antiparticles yields matrices where only one
block of the partial transpose density matrix gives negative
eigenvalues:

(ix) basis {|−10〉,|+01〉}:
1

2

(
0 (|qR|2C2 − |qL|2S2)

(|qR|2C2 − |qL|2S2) 0

)
. (49)

In this case the negativity is given by

N 1
AR = 1

2 ||qR|2C2 − |qL|2S2||.
A similar result is obtained for the system Alice-anti-Rob

ρ1
AR̄

. In this case the only block of the partial transpose that
contributes to negativity is

(x) basis {|−10〉,|+01〉}:
1

2

(
0 (|qL|2C2 − |qR|2S2)

(|qL|2C2 − |qR|2S2) 0

)
, (50)

resulting in

N 1
AR̄

= 1
2 ||qL|2C2 − |qR|2S2||.

Interestingly, when Rob and anti-Rob are not able to detect
either particle or antiparticle modes the entanglement in the
state vanishes. The partial density matrices for AR and AR̄ in
this case yield

ρ1
AR+ = (|qR|2 + |qL|2S2)|+1〉〈+1| + |qL|2C2|+0〉〈+0|

+(|qL|2 + |qR|2C2)|−0〉〈−0| + |qR|2S2|−1〉〈−1|
+(H.c.)nondiag., (51)
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ρ1
AR̄− = (|qL|2 + |qR|2S2)|+1〉〈+1| + |qR|2C2|+0〉〈+0|

+ (|qR|2 + |qL|2C2)|−0〉〈−0| + |qL|2S2|−1〉〈−1|
+ (H.c.)nondiag., (52)

ρ1
AR+ = (|qL|2 + |qR|2C2)|+0〉〈+0| + |qL|2C2|−0〉〈−0|

+ (|qR|2 + |qL|2S2)|−1〉〈−1| + |qR|2S2|+1〉〈+1|
+ (H.c.)nondiag., (53)

ρ1
AR̄+ = (|qR|2 + |qL|2C2)|+0〉〈+0| + |qR|2C2|−0〉〈−0|

+ (|qL|2 + |qR|2S2)|−1〉〈−1| + |qL|2S2|+1〉〈+1|
+ (H.c.)nondiag., (54)

for which negativity is strictly zero. The entanglement in
this state is of a nature different from that of the en-
tanglement in states |�+〉 and |�−〉; therefore, a direct
comparison of the behavior of entanglement cannot be done.
The total entanglement here is associated with correlations
between particles and antiparticles and, therefore, if we
trace out either the particles or antiparticles we effec-
tively remove all the correlations codified in this degree of
freedom.

In the case when the detectors do not distinguish between
particles and antiparticles (See Fig. 5) we found that the
entanglement in the Alice-anti-Rob bipartition is degraded,
with acceleration vanishing at a critical point. For higher
accelerations entanglement then begins to grow again. Namely,
the entanglement on the bipartition Alice-anti-Rob vanishes
for a specific value of the acceleration if |qR| < 1. This value
of the acceleration is given by

tan2 r = 1

|qR|2 − 1.

Moreover, the surviving entanglement in the limit a → ∞ is

N 1
AR(a → ∞) = NAR̄(a → ∞) = 1

4 (|qR|2 − |qL|2).

Therefore, when |qR| = |qL| = 1/
√

2 no en-
tanglement survives in the limit of infinite
acceleration.

This shows that entanglement has a nonvanishing minimum
value in the infinite-acceleration limit (regardless the election
of Unruh modes) only when there is transfer of entanglement
between particles and antiparticles. Otherwise, it is possible
to find an Unruh mode whose entanglement vanishes in
the infinite-acceleration limit as in the bosonic case. We

therefore conclude that the entanglement transfer between
particle and antiparticle sectors plays a key role in explaining
the behavior of entanglement in the infinite-acceleration
limit.

IV. CONCLUSIONS

Including antiparticles in the study of fermionic entangle-
ment allowed us to understand key features which explain
the difference in behavior of entanglement in fermionic
and bosonic cases. Namely, we have shown that there is
an entanglement redistribution between the particle and an-
tiparticle sectors when Rob is in uniform acceleration. This
entanglement transfer is not possible in the bosonic case and,
therefore, the differences in the behavior of entanglement
in the bosonic and fermionic cases arise. In particular, we
have shown that this entanglement tradeoff gives rise to a
nonvanishing minimum value of fermionic entanglement in
the infinite-acceleration limit for any choice of Unruh modes.

We also exhibit a special fermionic state for which
entanglement transfer between particle and antiparticle states
is not possible. Interestingly, in this case we can find a specific
choice of Unruh modes such that entanglement vanishes in
the infinite-acceleration limit. Incidentally, this choice (|qR| =
|qL| = 1/

√
2) minimizes the surviving entanglement of states

(28) and (29). We showed that it is the tradeoff between the
particle and antiparticle sectors that protected them from a
complete entanglement loss.

Our analysis is based on an extension to antiparticles of
the formalism introduced in [26] which relates Unruh and
Rindler modes. This allowed us to analyze a more general
family of fermionic maximally entangled states for which the
single-mode approximation does not hold.

This study sheds light in the understanding of relativistic en-
tanglement: the differences in bosonic and fermionic statistics
give rise to differences in entanglement behavior. This provides
a deep insight on the mechanisms which make fermionic
entanglement more resilient to Unruh-Hawking radiation.
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