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Entanglement of arbitrary spin fields in noninertial frames
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We generalize the study of fermionic and bosonic entanglement in noninertial frames to fields of arbitrary spin
and beyond the single-mode approximation. After the general analysis we particularize for two interesting cases:
entanglement between an inertial and an accelerated observer for massless fields of spin 1 (electromagnetic) and
spin 3/2 (Rarita-Schwinger). We show that, in the limit of infinite acceleration, no significant differences appear
between the different spin fields for the states considered.
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I. INTRODUCTION

The novel field of relativistic quantum information has
experienced a quick development in the recent past [1–24].
Among other topics, this field includes the study of quantum
correlations affected by gravitational effects or a field state
described by a noninertial observer. It has been recently shown
in [22] that the so-called single-mode approximation [1,4] was
misunderstood and, furthermore, does not hold in most of the
cases. It was also shown that to properly take into account
all the features of entanglement in noninertial frames it is
necessary to go beyond such an approximation [22–25].

So far, most of the works have only considered spinless
fields, either bosonic or fermionic [5–18,22]. Only a few works
have considered fields of nonzero spin in this context, only in
very specific cases (spin 1/2) [14,26,27], and always assuming
the single-mode approximation. In this work we provide the
tools necessary to extend these studies to fields of arbitrary spin
and beyond the single-mode approximation. We do so via the
explicit computation of the general expression for the vacuum
and Unruh excitations in the Rindler basis for the arbitrary
spin case. Given these expressions, the study of entanglement
in any setting in which only a finite number of relevant modes
play a role becomes straightforward. To illustrate, we explicitly
study entanglement behavior as a function of acceleration for
the particular case of fields of spin 1 and spin 3/2, cases that
have not been properly studied before (see Sec. IV A).

In our setting, and for the sake of simplicity, we consider
a (1 + 1)-dimensional space-time, although the results can be
readily extended to higher-dimensional space-times as well.
The spin-quantization axis is chosen along the acceleration
direction so no Thomas precession occurs, which is com-
mon in relativistic quantum information literature [6,14,22].
Throughout our work, we refer to the causally disconnected
left and right wedges of the flat space-time shown in Fig. 1
as regions I and II. The world line of a uniformly accelerated
Rindler observer must lie in either region I or region II. Since
both regions are globally hyperbolic, they admit independent
quantum field theory constructions [28,29], each having its
own set of creation and annihilation operators. If we want to
build a quantum field theory for all of Minkowski space-time,
both of these constructions have to be taken into account, and
therefore the total Hilbert space factorizes as HI ⊗ HII. As
it can be seen elsewhere [5,6,14,22], entanglement effects in
noninertial frames are, in fact, related to the nontrivial change
from the Minkowski to the Rindler basis.

We first construct the fermionic inertial modes and find
expressions for the Minkowski vacuum and excitations in
Rindler coordinates for arbitrary spin. This constitutes Sec. II.
In Sec. III we present the extension of the formalism to
arbitrary spin bosonic fields. In Sec. IV we study entanglement
for some interesting states in the case of the electromagnetic
and spin-3/2 fields. Finally, Sec. V contains our conclusions.

II. FERMIONIC FIELDS

In the context of fermionic fields, we can define a set of
inertial modes that are expressed as monochromatic modes in
the accelerated observer Fock basis. These modes are named
“Unruh modes” [22], and the creation operators associated
with them are defined by

C
†
ω,σ,R = cos rωc

†
ω,σ,I − sin rωdω,−σ,II,

(1)
C

†
ω,σ,L = cos rωc

†
ω,σ,II − sin rωdω,−σ,I.

Here, the operator cω,σ,I corresponds to the Rindler mode of
frequency ω and spin σ in region I, and dω,σ,I corresponds to
its antiparticle; the same considerations apply to region II. The
parameter rω is defined by

tan rω = e−πωc/a, (2)

where a is the proper acceleration of the observer. Notice that
the extension to massive fields is direct if we replace ω/c by
|k| in (2) (see [22,30]).

It can be easily proved that, regardless of the formal
differences among inner products for different spin fields,
Eq. (1) is valid for arbitrary spin following the analytical
continuation arguments in [22,28,31] that also apply here.
Analog expressions apply for the bosonic case (see Sec. III
and [29]).

As (1) shows, there are two distinct kinds of Unruh modes,
which we label as right (R) and left (L) modes. A general
Unruh mode is therefore a linear combination of the form

C
†
ω,σ,U = qRC

†
ω,σ,R + qLC

†
ω,−σ,L (3)

satisfying the obvious normalization condition |qR|2 + |qL|2
= 1. The single-mode approximation consisted in the assump-
tion that the Unruh mode with qR = 1 is a good approximation
for a Minkowski monochromatic mode. This is not the case,
as such modes, when expressed in terms of Unruh modes,
have important contributions from modes (3) with qR �= 1 [22].
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FIG. 1. Space-time diagram, showing the trajectories of an
inertial and an accelerated observer.

Therefore, considering arbitrary Unruh modes is necessary in
general.

As shown elsewhere [28,32], the Minkowski vacuum can
be factorized as a product of the vacua of all different Unruh
modes,

|0〉M =
⊗

ω

|0〉ω,U, (4)

where ω is the Rindler frequency associated to the Unruh mode
(see, among others, [22,29]). This means that each independent
Unruh mode of Rindler frequency ω can be studied separately.

In order to express the Minkowski vacuum state in terms
of Rindler modes we take advantage of the fact that the
Minkowski vacuum is annihilated by all the Unruh annihilation
operators; that is, Cω,σ,U|0〉M = 0. Since we work only with
Unruh modes of a single Rindler frequency, we may drop the
label ω for the rest of the section. In other words, we only
need to consider a single frequency sector of the vacuum state
|0〉ω,U.

Although the condition Cσ,U|0〉U = 0 ∀σ uniquely deter-
mines the vacuum state, we still have to specify a Hilbert
space basis. We employ a number basis obtained by applying
Rindler creation operators on the Minkowski vacuum, as is
commonplace in the field. Nevertheless, due to the fermionic
nature of the field, we also have to specify the order in which
the operators act so as to completely specify the basis. The
differences between these bases may have nontrivial effects
on entanglement, a phenomenon thoroughly studied in [25].

We find that a specific fermionic operator ordering results
is particularly useful to generalize the results for arbitrary
spin, keeping in mind that changing to any other ordering is
trivial once the state has been computed. Before we obtain
the expressions for the vacuum and arbitrary excitations for
fermionic fields, we introduce some notation. For a fermionic
field of spin s, there are 4(2s + 1) modes of equal frequency
(the factor of 4 takes into account particles and antiparticles
in both regions I and II). To define our Fock basis we must

select a specific operator ordering for the creation operators
associated to these modes. A state with a definite number of
particles in the Rindler basis is denoted by |α1 · · ·α4(2s+1)〉,
where αi ∈ {0,1} indicates whether the ith mode in the chosen
fermionic operator ordering is populated. In other words, we
can identify each number state by a certain binary number.
This notation also applies to any factorization of the Hilbert
space we may perform, as H = H1 ⊗ · · · ⊗ Hn. In this case, a
state in H may be obtained simply by concatenating the binary
numbers for states in each Hi .

To calculate the vacuum state and excitations in terms
of Rindler modes, we choose the specific operator ordering
defined by the fully excited state

|1 · · · 1〉 =
∏
σ

(c†σ,Id
†
−σ,IId

†
σ,Ic

†
−σ,II)|0〉. (5)

Here, σ is a label running over the 2s + 1 values of the spin
z component. The ordering (5) groups together all the region
I operators of a given spin z component with all the region
II operators with the reverse spin z component. It therefore
suggests a factorization of the Hilbert space as

H =
⊗

σ

Hσ , (6)

where the vacuum state of each Hσ , |0〉σ , satisfies Cσ,R|0〉σ =
C−σ,L|0〉σ = 0. These relations for any fixed σ are exactly
those found for the Grassman scalar field which is ubiquitous
in the relativistic quantum information literature [6,22,33–36].
Therefore, the problem of finding the vacuum and excitations
for arbitrary spin is formally equivalent to 2s + 1 copies of the
Grassman scalar case.

We make another factorization of Hσ into left and right
sectors, as is implied by the ordering (5) where, for any σ ,
the first two operators correspond precisely to the right Unruh
mode and the other two correspond to the left Unruh mode.
The vacuum for the right sector now obeys the single condition
Cσ,R|0〉σ,R = 0 and involves only region I particle modes and
region II antiparticle modes. Using (1), it is straightforward to
verify that

|0〉σ,R = cos rω|00〉 + sin rω|11〉
= (cos rωI + sin rωc

†
σ,Id

†
−σ,II)|0〉Rin, (7)

where |0〉Rin is the Rindler vacuum.
Similarly, for the left sector, one finds

|0〉σ,L = cos rω|00〉 − sin rω|11〉
= (cos rωI − sin rωd

†
σ,Ic

†
−σ,II)|0〉Rin, (8)

where the extra minus sign comes from the reversed operator
ordering. (We take the criterion of having region I operators
appear before region II operators within a given sector;
however, this is purely conventional.)

Grouping results (7) and (8) together we find the vacuum
for a single σ to be

|0〉σ = cos2 rω|0000〉 − sin rω cos rω|0011〉
+ sin rω cos rω|1100〉 − sin2 rω|1111〉, (9)
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where the notation is implicitly defined by grouping the
operators in (7) and (8) as

|1111〉 = c
†
σ,Id

†
−σ,IId

†
σ,Ic

†
−σ,II|0〉Rin. (10)

The one-particle excitations are obtained straightforwardly by
applying Eqs. (3)–(9),

|1〉σ = (qRC
†
σ,R + qLC

†
σ,L)|0〉σ

= qR[cos rω|1000〉 − sin rω|1011〉]
+ qL[sin rω|1101〉 + cos rω|0001〉]. (11)

With these, we are nearly done: The vacuum state for a single
Unruh mode of arbitrary spin in the operator ordering (5) is
given by

|0〉U =
⊗

σ

|0〉σ , (12)

where we remind the reader that the tensor product of two states
in different spin sectors in our notation is obtained simply by
concatenating their expressions.

In order to compute an arbitrary Unruh excitation of the
form

|σ1, . . . ,σN 〉U = C
†
σ1,U

· · · C†
σN ,U|0〉U, (13)

we only have to rearrange the operators C
†
σi ,U

so that they have
the same ordering as the product in (5), and then substitute
the factors |0〉σi

by |1〉σi
in (12). This is possible because

the vacuum states for each sector |0〉σ are superpositions
of terms with an even number of particles and therefore no
anticommutation signs appear when the operator C

†
σ ′,U “goes

through” the operators in sector σ .
Some final considerations are in order. As mentioned above,

only Dirac fermions have been considered so far. The transla-
tion of these results to Majorana fermions is straightforward
since, although the distinction between particle and antiparticle
modes of the same helicity is lost, the Unruh modes (1) mix
particles of different helicities. The Majorana case is therefore
exactly analogous to that of the Grassman scalar field, with
particles of negative helicity playing the role of antiparticles.

Finally, we remark that the state coefficients in the basis
related to any other operator ordering different from (5) can
be readily obtained from the above expressions by simply
rearranging the operators. Therefore, the coefficients in any
ordering differ from those computed above at most by a sign.

III. BOSONIC FIELDS

The notation and arguments employed in the previous
section for fermionic fields can be carried over to the bosonic
case almost without modification. The main differences are
that in the bosonic case no sign ambiguity concerning operator
ordering may appear, that the number of excitations in each
mode is unbounded due to the lack of any Pauli exclusion
principle (and thus the states can no longer be labeled by a
binary number), and that in the bosonic case the Unruh modes
are given by

A
†
ω,R = cosh rω a

†
ω,σ,I − sinh rω aω,−σ,II,

(14)
A

†
ω,L = cosh rω a

†
ω,σ,II − sinh rω aω,−σ,I,

where the parameter rω is now defined by tanh rω = e−πωc/a .
Note that no distinctions are made between particle and
antiparticle modes since, contrary to the case of Dirac
fermionic fields, antiparticles are not a necessity of the
formalism. Should we want to treat a complex field with
distinct particles and antiparticles, we would merely add
another subscript indicating particle species to the operators.
As all the magnitudes that change under time reversal, this
label should change in the second term of the Unruh modes
(14) just like spin does. The Unruh mode under consideration,
analogous to (3), is

A
†
ω,σ,U = qRA

†
ω,σ,R + qLA

†
ω,−σ,L. (15)

As in the previous section, we henceforth drop the frequency
label ω since it plays no role in our calculations.

As before, we can factor the Hilbert space in a product of
the different degrees of freedom of the field

H =
⊗

σ

Hσ , (16)

where σ takes 2s + 1 distinct values for a massive field.
Although all the operator orderings lead to the same basis in
the bosonic case, it is still important to specify the notation we
use for the field excitations. We employ the ordering analogous
to (5),

|1 · · · 1〉 =
∏
σ

(a†
σ,Ia

†
−σ,II)|0〉. (17)

The vacuum and arbitrary particle excitations are given, as in
the fermionic case, by the expressions

|0〉U =
⊗

σ

|0〉σ (18)

and

⊗
σ

|nσ 〉σ = 1√
n1! · · · nk!

(
Aσ1,U

)n1 · · · (Aσk,U
)nk |0〉U. (19)

Notice that the complete state is obtained by concatenating all
the different spin sectors.

Therefore, all that remains is to find the vacuum and
arbitrary excitation in the Rindler basis for any fixed σ

subspace. In other words, we only need to compute the vacuum
and arbitrary excitation for the scalar field.

Following [22], we make a squeezed vacuum state ansatz
for |0〉σ ,

|0〉σ =
∞∑

n=0

f (n)|n n〉, (20)

where, following our notation, we have

|n n〉 = 1

n!
(a†

σ,I)
n(a†

−σ,II)
n|0〉Rin. (21)

If we now impose the obvious conditions A−σ,L|0〉σ =
Aσ,R|0〉σ = 0, we get the recurrence relation

cosh rωf (n) − sinh rωf (n − 1) = 0 (22)

012337-3
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with solution f (n) = CN tanhn rω. The constant CN can be
found from the normalization condition

C2
N

∞∑
n=0

tanh2n rω = 1. (23)

The geometric series is readily evaluated as

∞∑
n=0

tanh2n rω = 1

1 − tanh2 rω

= cosh2 rω (24)

and therefore CN = 1/ cosh rω. The vacuum state is then

|0〉σ = 1

cosh rω

∞∑
n=0

tanhn rω|n n〉. (25)

Hence, the one-particle excitation is

|1〉σ = (qRA
†
σ,R + qLA

†
−σ,L)|0U〉 =

∞∑
n=0

f (n)

√
n + 1

cosh rω

|�n〉,
(26)

|�n〉 = qL|n (n + 1)〉 + qR|(n + 1) n〉.
With these results, the higher spin analogs of all the states

previously considered in the literature can be readily studied.
For higher excitations, a recurrence relation can be found: If
we write the excitation as

|n〉σ =
∑

gn(k,l)|k l〉, (27)

then applying the Unruh creation operator and dividing by√
n + 1 to normalize we obtain the recurrence relations

gn+1(k + 1,l) = qR√
n + 1

[
√

k + 1 cosh rωg(k,l)

+√
l + 1 sinh rωg(k + 1,l + 1)],

gn+1(k,l + 1) = qL√
n + 1

[
√

l + 1 cosh rωg(k,l)

+√
k + 1 sinh rωg(k + 1,l + 1)]. (28)

These relations, together with expression (25) for the vacuum
state, uniquely determine the arbitrary particle excitations.

IV. ENTANGLEMENT IN FIELDS OF HIGHER SPIN

In this section we study entanglement in bipartite field states
of arbitrary spin of the form

|�〉 = 1√
2

(|0〉A |A〉R + |0〉A |B〉R) , (29)

where {|0〉A , |1〉A} is a qubit Hilbert space basis for Alice,
who is customarily taken to be watching an inertial field mode
(i.e., Alice is an inertial observer) and {|A〉R , |B〉R} are two
states obtained by applying an arbitrary linear combination
of products of Unruh creation operators to the Minkowski
vacuum, at a frequency very different from Alice’s modes
so that their overlap is negligible. These states compose the
second part of the system, which is watched by a uniformly
accelerated observer (Rob) moving in region I of Minkowski
space-time. Since Rob is noninertial, the natural coordinates to
describe the field from his viewpoint are Rindler coordinates
and, thus, their associated Rindler basis.

Also, since Rob is unable to access the field outside region I,
he must trace over region II modes to obtain a physical
mixed state which describes the correlations in the Alice-Rob
bipartite system. It is in this reduced state where we study
entanglement. We employ the negativity [37], an entanglement
measure suited for the study of mixed states. It is defined as
the absolute value of the sum of the negative eigenvalues of
the partial transpose matrix.

The results obtained in Secs. II and III allow us to express
any field state in the Rindler basis and also provide new tools
which make the study of entanglement in some settings trivial.
For instance, looking at (18) or (12) we see that, if we have a
state in which only a single σ is excited, say σi , then the state
factors as

|�〉 = |�〉σi
⊗

⎛
⎝⊗

j �=i

|0〉σj

⎞
⎠ . (30)

If state (30) is entangled, all of the entanglement must be
in the factor |�〉σi

, which implies that the entanglements in
the states |�〉σi

and |�〉 are the same. Thus, the existence of
this spin factorization explains the universality phenomenon
found [14,26] where the Grassman field state

1√
2

(|0〉A |0〉R ± |1〉A |1〉R) (31)

and the Dirac field state

1√
2

(|0〉A |0〉R ± |1〉A |σ 〉R) (32)

with σ ∈ {↑,↓} were found to have exactly the same entangle-
ment. Notice that this argument requires the use of a Hilbert
space basis associated with a specific operator ordering.
However, as seen in Sec. II and studied in detail in [25],
entanglement changes when different operator orderings are
chosen. Nevertheless, it can be shown that the equality remains
true for any other ordering.

The same arguments hold for bosonic fields even more
directly, as in this case there is no operator ordering ambiguity.
This means that the massless spin 1 state

1√
2

(|0〉A |0〉R ± |1〉A |p〉R), (33)

where p ∈ {L,R} describes helicity, has the same entangle-
ment properties as the scalar field state

1√
2

(|0〉A |0〉R ± |1〉A |1〉R) . (34)

We now study entanglement in slightly less trivial states,
using the results of Secs. II and III to express Rob’s part of
the state in the Rindler basis. We consider both the massless
spin-1 case and the massive spin-3/2 case.

A. Spin 1

This is a very interesting case since it corresponds to
the electromagnetic field. Noninertial entanglement for the
electromagnetic field has been examined before [38]. However,
several technical misconceptions invalidate those previous
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FIG. 2. (Color online) Negativity as a function of rω for the state
(35) and different values of qR. From top to bottom, qR = 1, 0.9, 0.8,
1/

√
2. Note the slight bump for qR = 0.9 and small rω, which depicts

entanglement creation.

results.1 Here we see that, as it happens to the fermionic
field [14], bosonic entanglement in the spin degree of freedom
is affected by acceleration in a very similar way as occupation
number entanglement.

Figure 2 shows the negativity as a function of rω and
different values of qR for the massless spin-1 state

|�〉B = 1√
2

(|R〉A |L〉R ± |L〉A |R〉R) . (35)

The results are qualitatively similar to those found in [22]. En-
tanglement is completely degraded in the infinite acceleration
limit and there is less inertial entanglement in the initial state
as qR increases. However, there is a remarkable difference with
the scalar field results reported in [22]: For qR = 0.9, Fig. 2
shows a small increase in entanglement for small rω. This is
another instance of the entanglement creation phenomenon
reported in [24], where only bosonic scalar and Grassman
scalar fields were considered. These results therefore show
explicitly that this entanglement creation phenomenon can also
happen for formally maximally entangled states such as (33).

We would like to remark that in [39] a qualitatively
similar phenomenon of an entanglement maximum in a special
relativistic context is reported. However, the similarities are
only superficial: Our results present negativity, while Ref. [39]
studies Clauser-Horne-Shimony-Holt correlations. We study
the behavior of entanglement under uniform acceleration,
and therefore we are forced to trace out modes causally
disconnected from the observer. The maximum in Fig. 2 is
the result of two competing trends: On one hand, the change

1Namely, in [38] the authors did not consider the correct product
of the two different spin sectors that appear for the electromagnetic
field. This resulted in a wrong vacuum state, as can be checked by
applying annihilator operators to it. As a consequence, this led to the
incorrect result that entanglement is not affected by acceleration.

of basis from Minkowski to Unruh modes tends to create en-
tanglement, while on the other, the tracing out of modes tends
to wash it out. Reference [39] studies entanglement between
two inertial parties. Since no tracing of modes is present, their
maximum must have a different origin. Finally, we remark
that the maximum in Fig. 2 has an energy proportional to
the acceleration of the observer, while the maximum in [39]
happens at a fixed energy. For reasonable accelerations, both
maxima differ by many orders of magnitude.

B. Spin 3/2

For the spin-3/2 case, we have to consider a state with more
than one-particle Unruh excitations, since otherwise the state
would always have a lower-spin analog. We therefore consider
the state (29) with

|A〉 = 1√
2

(|↑↗〉 + |↑〉),
(36)

|B〉 = 1√
2

(|↓↘〉 + |↓〉),

where we have set up the notation

|↑〉 = |S = 3/2,σ = 3/2〉, (37)

|↗〉 = |S = 3/2,σ = 1/2〉, (38)

|↘〉 = |S = 3/2,σ = −1/2〉, (39)

|↓〉 = |S = 3/2,σ = −3/2〉, (40)

for the four spin z component states of the field (σ ).
As mentioned before, because of the operator ordering am-

biguity present in fermionic fields, negativity is not uniquely
defined. Figure 3 shows the negativity for the state (36) and
the bases associated with three different operator orderings:

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

rω

N
eg

at
iv

ity

FIG. 3. (Color online) Negativity as a function of rω for the state
(36) and different values of qR. From top to bottom, qR = 1, 0.9,
0.8, 1/

√
2. Solid (blue) curves show negativity in the “physical”

ordering in which all region I operators appear to the left of all
region II operators. Dashed (red) curves correspond to the canonical
ordering employed in previous literature [22]. Dash-dotted (green)
curves correspond to negativity in the “spin” operator ordering (5).
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(1) the “spin” ordering (5) used in Sec. II to obtain the
expressions for the excitations in arbitrary spins;

(2) a generalization of the “canonical” ordering employed
in [22], which exploits the tensor product structure of the
whole space in terms of left and right sectors, rather than the
spin structure; and

(3) the physically preferred class of operator orderings
discussed in [25], namely, those orderings in which all region I
operators appear to the left of all region II operators. All these
orderings result in the same negativity. The last curve in Fig. 3
represents this “physical” negativity class.

Note that the physical and canonical negativities lie very
close to each other for all values of qR; this is but a quirk
of the state (36) and does not happen in general. The spin
ordering in this case happens to deviate significantly from
the other two curves. Nevertheless, all three curves present
a qualitatively similar behavior: A maximum entanglement
is reached and afterward it is degraded up to a finite limit,
a characteristic which is the hallmark of fermionic statistics
[6]. This finite limit is independent of qR for both the
physical and the canonical negativities, but not so for the spin
one.

V. CONCLUSIONS

We have found expressions for the vacuum and Unruh
excitations beyond the single-mode approximation for fields
of arbitrary spin. By taking advantage of an appropriate tensor
product structure of the Hilbert space, the problem was reduced
to computing these quantities for spin 0, a case well known in
the literature.

The expressions derived here therefore make it straightfor-
ward to extend all the previous studies in quantum information
to fields of arbitrary spin, both under and beyond the single-
mode approximation. The formalism developed here can be
also used to study other internal degrees of freedom that were
not affected by the kinematical state of the observer.

We have applied our formalism to study the most acces-
sible quantum field for performing quantum information, the
electromagnetic field, which is of spin 1. Some entanglement
amplification was found in the spin-1 singlet state for some
values of qR �= 1, 1/

√
2.

We also considered a representative state for the spin-3/2
field. We studied the negativities in the bases associated to three
different operator orderings: the spin ordering used in Sec. II
to easily compute the vacuum and excitations, the canonical
ordering used in previous literature [22], and the physical
ordering as developed in [25]. The entanglement behavior was
qualitatively similar in all these cases.

All our considerations can be of course exported to a setting
consisting of two observers in the vicinity of a black hole, one
standing still close to the horizon and the other free-falling.
The details of this correspondence can be found in [19]. These
results, along with the banishment of the single-mode approx-
imation in [22], provide a fully general formalism to analyze
the entanglement of quantum fields in noninertial frames.
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